-
1
-
-
0036407233
-
Biofilms as complex differentiated communities
-
Stoodley P., et al. Biofilms as complex differentiated communities. Annu. Rev. Microbiol. 2002, 56:187-209.
-
(2002)
Annu. Rev. Microbiol.
, vol.56
, pp. 187-209
-
-
Stoodley, P.1
-
2
-
-
84883773340
-
The in vivo biofilm
-
Bjarnsholt T., et al. The in vivo biofilm. Trends Microbiol. 2013, 21:466-474.
-
(2013)
Trends Microbiol.
, vol.21
, pp. 466-474
-
-
Bjarnsholt, T.1
-
3
-
-
0035859467
-
Antibiotic resistance of bacteria in biofilms
-
Stewart P.S., Costerton J.W. Antibiotic resistance of bacteria in biofilms. Lancet 2001, 358:135-138.
-
(2001)
Lancet
, vol.358
, pp. 135-138
-
-
Stewart, P.S.1
Costerton, J.W.2
-
4
-
-
1842612577
-
Bacterial biofilms: from the natural environment to infectious diseases
-
Hall-Stoodley L., et al. Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2004, 2:95-108.
-
(2004)
Nat. Rev. Microbiol.
, vol.2
, pp. 95-108
-
-
Hall-Stoodley, L.1
-
5
-
-
77955628762
-
Persister cells
-
Lewis K. Persister cells. Annu. Rev. Microbiol. 2010, 64:357-372.
-
(2010)
Annu. Rev. Microbiol.
, vol.64
, pp. 357-372
-
-
Lewis, K.1
-
6
-
-
84862639570
-
The interconnection between biofilm formation and horizontal gene transfer
-
Madsen J.S., et al. The interconnection between biofilm formation and horizontal gene transfer. FEMS Immunol. Med. Microbiol. 2012, 65:183-195.
-
(2012)
FEMS Immunol. Med. Microbiol.
, vol.65
, pp. 183-195
-
-
Madsen, J.S.1
-
7
-
-
84875149197
-
Staphylococcus aureus biofilms promote horizontal transfer of antibiotic resistance
-
Savage V.J., et al. Staphylococcus aureus biofilms promote horizontal transfer of antibiotic resistance. Antimicrob. Agents Chemother. 2013, 57:1968-1970.
-
(2013)
Antimicrob. Agents Chemother.
, vol.57
, pp. 1968-1970
-
-
Savage, V.J.1
-
8
-
-
84875955724
-
Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm
-
Soto S.M. Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm. Virulence 2013, 4:223-229.
-
(2013)
Virulence
, vol.4
, pp. 223-229
-
-
Soto, S.M.1
-
9
-
-
84866102281
-
Biofilm-specific antibiotic resistance
-
Mah T.F. Biofilm-specific antibiotic resistance. Future Microbiol. 2012, 7:1061-1072.
-
(2012)
Future Microbiol.
, vol.7
, pp. 1061-1072
-
-
Mah, T.F.1
-
10
-
-
77954638558
-
Response of sessile cells to stress: from changes in gene expression to phenotypic adaptation
-
Coenye T. Response of sessile cells to stress: from changes in gene expression to phenotypic adaptation. FEMS Immunol. Med. Microbiol. 2010, 59:239-252.
-
(2010)
FEMS Immunol. Med. Microbiol.
, vol.59
, pp. 239-252
-
-
Coenye, T.1
-
11
-
-
11444263858
-
Survival strategies of infectious biofilms
-
Fux C.A., et al. Survival strategies of infectious biofilms. Trends Microbiol. 2005, 13:34-40.
-
(2005)
Trends Microbiol.
, vol.13
, pp. 34-40
-
-
Fux, C.A.1
-
12
-
-
33947247352
-
Gyrase inhibitors induce an oxidative damage cellular death pathway in Escherichia coli
-
Dwyer D.J., et al. Gyrase inhibitors induce an oxidative damage cellular death pathway in Escherichia coli. Mol. Syst. Biol. 2007, 3:91.
-
(2007)
Mol. Syst. Biol.
