-
1
-
-
0034271488
-
Fractional quantum mechanics
-
Laskin N. Fractional quantum mechanics. Phys. Rev. E 2000, 62:3135-3145.
-
(2000)
Phys. Rev. E
, vol.62
, pp. 3135-3145
-
-
Laskin, N.1
-
2
-
-
0000415309
-
Fractional quantum mechanics and Lévy path integrals
-
Laskin N. Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 2000, 268(4-6):298-305.
-
(2000)
Phys. Lett. A
, vol.268
, Issue.4-6
, pp. 298-305
-
-
Laskin, N.1
-
3
-
-
41349084761
-
Fractional Schrödinger equation
-
05618
-
Laskin N. Fractional Schrödinger equation. Phys. Rev. E 2002, 66. 05618.
-
(2002)
Phys. Rev. E
, vol.66
-
-
Laskin, N.1
-
4
-
-
33748296360
-
Some physical applications of fractional Schrödinger equation
-
Guo X., Xu M. Some physical applications of fractional Schrödinger equation. J. Math. Phys. 2006, 47:82-104.
-
(2006)
J. Math. Phys.
, vol.47
, pp. 82-104
-
-
Guo, X.1
Xu, M.2
-
5
-
-
77954562023
-
On the nonlocality of the fractional Schrödinger equation
-
Jeng M., Xu S.L.Y., Hawkins E., Schwarz J.M. On the nonlocality of the fractional Schrödinger equation. J. Math. Phys. 2010, 51:062102.
-
(2010)
J. Math. Phys.
, vol.51
, pp. 062102
-
-
Jeng, M.1
Xu, S.L.Y.2
Hawkins, E.3
Schwarz, J.M.4
-
6
-
-
84860428508
-
On the consistency of the solutions of the space fractional Schrödinger equation
-
Bayin S.S. On the consistency of the solutions of the space fractional Schrödinger equation. J. Math. Phys. 2012, 53:042105.
-
(2012)
J. Math. Phys.
, vol.53
, pp. 042105
-
-
Bayin, S.S.1
-
7
-
-
84873440127
-
Fractional Schrödinger equation for a particle moving in a potential well
-
Luchko Y. Fractional Schrödinger equation for a particle moving in a potential well. J. Math. Phys. 2013, 54:012111.
-
(2013)
J. Math. Phys.
, vol.54
, pp. 012111
-
-
Luchko, Y.1
-
8
-
-
78650695944
-
Collocation method for fractional quantum mechanics
-
Amore P., Fernández F.M., Hofmann C.P., Sáenz R.A. Collocation method for fractional quantum mechanics. J. Math. Phys. 2010, 51:122101.
-
(2010)
J. Math. Phys.
, vol.51
, pp. 122101
-
-
Amore, P.1
Fernández, F.M.2
Hofmann, C.P.3
Sáenz, R.A.4
-
9
-
-
84875797647
-
Crank-Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative
-
Wang D., Xiao A., Yang W. Crank-Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative. J. Comput. Phys. 2013, 242:670-681.
-
(2013)
J. Comput. Phys.
, vol.242
, pp. 670-681
-
-
Wang, D.1
Xiao, A.2
Yang, W.3
-
10
-
-
84878689420
-
Stability and convergence of the space fractional variable-order Schröinger equation
-
Atangana A., Cloot A.H. Stability and convergence of the space fractional variable-order Schröinger equation. Adv. Differ. Equ. 2013, 2013:80.
-
(2013)
Adv. Differ. Equ.
, vol.2013
, pp. 80
-
-
Atangana, A.1
Cloot, A.H.2
-
11
-
-
67650863152
-
Coupled nonlinear Schrödinger equations in optic fibers theory: from general to solitonic aspects
-
Leble S., Reichel B. Coupled nonlinear Schrödinger equations in optic fibers theory: from general to solitonic aspects. Eur. Phys. J. Spec. Top. 2009, 173:5-55.
-
(2009)
Eur. Phys. J. Spec. Top.
, vol.173
, pp. 5-55
-
-
Leble, S.1
Reichel, B.2
-
12
-
-
84871811620
-
Well-posedness for the nonlinear fractional Schrödinger equation and inviscid limit behavior of solution for the fractional Ginzburg-Landau equation
-
Guo B., Huo Z. Well-posedness for the nonlinear fractional Schrödinger equation and inviscid limit behavior of solution for the fractional Ginzburg-Landau equation. Fract. Calc. Appl. Anal. 2013, 16(1):226-242.
-
(2013)
Fract. Calc. Appl. Anal.
