메뉴 건너뛰기




Volumn 22, Issue 6, 2014, Pages 326-333

Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms

Author keywords

Antibiotics; Biofilm; Biofilm matrix; Efflux; Persisters; Resistance

Indexed keywords

AMINOGLYCOSIDE; BACTERIAL POLYSACCHARIDE; CIPROFLOXACIN; GENTAMICIN; GLUCAN SYNTHASE; GLUCOSYLTRANSFERASE; KANAMYCIN; MICONAZOLE; OFLOXACIN; QUINOLINE DERIVED ANTIINFECTIVE AGENT; TOBRAMYCIN; ANTIINFECTIVE AGENT; REACTIVE OXYGEN METABOLITE;

EID: 84901588714     PISSN: 0966842X     EISSN: 18784380     Source Type: Journal    
DOI: 10.1016/j.tim.2014.02.001     Document Type: Review
Times cited : (415)

References (82)
  • 1
    • 0036407233 scopus 로고    scopus 로고
    • Biofilms as complex differentiated communities
    • Stoodley P., et al. Biofilms as complex differentiated communities. Annu. Rev. Microbiol. 2002, 56:187-209.
    • (2002) Annu. Rev. Microbiol. , vol.56 , pp. 187-209
    • Stoodley, P.1
  • 2
    • 84883773340 scopus 로고    scopus 로고
    • The in vivo biofilm
    • Bjarnsholt T., et al. The in vivo biofilm. Trends Microbiol. 2013, 21:466-474.
    • (2013) Trends Microbiol. , vol.21 , pp. 466-474
    • Bjarnsholt, T.1
  • 3
    • 0035859467 scopus 로고    scopus 로고
    • Antibiotic resistance of bacteria in biofilms
    • Stewart P.S., Costerton J.W. Antibiotic resistance of bacteria in biofilms. Lancet 2001, 358:135-138.
    • (2001) Lancet , vol.358 , pp. 135-138
    • Stewart, P.S.1    Costerton, J.W.2
  • 4
    • 1842612577 scopus 로고    scopus 로고
    • Bacterial biofilms: from the natural environment to infectious diseases
    • Hall-Stoodley L., et al. Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2004, 2:95-108.
    • (2004) Nat. Rev. Microbiol. , vol.2 , pp. 95-108
    • Hall-Stoodley, L.1
  • 5
  • 6
    • 84862639570 scopus 로고    scopus 로고
    • The interconnection between biofilm formation and horizontal gene transfer
    • Madsen J.S., et al. The interconnection between biofilm formation and horizontal gene transfer. FEMS Immunol. Med. Microbiol. 2012, 65:183-195.
    • (2012) FEMS Immunol. Med. Microbiol. , vol.65 , pp. 183-195
    • Madsen, J.S.1
  • 7
    • 84875149197 scopus 로고    scopus 로고
    • Staphylococcus aureus biofilms promote horizontal transfer of antibiotic resistance
    • Savage V.J., et al. Staphylococcus aureus biofilms promote horizontal transfer of antibiotic resistance. Antimicrob. Agents Chemother. 2013, 57:1968-1970.
    • (2013) Antimicrob. Agents Chemother. , vol.57 , pp. 1968-1970
    • Savage, V.J.1
  • 8
    • 84875955724 scopus 로고    scopus 로고
    • Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm
    • Soto S.M. Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm. Virulence 2013, 4:223-229.
    • (2013) Virulence , vol.4 , pp. 223-229
    • Soto, S.M.1
  • 9
    • 84866102281 scopus 로고    scopus 로고
    • Biofilm-specific antibiotic resistance
    • Mah T.F. Biofilm-specific antibiotic resistance. Future Microbiol. 2012, 7:1061-1072.
    • (2012) Future Microbiol. , vol.7 , pp. 1061-1072
    • Mah, T.F.1
  • 10
    • 77954638558 scopus 로고    scopus 로고
    • Response of sessile cells to stress: from changes in gene expression to phenotypic adaptation
    • Coenye T. Response of sessile cells to stress: from changes in gene expression to phenotypic adaptation. FEMS Immunol. Med. Microbiol. 2010, 59:239-252.
    • (2010) FEMS Immunol. Med. Microbiol. , vol.59 , pp. 239-252
    • Coenye, T.1
  • 11
    • 11444263858 scopus 로고    scopus 로고
    • Survival strategies of infectious biofilms
    • Fux C.A., et al. Survival strategies of infectious biofilms. Trends Microbiol. 2005, 13:34-40.