, vol.3
, pp. 91
-
-
Dwyer, D.J.1
-
13
-
-
70349816733
-
Role of reactive oxygen species in antibiotic action and resistance
-
Dwyer D.J., et al. Role of reactive oxygen species in antibiotic action and resistance. Curr. Opin. Microbiol. 2009, 12:482-489.
-
(2009)
Curr. Opin. Microbiol.
, vol.12
, pp. 482-489
-
-
Dwyer, D.J.1
-
14
-
-
34548213103
-
A common mechanism of cellular death induced by bactericidal antibiotics
-
Kohanski M.A., et al. A common mechanism of cellular death induced by bactericidal antibiotics. Cell 2007, 130:797-810.
-
(2007)
Cell
, vol.130
, pp. 797-810
-
-
Kohanski, M.A.1
-
15
-
-
55449126342
-
Mistranslation of membrane proteins and two-component system activation trigger antibiotic-mediated cell death
-
Kohanski M.A., et al. Mistranslation of membrane proteins and two-component system activation trigger antibiotic-mediated cell death. Cell 2008, 135:679-690.
-
(2008)
Cell
, vol.135
, pp. 679-690
-
-
Kohanski, M.A.1
-
16
-
-
84874720377
-
Killing by bactericidal antibiotics does not depend on reactive oxygen species
-
Keren I., et al. Killing by bactericidal antibiotics does not depend on reactive oxygen species. Science 2013, 339:1213-1216.
-
(2013)
Science
, vol.339
, pp. 1213-1216
-
-
Keren, I.1
-
17
-
-
84874695302
-
Cell death from antibiotics without the involvement of reactive oxygen species
-
Liu Y., Imlay J.A. Cell death from antibiotics without the involvement of reactive oxygen species. Science 2013, 339:1210-1213.
-
(2013)
Science
, vol.339
, pp. 1210-1213
-
-
Liu, Y.1
Imlay, J.A.2
-
18
-
-
84877344203
-
Antibiotic and ROS linkage questioned
-
Fang F.C. Antibiotic and ROS linkage questioned. Nat. Biotechnol. 2013, 31:415-416.
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 415-416
-
-
Fang, F.C.1
-
19
-
-
14844322823
-
Resistance to oxidative stress caused by ceftazidime and piperacillin in a biofilm of Pseudomonas
-
Battán P.C., et al. Resistance to oxidative stress caused by ceftazidime and piperacillin in a biofilm of Pseudomonas. Luminescence 2004, 19:265-270.
-
(2004)
Luminescence
, vol.19
, pp. 265-270
-
-
Battán, P.C.1
-
20
-
-
77249155990
-
Resistance to ciprofloxacin by enhancement of antioxidant defenses in biofilm and planktonic Proteus mirabilis
-
Aiassa V., et al. Resistance to ciprofloxacin by enhancement of antioxidant defenses in biofilm and planktonic Proteus mirabilis. Biochem. Biophys. Res. Commun. 2010, 393:84-88.
-
(2010)
Biochem. Biophys. Res. Commun.
, vol.393
, pp. 84-88
-
-
Aiassa, V.1
-
21
-
-
84891634488
-
Macromolecular oxidation in planktonic population and biofilms of Proteus mirabilis exposed to ciprofloxacin
-
Aiassa V., et al. Macromolecular oxidation in planktonic population and biofilms of Proteus mirabilis exposed to ciprofloxacin. Cell Biochem. Biophys. 2014, 68:49-54.
-
(2014)
Cell Biochem. Biophys.
, vol.68
, pp. 49-54
-
-
Aiassa, V.1
-
22
-
-
84901006669
-
Formation of hydroxyl radicals contributes to the bactericidal activity of ciprofloxacin against Pseudomonas aeruginosa biofilms
-
Jensen P.O., et al. Formation of hydroxyl radicals contributes to the bactericidal activity of ciprofloxacin against Pseudomonas aeruginosa biofilms. Pathog. Dis. 2014, 10.1111/2049-632X.12120.
-
(2014)
Pathog. Dis.
-
-
Jensen, P.O.1
-
23
-
-
84893699182
-
Bactericidal effect of colistin on planktonic Pseudomonas aeruginosa is independent of hydroxyl radical formation
-
Brochmann R.P., et al. Bactericidal effect of colistin on planktonic Pseudomonas aeruginosa is independent of hydroxyl radical formation. Int. J. Antimicrob. Agents 2014, 43:140-147.
