메뉴 건너뛰기




Volumn 2009, Issue , 2009, Pages

Clustering of gene expression data based on shape similarity

Author keywords

[No Author keywords available]

Indexed keywords

ESCHERICHIA COLI;

EID: 65649108093     PISSN: 16874145     EISSN: 16874153     Source Type: Journal    
DOI: 10.1155/2009/195712     Document Type: Article
Times cited : (25)

References (28)
  • 4
    • 33644855951 scopus 로고    scopus 로고
    • A data-driven clustering method for time course gene expression data
    • Ma P., Castillo-Davis C. I., Zhong W., Liu J. S., A data-driven clustering method for time course gene expression data Nucleic Acids Research 2006 34 4 1261 1269
    • (2006) Nucleic Acids Research , vol.34 , Issue.4 , pp. 1261-1269
    • Ma, P.1    Castillo-Davis, C.I.2    Zhong, W.3    Liu, J.S.4
  • 5
    • 59149100683 scopus 로고    scopus 로고
    • Clustering time-series gene expression data with unequal time intervals
    • Berlin, Germany Springer Lecture Notes in Computer Science
    • Rueda L., Bari A., Ngom A., Clustering time-series gene expression data with unequal time intervals Transactions on Computational Systems Biology X 2008 5410 Berlin, Germany Springer 100 123 Lecture Notes in Computer Science
    • (2008) Transactions on Computational Systems Biology X , vol.5410 , pp. 100-123
    • Rueda, L.1    Bari, A.2    Ngom, A.3
  • 6
    • 34748849482 scopus 로고    scopus 로고
    • Proceedings of the Inaugural IEEE International Conference on Digital EcoSystems and Technologies (DEST '07) February 2007 Cairns, Australia
    • Yuan Y., Li C.-T., Unsupervised clustering of gene expression time series with conditional random fields Proceedings of the Inaugural IEEE International Conference on Digital EcoSystems and Technologies (DEST '07) February 2007 Cairns, Australia 571 576
    • Unsupervised clustering of gene expression time series with conditional random fields , pp. 571-576
    • Yuan, Y.1    Li, C.-T.2
  • 7
    • 33847657554 scopus 로고    scopus 로고
    • Measuring similarities between gene expression profiles through new data transformations
    • article 29
    • Kim K., Zhang S., Jiang K., Measuring similarities between gene expression profiles through new data transformations BMC Bioinformatics 2007 8, article 29 1 14
    • (2007) BMC Bioinformatics , vol.8 , pp. 1-14
    • Kim, K.1    Zhang, S.2    Jiang, K.3
  • 10
    • 16344369007 scopus 로고    scopus 로고
    • Clustering of gene expression data using a local shape-based similarity measure
    • Balasubramaniyan R., Hüllermeier E., Weskamp N., Kämper J., Clustering of gene expression data using a local shape-based similarity measure Bioinformatics 2005 21 7 1069 1077
    • (2005) Bioinformatics , vol.21 , Issue.7 , pp. 1069-1077
    • Balasubramaniyan, R.1    Hüllermeier, E.2    Weskamp, N.3    Kämper, J.4
  • 12
    • 32144435583 scopus 로고    scopus 로고
    • An approach for clustering gene expression data with error information
    • article 17
    • Tjaden B., An approach for clustering gene expression data with error information BMC Bioinformatics 2006 7, article 17 1 15
    • (2006) BMC Bioinformatics , vol.7 , pp. 1-15
    • Tjaden, B.1
  • 14
    • 0036011451 scopus 로고    scopus 로고
    • An examination of indexes for determining the number of clusters in binary data sets
    • Dimitriadou E., Dolničar S., Weingessel A., An examination of indexes for determining the number of clusters in binary data sets Psychometrika 2002 67 1 137 159
    • (2002) Psychometrika , vol.67 , Issue.1 , pp. 137-159
    • Dimitriadou, E.1    Dolničar, S.2    Weingessel, A.3
  • 15
    • 0037172724 scopus 로고    scopus 로고
    • A prediction-based resampling method for estimating the number of clusters in a dataset
    • Dudoit S., Fridlyand J., A prediction-based resampling method for estimating the number of clusters in a dataset Genome Biology 2002 3 7 1 21
    • (2002) Genome Biology , vol.3 , Issue.7 , pp. 1-21
    • Dudoit, S.1    Fridlyand, J.2
  • 17
    • 33745767965 scopus 로고    scopus 로고
    • Proceedings of the 4th International Conference on Machine Learning and Cybernetics (ICMLC '05) August 2006 Guangzhou, China Lecture Notes in Computer Science
    • Sun H., Sun M., Trail-and-error approach for determining the number of clusters 3930 Proceedings of the 4th International Conference on Machine Learning and Cybernetics (ICMLC '05) August 2006 Guangzhou, China 229 238 Lecture Notes in Computer Science
    • Trail-and-error approach for determining the number of clusters , vol.3930 , pp. 229-238
    • Sun, H.1    Sun, M.2
  • 19
    • 0035755959 scopus 로고    scopus 로고
    • Minimum spanning trees for gene expression data clustering
    • Xu Y., Olman V., Xu D., Minimum spanning trees for gene expression data clustering Genome Informatics 2001 12 24 33
    • (2001) Genome Informatics , vol.12 , pp. 24-33
    • Xu, Y.1    Olman, V.2    Xu, D.3
  • 20
    • 36749055295 scopus 로고    scopus 로고
    • Determining the number of clusters using the weighted gap statistic
    • Yan M., Ye K., Determining the number of clusters using the weighted gap statistic Biometrics 2007 63 4 1031 1037
    • (2007) Biometrics , vol.63 , Issue.4 , pp. 1031-1037
    • Yan, M.1    Ye, K.2
  • 22
    • 0023453329 scopus 로고
    • Silhouettes: A graphical aid to the interpretation and validation of cluster analysis
    • Rousseeuw P. J., Silhouettes: a graphical aid to the interpretation and validation of cluster analysis Journal of Computational and Applied Mathematics 1987 20 53 65
    • (1987) Journal of Computational and Applied Mathematics , vol.20 , pp. 53-65
    • Rousseeuw, P.J.1
  • 23
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G., Estimating the dimension of a model Annals of Statistics 1978 6 2 461 464
    • (1978) Annals of Statistics , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 24
    • 65649127952 scopus 로고    scopus 로고
    • The University of Oklahoma's E. coli Gene Expression Database, http://chase.ou.edu/oubcf/
    • The University of Oklahoma's E. coli Gene Expression Database, http://chase.ou.edu/oubcf/
  • 26
    • 0242490780 scopus 로고    scopus 로고
    • Cytoscape: A software environment for integrated models of biomolecular interaction networks
    • Shannon P., Markiel A., Ozier O., Cytoscape: a software environment for integrated models of biomolecular interaction networks Genome Research 2003 13 11 2498 2504
    • (2003) Genome Research , vol.13 , Issue.11 , pp. 2498-2504
    • Shannon, P.1    Markiel, A.2    Ozier, O.3
  • 27
    • 24044440971 scopus 로고    scopus 로고
    • BiNGO: A Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks
    • Maere S., Heymans K., Kuiper M., BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks Bioinformatics 2005 21 16 3448 3449
    • (2005) Bioinformatics , vol.21 , Issue.16 , pp. 3448-3449
    • Maere, S.1    Heymans, K.2    Kuiper, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.