    • (2005) Trends Microbiol. , vol.13 , pp. 34-40
    • Fux, C.A.1
  • 12
    • 33947247352 scopus 로고    scopus 로고
    • Gyrase inhibitors induce an oxidative damage cellular death pathway in Escherichia coli
    • Dwyer D.J., et al. Gyrase inhibitors induce an oxidative damage cellular death pathway in Escherichia coli. Mol. Syst. Biol. 2007, 3:91.
    • (2007) Mol. Syst. Biol. , vol.3 , pp. 91
    • Dwyer, D.J.1
  • 13
    • 70349816733 scopus 로고    scopus 로고
    • Role of reactive oxygen species in antibiotic action and resistance
    • Dwyer D.J., et al. Role of reactive oxygen species in antibiotic action and resistance. Curr. Opin. Microbiol. 2009, 12:482-489.
    • (2009) Curr. Opin. Microbiol. , vol.12 , pp. 482-489
    • Dwyer, D.J.1
  • 14
    • 34548213103 scopus 로고    scopus 로고
    • A common mechanism of cellular death induced by bactericidal antibiotics
    • Kohanski M.A., et al. A common mechanism of cellular death induced by bactericidal antibiotics. Cell 2007, 130:797-810.
    • (2007) Cell , vol.130 , pp. 797-810
    • Kohanski, M.A.1
  • 15
    • 55449126342 scopus 로고    scopus 로고
    • Mistranslation of membrane proteins and two-component system activation trigger antibiotic-mediated cell death
    • Kohanski M.A., et al. Mistranslation of membrane proteins and two-component system activation trigger antibiotic-mediated cell death. Cell 2008, 135:679-690.
    • (2008) Cell , vol.135 , pp. 679-690
    • Kohanski, M.A.1
  • 16
    • 84874720377 scopus 로고    scopus 로고
    • Killing by bactericidal antibiotics does not depend on reactive oxygen species
    • Keren I., et al. Killing by bactericidal antibiotics does not depend on reactive oxygen species. Science 2013, 339:1213-1216.
    • (2013) Science , vol.339 , pp. 1213-1216
    • Keren, I.1
  • 17
    • 84874695302 scopus 로고    scopus 로고
    • Cell death from antibiotics without the involvement of reactive oxygen species
    • Liu Y., Imlay J.A. Cell death from antibiotics without the involvement of reactive oxygen species. Science 2013, 339:1210-1213.
    • (2013) Science , vol.339 , pp. 1210-1213
    • Liu, Y.1    Imlay, J.A.2
  • 18
    • 84877344203 scopus 로고    scopus 로고
    • Antibiotic and ROS linkage questioned
    • Fang F.C. Antibiotic and ROS linkage questioned. Nat. Biotechnol. 2013, 31:415-416.
    • (2013) Nat. Biotechnol. , vol.31 , pp. 415-416
    • Fang, F.C.1
  • 19
    • 14844322823 scopus 로고    scopus 로고
    • Resistance to oxidative stress caused by ceftazidime and piperacillin in a biofilm of Pseudomonas
    • Battán P.C., et al. Resistance to oxidative stress caused by ceftazidime and piperacillin in a biofilm of Pseudomonas. Luminescence 2004, 19:265-270.
    • (2004) Luminescence , vol.19 , pp. 265-270
    • Battán, P.C.1
  • 20
    • 77249155990 scopus 로고    scopus 로고
    • Resistance to ciprofloxacin by enhancement of antioxidant defenses in biofilm and planktonic Proteus mirabilis
    • Aiassa V., et al. Resistance to ciprofloxacin by enhancement of antioxidant defenses in biofilm and planktonic Proteus mirabilis. Biochem. Biophys. Res. Commun. 2010, 393:84-88.
    • (2010) Biochem. Biophys. Res. Commun. , vol.393 , pp. 84-88
    • Aiassa, V.1
  • 21
    • 84891634488 scopus 로고    scopus 로고
    • Macromolecular oxidation in planktonic population and biofilms of Proteus mirabilis exposed to ciprofloxacin
    • Aiassa V., et al. Macromolecular oxidation in planktonic population and biofilms of Proteus mirabilis exposed to ciprofloxacin. Cell Biochem. Biophys. 2014, 68:49-54.
    • (2014) Cell Biochem. Biophys. , vol.68 , pp. 49-54
    • Aiassa, V.1
  • 22
    • 84901006669 scopus 로고    scopus 로고
    • Formation of hydroxyl radicals contributes to the bactericidal activity of ciprofloxacin against Pseudomonas aeruginosa biofilms
    • Jensen P.O., et al. Formation of hydroxyl radicals contributes to the bactericidal activity of ciprofloxacin against Pseudomonas aeruginosa biofilms. Pathog. Dis. 2014, 10.1111/2049-632X.12120.