-
(2014)
Int. J. Antimicrob. Agents
, vol.43
, pp. 140-147
-
-
Brochmann, R.P.1
-
24
-
-
81555212273
-
Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria
-
Nguyen D., et al. Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science 2011, 334:982-986.
-
(2011)
Science
, vol.334
, pp. 982-986
-
-
Nguyen, D.1
-
25
-
-
84876181159
-
The stringent response controls catalases in Pseudomonas aeruginosa and is required for hydrogen peroxide and antibiotic tolerance
-
Khakimova M., et al. The stringent response controls catalases in Pseudomonas aeruginosa and is required for hydrogen peroxide and antibiotic tolerance. J. Bacteriol. 2013, 195:2011-2020.
-
(2013)
J. Bacteriol.
, vol.195
, pp. 2011-2020
-
-
Khakimova, M.1
-
26
-
-
84874847175
-
Biofilm-grown Burkholderia cepacia complex cells survive antibiotic treatment by avoiding production of reactive oxygen species
-
Van Acker H., et al. Biofilm-grown Burkholderia cepacia complex cells survive antibiotic treatment by avoiding production of reactive oxygen species. PLoS ONE 2013, 8:e58943.
-
(2013)
PLoS ONE
, vol.8
-
-
Van Acker, H.1
-
27
-
-
0022482179
-
Amphotericin B-induced oxidative damage and killing of Candida albicans
-
Sokol-Anderson M.L., et al. Amphotericin B-induced oxidative damage and killing of Candida albicans. J. Infect. Dis. 1986, 154:76-83.
-
(1986)
J. Infect. Dis.
, vol.154
, pp. 76-83
-
-
Sokol-Anderson, M.L.1
-
28
-
-
0036784060
-
Endogenous reactive oxygen species is an important mediator of miconazole antifungal effect
-
Kobayashi D., et al. Endogenous reactive oxygen species is an important mediator of miconazole antifungal effect. Antimicrob. Agents Chemother. 2002, 46:3113-3117.
-
(2002)
Antimicrob. Agents Chemother.
, vol.46
, pp. 3113-3117
-
-
Kobayashi, D.1
-
29
-
-
33744488513
-
Azoles: mode of antifungal action and resistance development. Effect of miconazole on endogenous reactive oxygen species production in Candida albicans
-
François I.E., et al. Azoles: mode of antifungal action and resistance development. Effect of miconazole on endogenous reactive oxygen species production in Candida albicans. Curr. Med. Chem. 2006, 5:1-11.
-
(2006)
Curr. Med. Chem.
, vol.5
, pp. 1-11
-
-
François, I.E.1
-
30
-
-
84874233056
-
Fungicidal drugs induce a common oxidative-damage cellular death pathway
-
Belenky P., et al. Fungicidal drugs induce a common oxidative-damage cellular death pathway. Cell Rep. 2013, 3:350-358.
-
(2013)
Cell Rep.
, vol.3
, pp. 350-358
-
-
Belenky, P.1
-
31
-
-
77952575700
-
Fungicidal activity of miconazole against Candida spp. biofilms
-
Vandenbosch D., et al. Fungicidal activity of miconazole against Candida spp. biofilms. J. Antimicrob. Chemother. 2010, 65:694-700.
-
(2010)
J. Antimicrob. Chemother.
, vol.65
, pp. 694-700
-
-
Vandenbosch, D.1
-
32
-
-
80051804445
-
Superoxide dismutases are involved in Candida albicans biofilm persistence against miconazole
-
Bink A., et al. Superoxide dismutases are involved in Candida albicans biofilm persistence against miconazole. Antimicrob. Agents Chemother. 2011, 55:4033-4037.
-
(2011)
Antimicrob. Agents Chemother.
, vol.55
, pp. 4033-4037
-
-
Bink, A.1
-
33
-
-
84884848764
-
Potentiation of antibiofilm activity of amphotericin B by superoxide dismutase inhibition
-
De Brucker K., et al. Potentiation of antibiofilm activity of amphotericin B by superoxide dismutase inhibition. Oxid. Med. Cell. Longev. 2013, 2013:704654.
-
(2013)
Oxid. Med. Cell. Longev.