, vol.16
, Issue.1
, pp. 226-242
-
-
Guo, B.1
Huo, Z.2
-
13
-
-
84872681857
-
On the continuum limit for discrete NLS with long-range lattice interactions
-
Kirkpatrick K., Lenzmann E., Staffilani G. On the continuum limit for discrete NLS with long-range lattice interactions. Commun. Math. Phys. 2013, 317(3):563-591.
-
(2013)
Commun. Math. Phys.
, vol.317
, Issue.3
, pp. 563-591
-
-
Kirkpatrick, K.1
Lenzmann, E.2
Staffilani, G.3
-
14
-
-
84902652640
-
Soliton dynamics for fractional Schrodinger equations
-
Secchi S., Squassina M. Soliton dynamics for fractional Schrodinger equations. Appl. Anal. 2013, 1-28. 10.1080/00036811.2013.844793.
-
(2013)
Appl. Anal.
, pp. 1-28
-
-
Secchi, S.1
Squassina, M.2
-
16
-
-
84860494475
-
Bound state for the fractional Schrödinger equation with unbounded potential
-
Cheng M. Bound state for the fractional Schrödinger equation with unbounded potential. J. Math. Phys. 2012, 53:043507.
-
(2012)
J. Math. Phys.
, vol.53
, pp. 043507
-
-
Cheng, M.1
-
17
-
-
52049103572
-
Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrödinger equation
-
Guo B., Han Y., Xin J. Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrödinger equation. Appl. Math. Comput. 2008, 204:468-477.
-
(2008)
Appl. Math. Comput.
, vol.204
, pp. 468-477
-
-
Guo, B.1
Han, Y.2
Xin, J.3
-
18
-
-
79960972737
-
The global solution for a class of systems of fractional nonlinear Schrödinger equations with periodic boundary condition
-
Hu J., Xin J., Lu H. The global solution for a class of systems of fractional nonlinear Schrödinger equations with periodic boundary condition. Comput. Math. Appl. 2011, 62:1510-1521.
-
(2011)
Comput. Math. Appl.
, vol.62
, pp. 1510-1521
-
-
Hu, J.1
Xin, J.2
Lu, H.3
-
19
-
-
77957281493
-
New conservative difference schemes for a coupled nonlinear Schrödinger system
-
Wang T., Guo B., Zhang L. New conservative difference schemes for a coupled nonlinear Schrödinger system. Appl. Math. Comput. 2010, 217:1604-1619.
-
(2010)
Appl. Math. Comput.
, vol.217
, pp. 1604-1619
-
-
Wang, T.1
Guo, B.2
Zhang, L.3
-
21
-
-
77953128366
-
L ∞ convergence of a difference secheme for coupled nonlinear Schrödinger equations
-
L ∞ convergence of a difference secheme for coupled nonlinear Schrödinger equations. Comput. Math. Appl. 2010, 59:3286-3300.
-
(2010)
Comput. Math. Appl.
, vol.59
, pp. 3286-3300
-
-
Sun, Z.1
Zhao, D.2
-
22
-
-
0040709337
-
On Tsertsvadze's difference scheme for the Kuramoto-Tsuzuki equation
-
Sun Z., Zhu Q. On Tsertsvadze's difference scheme for the Kuramoto-Tsuzuki equation. J. Comput. Appl. Math. 1998, 98(2):289-304.
-
(1998)
J. Comput. Appl. Math.
, vol.98
, Issue.2
, pp. 289-304
-
-
Sun, Z.1
Zhu, Q.2
-
23
-
-
33847107061
-
A linearly implicit conservative scheme for the coupled nonlinear Schrödinger equation
-
Ismail M.S., Taha T.R. A linearly implicit conservative scheme for the coupled nonlinear Schrödinger equation. Math. Comput. Simul. 2007, 74:302-311.
-
(2007)
Math. Comput. Simul.
, vol.74
, pp. 302-311
-
-
Ismail, M.S.1
Taha, T.R.2
-
24
-
-
84872198833
-
Optimal error estimates of finite difference methods for the Gross-Pitaevskii equation with angular momentum rotation
-
Bao W., Cai Y. Optimal error estimates of finite difference methods for the Gross-Pitaevskii equation with angular momentum rotation. Math. Comput. 2013, 82:99-128.
-
(2013)
Math. Comput.
, vol.82
, pp. 99-128
-
-
Bao, W.1
Cai, Y.2
-
25
-
-
84872170647
-
Mathematical theory and numerical methods for Bose-Einstein condensation
-
Bao W., Cai Y. Mathematical theory and numerical methods for Bose-Einstein condensation. Kinet. Relat. Models 2013, 6:1-135.