    • (2014) Pathog. Dis.
    • Jensen, P.O.1
  • 23
    • 84893699182 scopus 로고    scopus 로고
    • Bactericidal effect of colistin on planktonic Pseudomonas aeruginosa is independent of hydroxyl radical formation
    • Brochmann R.P., et al. Bactericidal effect of colistin on planktonic Pseudomonas aeruginosa is independent of hydroxyl radical formation. Int. J. Antimicrob. Agents 2014, 43:140-147.
    • (2014) Int. J. Antimicrob. Agents , vol.43 , pp. 140-147
    • Brochmann, R.P.1
  • 24
    • 81555212273 scopus 로고    scopus 로고
    • Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria
    • Nguyen D., et al. Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science 2011, 334:982-986.
    • (2011) Science , vol.334 , pp. 982-986
    • Nguyen, D.1
  • 25
    • 84876181159 scopus 로고    scopus 로고
    • The stringent response controls catalases in Pseudomonas aeruginosa and is required for hydrogen peroxide and antibiotic tolerance
    • Khakimova M., et al. The stringent response controls catalases in Pseudomonas aeruginosa and is required for hydrogen peroxide and antibiotic tolerance. J. Bacteriol. 2013, 195:2011-2020.
    • (2013) J. Bacteriol. , vol.195 , pp. 2011-2020
    • Khakimova, M.1
  • 26
    • 84874847175 scopus 로고    scopus 로고
    • Biofilm-grown Burkholderia cepacia complex cells survive antibiotic treatment by avoiding production of reactive oxygen species
    • Van Acker H., et al. Biofilm-grown Burkholderia cepacia complex cells survive antibiotic treatment by avoiding production of reactive oxygen species. PLoS ONE 2013, 8:e58943.
    • (2013) PLoS ONE , vol.8
    • Van Acker, H.1
  • 27
    • 0022482179 scopus 로고
    • Amphotericin B-induced oxidative damage and killing of Candida albicans
    • Sokol-Anderson M.L., et al. Amphotericin B-induced oxidative damage and killing of Candida albicans. J. Infect. Dis. 1986, 154:76-83.
    • (1986) J. Infect. Dis. , vol.154 , pp. 76-83
    • Sokol-Anderson, M.L.1
  • 28
    • 0036784060 scopus 로고    scopus 로고
    • Endogenous reactive oxygen species is an important mediator of miconazole antifungal effect
    • Kobayashi D., et al. Endogenous reactive oxygen species is an important mediator of miconazole antifungal effect. Antimicrob. Agents Chemother. 2002, 46:3113-3117.
    • (2002) Antimicrob. Agents Chemother. , vol.46 , pp. 3113-3117
    • Kobayashi, D.1
  • 29
    • 33744488513 scopus 로고    scopus 로고
    • Azoles: mode of antifungal action and resistance development. Effect of miconazole on endogenous reactive oxygen species production in Candida albicans
    • François I.E., et al. Azoles: mode of antifungal action and resistance development. Effect of miconazole on endogenous reactive oxygen species production in Candida albicans. Curr. Med. Chem. 2006, 5:1-11.
    • (2006) Curr. Med. Chem. , vol.5 , pp. 1-11
    • François, I.E.1
  • 30
    • 84874233056 scopus 로고    scopus 로고
    • Fungicidal drugs induce a common oxidative-damage cellular death pathway
    • Belenky P., et al. Fungicidal drugs induce a common oxidative-damage cellular death pathway. Cell Rep. 2013, 3:350-358.
    • (2013) Cell Rep. , vol.3 , pp. 350-358
    • Belenky, P.1
  • 31
    • 77952575700 scopus 로고    scopus 로고
    • Fungicidal activity of miconazole against Candida spp. biofilms
    • Vandenbosch D., et al. Fungicidal activity of miconazole against Candida spp. biofilms. J. Antimicrob. Chemother. 2010, 65:694-700.
    • (2010) J. Antimicrob. Chemother. , vol.65 , pp. 694-700
    • Vandenbosch, D.1
  • 32
    • 80051804445 scopus 로고    scopus 로고
    • Superoxide dismutases are involved in Candida albicans biofilm persistence against miconazole
    • Bink A., et al. Superoxide dismutases are involved in Candida albicans biofilm persistence against miconazole. Antimicrob. Agents Chemother. 2011, 55:4033-4037.