, vol.2013
, pp. 704654
-
-
De Brucker, K.1
-
34
-
-
33750596264
-
Candida albicans biofilms produce antifungal-tolerant persister cells
-
LaFleur M.D., et al. Candida albicans biofilms produce antifungal-tolerant persister cells. Antimicrob. Agents Chemother. 2006, 50:3839-3846.
-
(2006)
Antimicrob. Agents Chemother.
, vol.50
, pp. 3839-3846
-
-
LaFleur, M.D.1
-
35
-
-
22144471145
-
Bacterial resistance to antibiotics: active efflux and reduced uptake
-
Kumar A., Schweizer H.P. Bacterial resistance to antibiotics: active efflux and reduced uptake. Adv. Drug Deliv. Rev. 2005, 57:1486-1513.
-
(2005)
Adv. Drug Deliv. Rev.
, vol.57
, pp. 1486-1513
-
-
Kumar, A.1
Schweizer, H.P.2
-
36
-
-
84867184096
-
Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance
-
Fernández L., Hancock R.E. Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance. Clin. Microbiol. Rev. 2012, 25:661-681.
-
(2012)
Clin. Microbiol. Rev.
, vol.25
, pp. 661-681
-
-
Fernández, L.1
Hancock, R.E.2
-
37
-
-
0035015675
-
Multidrug efflux pumps: expression patterns and contribution to antibiotic resistance in Pseudomonas aeruginosa biofilms
-
De Kievit T.R., et al. Multidrug efflux pumps: expression patterns and contribution to antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother. 2001, 45:1761-1770.
-
(2001)
Antimicrob. Agents Chemother.
, vol.45
, pp. 1761-1770
-
-
De Kievit, T.R.1
-
38
-
-
24144485847
-
Molecular basis of azithromycin-resistant Pseudomonas aeruginosa biofilms
-
Gillis R.J., et al. Molecular basis of azithromycin-resistant Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother. 2005, 49:3858-3867.
-
(2005)
Antimicrob. Agents Chemother.
, vol.49
, pp. 3858-3867
-
-
Gillis, R.J.1
-
39
-
-
40549126258
-
Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB-oprM genes
-
Pamp S.J., et al. Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB-oprM genes. Mol. Microbiol. 2008, 68:223-240.
-
(2008)
Mol. Microbiol.
, vol.68
, pp. 223-240
-
-
Pamp, S.J.1
-
40
-
-
84862669999
-
The metabolically active subpopulation in Pseudomonas aeruginosa biofilms survives exposure to membrane-targeting antimicrobials via distinct molecular mechanisms
-
Chiang W.C., et al. The metabolically active subpopulation in Pseudomonas aeruginosa biofilms survives exposure to membrane-targeting antimicrobials via distinct molecular mechanisms. FEMS Immunol. Med. Microbiol. 2012, 65:245-256.
-
(2012)
FEMS Immunol. Med. Microbiol.
, vol.65
, pp. 245-256
-
-
Chiang, W.C.1
-
41
-
-
46049083393
-
Involvement of a novel efflux system in biofilm-specific resistance to antibiotics
-
Zhang L., Mah T.F. Involvement of a novel efflux system in biofilm-specific resistance to antibiotics. J. Bacteriol. 2008, 190:4447-4452.
-
(2008)
J. Bacteriol.
, vol.190
, pp. 4447-4452
-
-
Zhang, L.1
Mah, T.F.2
-
42
-
-
80052845657
-
Antagonistic interactions of Pseudomonas aeruginosa antibiotic resistance mechanisms in planktonic but not biofilm growth
-
Mulet X., et al. Antagonistic interactions of Pseudomonas aeruginosa antibiotic resistance mechanisms in planktonic but not biofilm growth. Antimicrob. Agents Chemother. 2011, 55:4560-4568.
-
(2011)
Antimicrob. Agents Chemother.
, vol.55
, pp. 4560-4568
-
-
Mulet, X.1
-
43
-
-
0033954651
-
Chromosomal beta-lactamase is packaged into membrane vesicles and secreted from Pseudomonas aeruginosa
-
Ciofu O., et al. Chromosomal beta-lactamase is packaged into membrane vesicles and secreted from Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2000, 45:9-13.