-
(2013)
Kinet. Relat. Models
, vol.6
, pp. 1-135
-
-
Bao, W.1
Cai, Y.2
-
26
-
-
84871016569
-
Numerical methods and comparison for computing dark and bright solitons in the nonlinear Schrödinger equation
-
Bao W., Tang Q., Xu Z. Numerical methods and comparison for computing dark and bright solitons in the nonlinear Schrödinger equation. J. Comput. Phys. 2013, 235:423-445.
-
(2013)
J. Comput. Phys.
, vol.235
, pp. 423-445
-
-
Bao, W.1
Tang, Q.2
Xu, Z.3
-
27
-
-
77954088723
-
Nonlinear Schrödinger equations and their spectral discretizations over long times
-
Gauckler L., Lubich C. Nonlinear Schrödinger equations and their spectral discretizations over long times. Found. Comput. Math. 2010, 10:141-169.
-
(2010)
Found. Comput. Math.
, vol.10
, pp. 141-169
-
-
Gauckler, L.1
Lubich, C.2
-
28
-
-
0036532037
-
Symplectic and multi-symplectic methods for the nonlinear Schrödinger equation
-
Chen J.B., Qin M.Z., Tang Y.F. Symplectic and multi-symplectic methods for the nonlinear Schrödinger equation. Comput. Math. Appl. 2002, 43(8-9):1095-1106.
-
(2002)
Comput. Math. Appl.
, vol.43
, Issue.8-9
, pp. 1095-1106
-
-
Chen, J.B.1
Qin, M.Z.2
Tang, Y.F.3
-
29
-
-
69249214155
-
Numerical methods for fractional partial differential equations with Riesz space fractional derivatives
-
Yang Q., Liu F., Turner I. Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model. 2010, 34(1):200-218.
-
(2010)
Appl. Math. Model.
, vol.34
, Issue.1
, pp. 200-218
-
-
Yang, Q.1
Liu, F.2
Turner, I.3
-
30
-
-
84901456625
-
A novel numerical approximation for the Riesz space fractional advection-dispersion equation
-
Shen S., Liu F., Anh V., Turner I., Chen J. A novel numerical approximation for the Riesz space fractional advection-dispersion equation. IMA J. Appl. Math. 2012, 10.1093/imamat/hxs073.
-
(2012)
IMA J. Appl. Math.
-
-
Shen, S.1
Liu, F.2
Anh, V.3
Turner, I.4
Chen, J.5
-
31
-
-
64249135201
-
Numerical approximation of a fractional-in-space diffusion equation, I
-
Ilić M., Liu F., Turner I., Anh V. Numerical approximation of a fractional-in-space diffusion equation, I. Fract. Calc. Appl. Anal. 2005, 8(3):323-341.
-
(2005)
Fract. Calc. Appl. Anal.
, vol.8
, Issue.3
, pp. 323-341
-
-
Ilić, M.1
Liu, F.2
Turner, I.3
Anh, V.4
-
32
-
-
33749526684
-
Riesz potential operators and inverses via fractional centred derivatives
-
Ortigueira M.D. Riesz potential operators and inverses via fractional centred derivatives. Int. J. Math. Math. Sci. 2006, 1-12.
-
(2006)
Int. J. Math. Math. Sci.
, pp. 1-12
-
-
Ortigueira, M.D.1
-
33
-
-
84855207635
-
Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative
-
Çelik C., Duman M. Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 2012, 231:1743-1750.
-
(2012)
J. Comput. Phys.
, vol.231
, pp. 1743-1750
-
-
Çelik, C.1
Duman, M.2
-
34
-
-
4243132347
-
Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions
-
Bradley C.C., Sackett C.A., Tollett J.J., Hulet R.G. Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions. Phys. Rev. Lett. 1995, 75:1687-1690.
-
(1995)
Phys. Rev. Lett.
, vol.75
, pp. 1687-1690
-
-
Bradley, C.C.1
Sackett, C.A.2
Tollett, J.J.3
Hulet, R.G.4
-
35
-
-
84896974195
-
A modulus-squared Dirichlet boundary condition for time-dependent complex partial differential equations and its application to the nonlinear Schrödinger equation
-
Caplan R.M., Carretero-Gonzalez R. A modulus-squared Dirichlet boundary condition for time-dependent complex partial differential equations and its application to the nonlinear Schrödinger equation. SIAM J. Sci. Comput. 2014, 36(1):1-19.
-
(2014)
SIAM J. Sci. Comput.
, vol.36
, Issue.1
, pp. 1-19
-
-
Caplan, R.M.1
Carretero-Gonzalez, R.2
|