    • (2011) Antimicrob. Agents Chemother. , vol.55 , pp. 4033-4037
    • Bink, A.1
  • 33
    • 84884848764 scopus 로고    scopus 로고
    • Potentiation of antibiofilm activity of amphotericin B by superoxide dismutase inhibition
    • De Brucker K., et al. Potentiation of antibiofilm activity of amphotericin B by superoxide dismutase inhibition. Oxid. Med. Cell. Longev. 2013, 2013:704654.
    • (2013) Oxid. Med. Cell. Longev. , vol.2013 , pp. 704654
    • De Brucker, K.1
  • 34
    • 33750596264 scopus 로고    scopus 로고
    • Candida albicans biofilms produce antifungal-tolerant persister cells
    • LaFleur M.D., et al. Candida albicans biofilms produce antifungal-tolerant persister cells. Antimicrob. Agents Chemother. 2006, 50:3839-3846.
    • (2006) Antimicrob. Agents Chemother. , vol.50 , pp. 3839-3846
    • LaFleur, M.D.1
  • 35
    • 22144471145 scopus 로고    scopus 로고
    • Bacterial resistance to antibiotics: active efflux and reduced uptake
    • Kumar A., Schweizer H.P. Bacterial resistance to antibiotics: active efflux and reduced uptake. Adv. Drug Deliv. Rev. 2005, 57:1486-1513.
    • (2005) Adv. Drug Deliv. Rev. , vol.57 , pp. 1486-1513
    • Kumar, A.1    Schweizer, H.P.2
  • 36
    • 84867184096 scopus 로고    scopus 로고
    • Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance
    • Fernández L., Hancock R.E. Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance. Clin. Microbiol. Rev. 2012, 25:661-681.
    • (2012) Clin. Microbiol. Rev. , vol.25 , pp. 661-681
    • Fernández, L.1    Hancock, R.E.2
  • 37
    • 0035015675 scopus 로고    scopus 로고
    • Multidrug efflux pumps: expression patterns and contribution to antibiotic resistance in Pseudomonas aeruginosa biofilms
    • De Kievit T.R., et al. Multidrug efflux pumps: expression patterns and contribution to antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother. 2001, 45:1761-1770.
    • (2001) Antimicrob. Agents Chemother. , vol.45 , pp. 1761-1770
    • De Kievit, T.R.1
  • 38
    • 24144485847 scopus 로고    scopus 로고
    • Molecular basis of azithromycin-resistant Pseudomonas aeruginosa biofilms
    • Gillis R.J., et al. Molecular basis of azithromycin-resistant Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother. 2005, 49:3858-3867.
    • (2005) Antimicrob. Agents Chemother. , vol.49 , pp. 3858-3867
    • Gillis, R.J.1
  • 39
    • 40549126258 scopus 로고    scopus 로고
    • Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB-oprM genes
    • Pamp S.J., et al. Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB-oprM genes. Mol. Microbiol. 2008, 68:223-240.
    • (2008) Mol. Microbiol. , vol.68 , pp. 223-240
    • Pamp, S.J.1
  • 40
    • 84862669999 scopus 로고    scopus 로고
    • The metabolically active subpopulation in Pseudomonas aeruginosa biofilms survives exposure to membrane-targeting antimicrobials via distinct molecular mechanisms
    • Chiang W.C., et al. The metabolically active subpopulation in Pseudomonas aeruginosa biofilms survives exposure to membrane-targeting antimicrobials via distinct molecular mechanisms. FEMS Immunol. Med. Microbiol. 2012, 65:245-256.
    • (2012) FEMS Immunol. Med. Microbiol. , vol.65 , pp. 245-256
    • Chiang, W.C.1
  • 41
    • 46049083393 scopus 로고    scopus 로고
    • Involvement of a novel efflux system in biofilm-specific resistance to antibiotics
    • Zhang L., Mah T.F. Involvement of a novel efflux system in biofilm-specific resistance to antibiotics. J. Bacteriol. 2008, 190:4447-4452.
    • (2008) J. Bacteriol. , vol.190 , pp. 4447-4452
    • Zhang, L.1    Mah, T.F.2
  • 42
    • 80052845657 scopus 로고    scopus 로고
    • Antagonistic interactions of Pseudomonas aeruginosa antibiotic resistance mechanisms in planktonic but not biofilm growth
    • Mulet X., et al. Antagonistic interactions of Pseudomonas aeruginosa antibiotic resistance mechanisms in planktonic but not biofilm growth. Antimicrob. Agents Chemother. 2011, 55:4560-4568.