-
(2000)
J. Antimicrob. Chemother.
, vol.45
, pp. 9-13
-
-
Ciofu, O.1
-
44
-
-
1642502348
-
Dynamics and spatial distribution of beta-lactamase expression in Pseudomonas aeruginosa biofilms
-
Bagge N., et al. Dynamics and spatial distribution of beta-lactamase expression in Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother. 2004, 48:1168-1174.
-
(2004)
Antimicrob. Agents Chemother.
, vol.48
, pp. 1168-1174
-
-
Bagge, N.1
-
45
-
-
1642543160
-
Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and beta-lactamase and alginate production
-
Bagge N., et al. Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and beta-lactamase and alginate production. Antimicrob. Agents Chemother. 2004, 48:1175-1187.
-
(2004)
Antimicrob. Agents Chemother.
, vol.48
, pp. 1175-1187
-
-
Bagge, N.1
-
46
-
-
79955435815
-
Deciphering the role of RND efflux transporters in Burkholderia cenocepacia
-
Bazzini S., et al. Deciphering the role of RND efflux transporters in Burkholderia cenocepacia. PLoS ONE 2011, 6:e18902.
-
(2011)
PLoS ONE
, vol.6
-
-
Bazzini, S.1
-
47
-
-
33747410819
-
Efflux pump genes of the resistance-nodulation-division family in Burkholderia cenocepacia genome
-
Guglierame P., et al. Efflux pump genes of the resistance-nodulation-division family in Burkholderia cenocepacia genome. BMC Microbiol. 2006, 6:66.
-
(2006)
BMC Microbiol.
, vol.6
, pp. 66
-
-
Guglierame, P.1
-
48
-
-
70349779663
-
Assessment of three Resistance-Nodulation-Cell Division drug efflux transporters of Burkholderia cenocepacia in intrinsic antibiotic resistance
-
Buroni S., et al. Assessment of three Resistance-Nodulation-Cell Division drug efflux transporters of Burkholderia cenocepacia in intrinsic antibiotic resistance. BMC Microbiol. 2009, 9:200.
-
(2009)
BMC Microbiol.
, vol.9
, pp. 200
-
-
Buroni, S.1
-
49
-
-
84879011175
-
Key role for efflux in the preservative susceptibility and adaptive resistance of Burkholderia cepacia complex bacteria
-
Rushton L., et al. Key role for efflux in the preservative susceptibility and adaptive resistance of Burkholderia cepacia complex bacteria. Antimicrob. Agents Chemother. 2013, 57:2972-2980.
-
(2013)
Antimicrob. Agents Chemother.
, vol.57
, pp. 2972-2980
-
-
Rushton, L.1
-
50
-
-
79955533011
-
Molecular mechanisms of chlorhexidine tolerance in Burkholderia cenocepacia biofilms
-
Coenye T., et al. Molecular mechanisms of chlorhexidine tolerance in Burkholderia cenocepacia biofilms. Antimicrob. Agents Chemother. 2011, 55:1912-1919.
-
(2011)
Antimicrob. Agents Chemother.
, vol.55
, pp. 1912-1919
-
-
Coenye, T.1
-
51
-
-
66449112829
-
Efflux-mediated antifungal drug resistance
-
Cannon R.D., et al. Efflux-mediated antifungal drug resistance. Clin. Microbiol. Rev. 2009, 22:291-321.
-
(2009)
Clin. Microbiol. Rev.
, vol.22
, pp. 291-321
-
-
Cannon, R.D.1
-
52
-
-
0036488166
-
Resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequences
-
Sanglard D., Odds F.C. Resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequences. Lancet Infect. Dis. 2002, 2:73-85.
-
(2002)
Lancet Infect. Dis.
, vol.2
, pp. 73-85
-
-
Sanglard, D.1
Odds, F.C.2
-
53
-
-
84885002728
-
Mechanisms of Candida biofilm drug resistance
-
Taff H.T., et al. Mechanisms of Candida biofilm drug resistance. Future Microbiol. 2013, 8:1325-1337.
-
(2013)
Future Microbiol.