    • (2011) Antimicrob. Agents Chemother. , vol.55 , pp. 4560-4568
    • Mulet, X.1
  • 43
    • 0033954651 scopus 로고    scopus 로고
    • Chromosomal beta-lactamase is packaged into membrane vesicles and secreted from Pseudomonas aeruginosa
    • Ciofu O., et al. Chromosomal beta-lactamase is packaged into membrane vesicles and secreted from Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2000, 45:9-13.
    • (2000) J. Antimicrob. Chemother. , vol.45 , pp. 9-13
    • Ciofu, O.1
  • 44
    • 1642502348 scopus 로고    scopus 로고
    • Dynamics and spatial distribution of beta-lactamase expression in Pseudomonas aeruginosa biofilms
    • Bagge N., et al. Dynamics and spatial distribution of beta-lactamase expression in Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother. 2004, 48:1168-1174.
    • (2004) Antimicrob. Agents Chemother. , vol.48 , pp. 1168-1174
    • Bagge, N.1
  • 45
    • 1642543160 scopus 로고    scopus 로고
    • Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and beta-lactamase and alginate production
    • Bagge N., et al. Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and beta-lactamase and alginate production. Antimicrob. Agents Chemother. 2004, 48:1175-1187.
    • (2004) Antimicrob. Agents Chemother. , vol.48 , pp. 1175-1187
    • Bagge, N.1
  • 46
    • 79955435815 scopus 로고    scopus 로고
    • Deciphering the role of RND efflux transporters in Burkholderia cenocepacia
    • Bazzini S., et al. Deciphering the role of RND efflux transporters in Burkholderia cenocepacia. PLoS ONE 2011, 6:e18902.
    • (2011) PLoS ONE , vol.6
    • Bazzini, S.1
  • 47
    • 33747410819 scopus 로고    scopus 로고
    • Efflux pump genes of the resistance-nodulation-division family in Burkholderia cenocepacia genome
    • Guglierame P., et al. Efflux pump genes of the resistance-nodulation-division family in Burkholderia cenocepacia genome. BMC Microbiol. 2006, 6:66.
    • (2006) BMC Microbiol. , vol.6 , pp. 66
    • Guglierame, P.1
  • 48
    • 70349779663 scopus 로고    scopus 로고
    • Assessment of three Resistance-Nodulation-Cell Division drug efflux transporters of Burkholderia cenocepacia in intrinsic antibiotic resistance
    • Buroni S., et al. Assessment of three Resistance-Nodulation-Cell Division drug efflux transporters of Burkholderia cenocepacia in intrinsic antibiotic resistance. BMC Microbiol. 2009, 9:200.
    • (2009) BMC Microbiol. , vol.9 , pp. 200
    • Buroni, S.1
  • 49
    • 84879011175 scopus 로고    scopus 로고
    • Key role for efflux in the preservative susceptibility and adaptive resistance of Burkholderia cepacia complex bacteria
    • Rushton L., et al. Key role for efflux in the preservative susceptibility and adaptive resistance of Burkholderia cepacia complex bacteria. Antimicrob. Agents Chemother. 2013, 57:2972-2980.
    • (2013) Antimicrob. Agents Chemother. , vol.57 , pp. 2972-2980
    • Rushton, L.1
  • 50
    • 79955533011 scopus 로고    scopus 로고
    • Molecular mechanisms of chlorhexidine tolerance in Burkholderia cenocepacia biofilms
    • Coenye T., et al. Molecular mechanisms of chlorhexidine tolerance in Burkholderia cenocepacia biofilms. Antimicrob. Agents Chemother. 2011, 55:1912-1919.
    • (2011) Antimicrob. Agents Chemother. , vol.55 , pp. 1912-1919
    • Coenye, T.1
  • 51
    • 66449112829 scopus 로고    scopus 로고
    • Efflux-mediated antifungal drug resistance
    • Cannon R.D., et al. Efflux-mediated antifungal drug resistance. Clin. Microbiol. Rev. 2009, 22:291-321.
    • (2009) Clin. Microbiol. Rev. , vol.22 , pp. 291-321
    • Cannon, R.D.1
  • 52
    • 0036488166 scopus 로고    scopus 로고
    • Resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequences
    • Sanglard D., Odds F.C. Resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequences. Lancet Infect. Dis. 2002, 2:73-85.
    • (2002) Lancet Infect. Dis. , vol.2 , pp. 73-85
    • Sanglard, D.1    Odds, F.C.2
  • 53
    • 84885002728 scopus 로고    scopus 로고
    • Mechanisms of Candida biofilm drug resistance
    • Taff H.T., et al. Mechanisms of Candida biofilm drug resistance. Future Microbiol. 2013, 8:1325-1337.