, vol.8
, pp. 1325-1337
-
-
Taff, H.T.1
-
54
-
-
84886953195
-
Recent insights into Candida albicans biofilm resistance mechanisms
-
Mathé L., Van Dijck P. Recent insights into Candida albicans biofilm resistance mechanisms. Curr. Genet. 2013, 59:251-264.
-
(2013)
Curr. Genet.
, vol.59
, pp. 251-264
-
-
Mathé, L.1
Van Dijck, P.2
-
55
-
-
0035992139
-
Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms
-
Ramage G., et al. Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms. J. Antimicrob. Chemother. 2002, 49:973-980.
-
(2002)
J. Antimicrob. Chemother.
, vol.49
, pp. 973-980
-
-
Ramage, G.1
-
56
-
-
0041764578
-
Mechanism of fluconazole resistance in Candida albicans biofilms: phase-specific role of efflux pumps and membrane sterols
-
Mukherjee P.K., et al. Mechanism of fluconazole resistance in Candida albicans biofilms: phase-specific role of efflux pumps and membrane sterols. Infect. Immun. 2003, 71:4333-4340.
-
(2003)
Infect. Immun.
, vol.71
, pp. 4333-4340
-
-
Mukherjee, P.K.1
-
57
-
-
4344693408
-
Adherence of Candida albicans to silicone induces immediate enhanced tolerance to fluconazole
-
Mateus C., et al. Adherence of Candida albicans to silicone induces immediate enhanced tolerance to fluconazole. Antimicrob. Agents Chemother. 2004, 48:3358-3366.
-
(2004)
Antimicrob. Agents Chemother.
, vol.48
, pp. 3358-3366
-
-
Mateus, C.1
-
58
-
-
77953621452
-
Transcriptional response to fluconazole and amphotericin B in Candida albicans biofilms
-
Nailis H., et al. Transcriptional response to fluconazole and amphotericin B in Candida albicans biofilms. Res. Microbiol. 2010, 161:284-292.
-
(2010)
Res. Microbiol.
, vol.161
, pp. 284-292
-
-
Nailis, H.1
-
59
-
-
67650665320
-
Time course global gene expression analysis of an in vivo Candida biofilm
-
Nett J.E., et al. Time course global gene expression analysis of an in vivo Candida biofilm. J. Infect. Dis. 2009, 200:307-313.
-
(2009)
J. Infect. Dis.
, vol.200
, pp. 307-313
-
-
Nett, J.E.1
-
60
-
-
19544378506
-
Use of confocal microscopy to analyze the rate of vancomycin penetration through Staphylococcus aureus biofilms
-
Jefferson K.K., et al. Use of confocal microscopy to analyze the rate of vancomycin penetration through Staphylococcus aureus biofilms. Antimicrob. Agents Chemother. 2005, 49:2467-2473.
-
(2005)
Antimicrob. Agents Chemother.
, vol.49
, pp. 2467-2473
-
-
Jefferson, K.K.1
-
61
-
-
0020455805
-
Effect of extracellular polysaccharides on diffusion of NaF and [14C]-sucrose in human dental plaque and in sediments of the bacterium Streptococcus sanguis 804 (NCTC 10904)
-
McNee S.G., et al. Effect of extracellular polysaccharides on diffusion of NaF and [14C]-sucrose in human dental plaque and in sediments of the bacterium Streptococcus sanguis 804 (NCTC 10904). Arch. Oral. Biol. 1982, 27:981-986.
-
(1982)
Arch. Oral. Biol.
, vol.27
, pp. 981-986
-
-
McNee, S.G.1
-
62
-
-
0029981119
-
Theoretical aspects of antibiotic diffusion into microbial biofilms
-
Stewart P.S. Theoretical aspects of antibiotic diffusion into microbial biofilms. Antimicrob. Agents Chemother. 1996, 40:2517-2522.
-
(1996)
Antimicrob. Agents Chemother.
, vol.40
, pp. 2517-2522
-
-
Stewart, P.S.1
-
63
-
-
0037372799
-
Diffusion in biofilms
-
Stewart P.S. Diffusion in biofilms. J. Bacteriol. 2003, 185:1485-1491.
-
(2003)
J. Bacteriol.
, vol.185
, pp. 1485-1491
-
-
Stewart, P.S.1
-
64
-
-
0024161101
-
Antibiotic interaction and diffusion through alginate and exopolysaccharide of cystic fibrosis-derived Pseudomonas aeruginosa
-
Gordon C.A., et al. Antibiotic interaction and diffusion through alginate and exopolysaccharide of cystic fibrosis-derived Pseudomonas aeruginosa. J. Antimicrob. Chemother. 1988, 22:667-674.
-
(1988)
J. Antimicrob. Chemother.
, vol.22
, pp. 667-674
-
-
Gordon, C.A.1
-
65
-
-
0024347682
-
The penetration of antibiotics into aggregates of mucoid and non-mucoid Pseudomonas aeruginosa
-
Nichols W.W., et al. The penetration of antibiotics into aggregates of mucoid and non-mucoid Pseudomonas aeruginosa. J. Gen. Microbiol. 1989, 135:1291-1303.
-
(1989)
J. Gen. Microbiol.
, vol.135
, pp. 1291-1303
-
-
Nichols, W.W.1
-
66
-
-
0025829386
-
Use of slime dispersants to promote antibiotic penetration through the extracellular polysaccharide of mucoid Pseudomonas aeruginosa
-
Gordon C.A., et al. Use of slime dispersants to promote antibiotic penetration through the extracellular polysaccharide of mucoid Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 1991, 35:1258-1260.
-
(1991)
Antimicrob. Agents Chemother.
, vol.35
, pp. 1258-1260
-
-
Gordon, C.A.1
-
67
-
-
84885178344
-
The extracellular matrix protects Pseudomonas aeruginosa biofilms by limiting the penetration of tobramycin
-
Tseng B.S., et al. The extracellular matrix protects Pseudomonas aeruginosa biofilms by limiting the penetration of tobramycin. Environ. Microbiol. 2013, 15:2865-2878.
-
(2013)
Environ. Microbiol.
, vol.15
, pp. 2865-2878
-
-
Tseng, B.S.1
-
68
-
-
84883435047
-
The extracellular matrix component Psl provides fast-acting antibiotic defense in Pseudomonas aeruginosa biofilms
-
Billings N., et al. The extracellular matrix component Psl provides fast-acting antibiotic defense in Pseudomonas aeruginosa biofilms. PLoS Pathog. 2013, 9:e1003526.
-
(2013)
PLoS Pathog.
, vol.9
-
-
Billings, N.1
-
69
-
-
79551521160
-
The Pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa
-
Colvin K.M., et al. The Pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. PLoS Pathog. 2011, 7:e1001264.
-
(2011)
PLoS Pathog.
, vol.7
-
-
Colvin, K.M.1
-
70
-
-
0344011974
-
A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance
-
Mah T.F., et al. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 2003, 426:306-310.
-
(2003)
Nature
, vol.426
, pp. 306-310
-
-
Mah, T.F.1
-
71
-
-
77956805923
-
High-level antibiotic resistance in Pseudomonas aeruginosa biofilm: the ndvB gene is involved in the production of highly glycerol-phosphorylated beta-(1->3)-glucans, which bind aminoglycosides
-
Sadovskaya I., et al. High-level antibiotic resistance in Pseudomonas aeruginosa biofilm: the ndvB gene is involved in the production of highly glycerol-phosphorylated beta-(1->3)-glucans, which bind aminoglycosides. Glycobiology 2010, 20:895-904.
-
(2010)
Glycobiology
, vol.20
, pp. 895-904
-
-
Sadovskaya, I.1
-
72
-
-
84864012525
-
The biofilm-specific antibiotic resistance gene ndvB is important for expression of ethanol oxidation genes in Pseudomonas aeruginosa biofilms
-
Beaudoin T., et al. The biofilm-specific antibiotic resistance gene ndvB is important for expression of ethanol oxidation genes in Pseudomonas aeruginosa biofilms. J. Bacteriol. 2012, 194:3128-3136.
-
(2012)
J. Bacteriol.
, vol.194
, pp. 3128-3136
-
-
Beaudoin, T.1
-
73
-
-
0033824935
-
Matrix polymers of Candida biofilms and their possible role in biofilm resistance to antifungal agents
-
Baillie G.S., Douglas L.J. Matrix polymers of Candida biofilms and their possible role in biofilm resistance to antifungal agents. J. Antimicrob. Chemother. 2000, 46:397-403.