    • (2013) Future Microbiol. , vol.8 , pp. 1325-1337
    • Taff, H.T.1
  • 54
    • 84886953195 scopus 로고    scopus 로고
    • Recent insights into Candida albicans biofilm resistance mechanisms
    • Mathé L., Van Dijck P. Recent insights into Candida albicans biofilm resistance mechanisms. Curr. Genet. 2013, 59:251-264.
    • (2013) Curr. Genet. , vol.59 , pp. 251-264
    • Mathé, L.1    Van Dijck, P.2
  • 55
    • 0035992139 scopus 로고    scopus 로고
    • Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms
    • Ramage G., et al. Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms. J. Antimicrob. Chemother. 2002, 49:973-980.
    • (2002) J. Antimicrob. Chemother. , vol.49 , pp. 973-980
    • Ramage, G.1
  • 56
    • 0041764578 scopus 로고    scopus 로고
    • Mechanism of fluconazole resistance in Candida albicans biofilms: phase-specific role of efflux pumps and membrane sterols
    • Mukherjee P.K., et al. Mechanism of fluconazole resistance in Candida albicans biofilms: phase-specific role of efflux pumps and membrane sterols. Infect. Immun. 2003, 71:4333-4340.
    • (2003) Infect. Immun. , vol.71 , pp. 4333-4340
    • Mukherjee, P.K.1
  • 57
    • 4344693408 scopus 로고    scopus 로고
    • Adherence of Candida albicans to silicone induces immediate enhanced tolerance to fluconazole
    • Mateus C., et al. Adherence of Candida albicans to silicone induces immediate enhanced tolerance to fluconazole. Antimicrob. Agents Chemother. 2004, 48:3358-3366.
    • (2004) Antimicrob. Agents Chemother. , vol.48 , pp. 3358-3366
    • Mateus, C.1
  • 58
    • 77953621452 scopus 로고    scopus 로고
    • Transcriptional response to fluconazole and amphotericin B in Candida albicans biofilms
    • Nailis H., et al. Transcriptional response to fluconazole and amphotericin B in Candida albicans biofilms. Res. Microbiol. 2010, 161:284-292.
    • (2010) Res. Microbiol. , vol.161 , pp. 284-292
    • Nailis, H.1
  • 59
    • 67650665320 scopus 로고    scopus 로고
    • Time course global gene expression analysis of an in vivo Candida biofilm
    • Nett J.E., et al. Time course global gene expression analysis of an in vivo Candida biofilm. J. Infect. Dis. 2009, 200:307-313.
    • (2009) J. Infect. Dis. , vol.200 , pp. 307-313
    • Nett, J.E.1
  • 60
    • 19544378506 scopus 로고    scopus 로고
    • Use of confocal microscopy to analyze the rate of vancomycin penetration through Staphylococcus aureus biofilms
    • Jefferson K.K., et al. Use of confocal microscopy to analyze the rate of vancomycin penetration through Staphylococcus aureus biofilms. Antimicrob. Agents Chemother. 2005, 49:2467-2473.
    • (2005) Antimicrob. Agents Chemother. , vol.49 , pp. 2467-2473
    • Jefferson, K.K.1
  • 61
    • 0020455805 scopus 로고
    • Effect of extracellular polysaccharides on diffusion of NaF and [14C]-sucrose in human dental plaque and in sediments of the bacterium Streptococcus sanguis 804 (NCTC 10904)
    • McNee S.G., et al. Effect of extracellular polysaccharides on diffusion of NaF and [14C]-sucrose in human dental plaque and in sediments of the bacterium Streptococcus sanguis 804 (NCTC 10904). Arch. Oral. Biol. 1982, 27:981-986.
    • (1982) Arch. Oral. Biol. , vol.27 , pp. 981-986
    • McNee, S.G.1
  • 62
    • 0029981119 scopus 로고    scopus 로고
    • Theoretical aspects of antibiotic diffusion into microbial biofilms
    • Stewart P.S. Theoretical aspects of antibiotic diffusion into microbial biofilms. Antimicrob. Agents Chemother. 1996, 40:2517-2522.
    • (1996) Antimicrob. Agents Chemother. , vol.40 , pp. 2517-2522
    • Stewart, P.S.1
  • 63
    • 0037372799 scopus 로고    scopus 로고
    • Diffusion in biofilms
    • Stewart P.S. Diffusion in biofilms. J. Bacteriol. 2003, 185:1485-1491.
    • (2003) J. Bacteriol. , vol.185 , pp. 1485-1491
    • Stewart, P.S.1
  • 64
    • 0024161101 scopus 로고
    • Antibiotic interaction and diffusion through alginate and exopolysaccharide of cystic fibrosis-derived Pseudomonas aeruginosa
    • Gordon C.A., et al. Antibiotic interaction and diffusion through alginate and exopolysaccharide of cystic fibrosis-derived Pseudomonas aeruginosa. J. Antimicrob. Chemother. 1988, 22:667-674.
    • (1988) J. Antimicrob. Chemother. , vol.22 , pp. 667-674
    • Gordon, C.A.1
  • 65
    • 0024347682 scopus 로고
    • The penetration of antibiotics into aggregates of mucoid and non-mucoid Pseudomonas aeruginosa
    • Nichols W.W., et al. The penetration of antibiotics into aggregates of mucoid and non-mucoid Pseudomonas aeruginosa. J. Gen. Microbiol. 1989, 135:1291-1303.
    • (1989) J. Gen. Microbiol. , vol.135 , pp. 1291-1303
    • Nichols, W.W.1
  • 66
    • 0025829386 scopus 로고
    • Use of slime dispersants to promote antibiotic penetration through the extracellular polysaccharide of mucoid Pseudomonas aeruginosa
    • Gordon C.A., et al. Use of slime dispersants to promote antibiotic penetration through the extracellular polysaccharide of mucoid Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 1991, 35:1258-1260.
    • (1991) Antimicrob. Agents Chemother. , vol.35 , pp. 1258-1260
    • Gordon, C.A.1
  • 67
    • 84885178344 scopus 로고    scopus 로고
    • The extracellular matrix protects Pseudomonas aeruginosa biofilms by limiting the penetration of tobramycin
    • Tseng B.S., et al. The extracellular matrix protects Pseudomonas aeruginosa biofilms by limiting the penetration of tobramycin. Environ. Microbiol. 2013, 15:2865-2878.
    • (2013) Environ. Microbiol. , vol.15 , pp. 2865-2878
    • Tseng, B.S.1
  • 68
    • 84883435047 scopus 로고    scopus 로고
    • The extracellular matrix component Psl provides fast-acting antibiotic defense in Pseudomonas aeruginosa biofilms
    • Billings N., et al. The extracellular matrix component Psl provides fast-acting antibiotic defense in Pseudomonas aeruginosa biofilms. PLoS Pathog. 2013, 9:e1003526.
    • (2013) PLoS Pathog. , vol.9
    • Billings, N.1
  • 69
    • 79551521160 scopus 로고    scopus 로고
    • The Pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa
    • Colvin K.M., et al. The Pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. PLoS Pathog. 2011, 7:e1001264.
    • (2011) PLoS Pathog. , vol.7
    • Colvin, K.M.1
  • 70
    • 0344011974 scopus 로고    scopus 로고
    • A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance
    • Mah T.F., et al. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 2003, 426:306-310.
    • (2003) Nature , vol.426 , pp. 306-310
    • Mah, T.F.1
  • 71
    • 77956805923 scopus 로고    scopus 로고
    • High-level antibiotic resistance in Pseudomonas aeruginosa biofilm: the ndvB gene is involved in the production of highly glycerol-phosphorylated beta-(1->3)-glucans, which bind aminoglycosides
    • Sadovskaya I., et al. High-level antibiotic resistance in Pseudomonas aeruginosa biofilm: the ndvB gene is involved in the production of highly glycerol-phosphorylated beta-(1->3)-glucans, which bind aminoglycosides. Glycobiology 2010, 20:895-904.
    • (2010) Glycobiology , vol.20 , pp. 895-904
    • Sadovskaya, I.1
  • 72
    • 84864012525 scopus 로고    scopus 로고
    • The biofilm-specific antibiotic resistance gene ndvB is important for expression of ethanol oxidation genes in Pseudomonas aeruginosa biofilms
    • Beaudoin T., et al. The biofilm-specific antibiotic resistance gene ndvB is important for expression of ethanol oxidation genes in Pseudomonas aeruginosa biofilms. J. Bacteriol. 2012, 194:3128-3136.
    • (2012) J. Bacteriol. , vol.194 , pp. 3128-3136
    • Beaudoin, T.1
  • 73
    • 0033824935 scopus 로고    scopus 로고
    • Matrix polymers of Candida biofilms and their possible role in biofilm resistance to antifungal agents
    • Baillie G.S., Douglas L.J. Matrix polymers of Candida biofilms and their possible role in biofilm resistance to antifungal agents. J. Antimicrob. Chemother. 2000, 46:397-403.