-
(2000)
J. Antimicrob. Chemother.
, vol.46
, pp. 397-403
-
-
Baillie, G.S.1
Douglas, L.J.2
-
74
-
-
33747068293
-
Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance
-
Al-Fattani M.A., Douglas L.J. Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance. J. Med. Microbiol. 2006, 55:999-1008.
-
(2006)
J. Med. Microbiol.
, vol.55
, pp. 999-1008
-
-
Al-Fattani, M.A.1
Douglas, L.J.2
-
75
-
-
33846579562
-
Putative role of beta-1,3 glucans in Candida albicans biofilm resistance
-
Nett J., et al. Putative role of beta-1,3 glucans in Candida albicans biofilm resistance. Antimicrob. Agents Chemother. 2007, 51:510-520.
-
(2007)
Antimicrob. Agents Chemother.
, vol.51
, pp. 510-520
-
-
Nett, J.1
-
76
-
-
77953719723
-
Genetic basis of Candida biofilm resistance due to drug-sequestering matrix glucan
-
Nett J.E., et al. Genetic basis of Candida biofilm resistance due to drug-sequestering matrix glucan. J. Infect. Dis. 2010, 202:171-175.
-
(2010)
J. Infect. Dis.
, vol.202
, pp. 171-175
-
-
Nett, J.E.1
-
77
-
-
77955355113
-
Role of Fks1p and matrix glucan in Candida albicans biofilm resistance to an echinocandin, pyrimidine, and polyene
-
Nett J.E., et al. Role of Fks1p and matrix glucan in Candida albicans biofilm resistance to an echinocandin, pyrimidine, and polyene. Antimicrob. Agents Chemother. 2010, 54:3505-3508.
-
(2010)
Antimicrob. Agents Chemother.
, vol.54
, pp. 3505-3508
-
-
Nett, J.E.1
-
78
-
-
77951233308
-
Interaction of Candida albicans biofilms with antifungals: transcriptional response and binding of antifungals to beta-glucans
-
Vediyappan G., et al. Interaction of Candida albicans biofilms with antifungals: transcriptional response and binding of antifungals to beta-glucans. Antimicrob. Agents Chemother. 2010, 54:2096-2111.
-
(2010)
Antimicrob. Agents Chemother.
, vol.54
, pp. 2096-2111
-
-
Vediyappan, G.1
-
79
-
-
84866147629
-
A Candida biofilm-induced pathway for matrix glucan delivery: implications for drug resistance
-
Taff H.T., et al. A Candida biofilm-induced pathway for matrix glucan delivery: implications for drug resistance. PLoS Pathog. 2012, 8:e1002848.
-
(2012)
PLoS Pathog.
, vol.8
-
-
Taff, H.T.1
-
80
-
-
84875146956
-
Role of matrix β-1,3 glucan in antifungal resistance of non-albicans Candida biofilms
-
Mitchell K.F., et al. Role of matrix β-1,3 glucan in antifungal resistance of non-albicans Candida biofilms. Antimicrob. Agents Chemother. 2013, 57:1918-1920.
-
(2013)
Antimicrob. Agents Chemother.
, vol.57
, pp. 1918-1920
-
-
Mitchell, K.F.1
-
81
-
-
84866358418
-
The MerR-like transcriptional regulator BrlR contributes to Pseudomonas aeruginosa biofilm tolerance
-
Liao J., Sauer K. The MerR-like transcriptional regulator BrlR contributes to Pseudomonas aeruginosa biofilm tolerance. J. Bacteriol. 2012, 194:4823-4836.
-
(2012)
J. Bacteriol.
, vol.194
, pp. 4823-4836
-
-
Liao, J.1
Sauer, K.2
-
82
-
-
84880649547
-
The MerR-like regulator BrlR confers biofilm tolerance by activating multidrug efflux pumps in Pseudomonas aeruginosa biofilms
-
Liao J., et al. The MerR-like regulator BrlR confers biofilm tolerance by activating multidrug efflux pumps in Pseudomonas aeruginosa biofilms. J. Bacteriol. 2013, 195:3352-3363.
-
(2013)
J. Bacteriol.
, vol.195
, pp. 3352-3363
-
-
Liao, J.1
|