    • (2000) J. Antimicrob. Chemother. , vol.46 , pp. 397-403
    • Baillie, G.S.1    Douglas, L.J.2
  • 74
    • 33747068293 scopus 로고    scopus 로고
    • Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance
    • Al-Fattani M.A., Douglas L.J. Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance. J. Med. Microbiol. 2006, 55:999-1008.
    • (2006) J. Med. Microbiol. , vol.55 , pp. 999-1008
    • Al-Fattani, M.A.1    Douglas, L.J.2
  • 75
    • 33846579562 scopus 로고    scopus 로고
    • Putative role of beta-1,3 glucans in Candida albicans biofilm resistance
    • Nett J., et al. Putative role of beta-1,3 glucans in Candida albicans biofilm resistance. Antimicrob. Agents Chemother. 2007, 51:510-520.
    • (2007) Antimicrob. Agents Chemother. , vol.51 , pp. 510-520
    • Nett, J.1
  • 76
    • 77953719723 scopus 로고    scopus 로고
    • Genetic basis of Candida biofilm resistance due to drug-sequestering matrix glucan
    • Nett J.E., et al. Genetic basis of Candida biofilm resistance due to drug-sequestering matrix glucan. J. Infect. Dis. 2010, 202:171-175.
    • (2010) J. Infect. Dis. , vol.202 , pp. 171-175
    • Nett, J.E.1
  • 77
    • 77955355113 scopus 로고    scopus 로고
    • Role of Fks1p and matrix glucan in Candida albicans biofilm resistance to an echinocandin, pyrimidine, and polyene
    • Nett J.E., et al. Role of Fks1p and matrix glucan in Candida albicans biofilm resistance to an echinocandin, pyrimidine, and polyene. Antimicrob. Agents Chemother. 2010, 54:3505-3508.
    • (2010) Antimicrob. Agents Chemother. , vol.54 , pp. 3505-3508
    • Nett, J.E.1
  • 78
    • 77951233308 scopus 로고    scopus 로고
    • Interaction of Candida albicans biofilms with antifungals: transcriptional response and binding of antifungals to beta-glucans
    • Vediyappan G., et al. Interaction of Candida albicans biofilms with antifungals: transcriptional response and binding of antifungals to beta-glucans. Antimicrob. Agents Chemother. 2010, 54:2096-2111.
    • (2010) Antimicrob. Agents Chemother. , vol.54 , pp. 2096-2111
    • Vediyappan, G.1
  • 79
    • 84866147629 scopus 로고    scopus 로고
    • A Candida biofilm-induced pathway for matrix glucan delivery: implications for drug resistance
    • Taff H.T., et al. A Candida biofilm-induced pathway for matrix glucan delivery: implications for drug resistance. PLoS Pathog. 2012, 8:e1002848.
    • (2012) PLoS Pathog. , vol.8
    • Taff, H.T.1
  • 80
    • 84875146956 scopus 로고    scopus 로고
    • Role of matrix β-1,3 glucan in antifungal resistance of non-albicans Candida biofilms
    • Mitchell K.F., et al. Role of matrix β-1,3 glucan in antifungal resistance of non-albicans Candida biofilms. Antimicrob. Agents Chemother. 2013, 57:1918-1920.
    • (2013) Antimicrob. Agents Chemother. , vol.57 , pp. 1918-1920
    • Mitchell, K.F.1
  • 81
    • 84866358418 scopus 로고    scopus 로고
    • The MerR-like transcriptional regulator BrlR contributes to Pseudomonas aeruginosa biofilm tolerance
    • Liao J., Sauer K. The MerR-like transcriptional regulator BrlR contributes to Pseudomonas aeruginosa biofilm tolerance. J. Bacteriol. 2012, 194:4823-4836.
    • (2012) J. Bacteriol. , vol.194 , pp. 4823-4836
    • Liao, J.1    Sauer, K.2
  • 82
    • 84880649547 scopus 로고    scopus 로고
    • The MerR-like regulator BrlR confers biofilm tolerance by activating multidrug efflux pumps in Pseudomonas aeruginosa biofilms
    • Liao J., et al. The MerR-like regulator BrlR confers biofilm tolerance by activating multidrug efflux pumps in Pseudomonas aeruginosa biofilms. J. Bacteriol. 2013, 195:3352-3363.
    • (2013) J. Bacteriol. , vol.195 , pp. 3352-3363
    • Liao, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.