메뉴 건너뛰기




Volumn 272, Issue , 2014, Pages 644-655

A linearly implicit conservative difference scheme for the space fractional coupled nonlinear Schrödinger equations

Author keywords

Fractional centered difference; Fractional Schr dinger equations; Linearly implicit conservative scheme

Indexed keywords

NONLINEAR EQUATIONS;

EID: 84900805789     PISSN: 00219991     EISSN: 10902716     Source Type: Journal    
DOI: 10.1016/j.jcp.2014.04.047     Document Type: Article
Times cited : (145)

References (36)
  • 1
    • 0034271488 scopus 로고    scopus 로고
    • Fractional quantum mechanics
    • Laskin N. Fractional quantum mechanics. Phys. Rev. E 2000, 62:3135-3145.
    • (2000) Phys. Rev. E , vol.62 , pp. 3135-3145
    • Laskin, N.1
  • 2
    • 0000415309 scopus 로고    scopus 로고
    • Fractional quantum mechanics and Lévy path integrals
    • Laskin N. Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 2000, 268(4-6):298-305.
    • (2000) Phys. Lett. A , vol.268 , Issue.4-6 , pp. 298-305
    • Laskin, N.1
  • 3
    • 41349084761 scopus 로고    scopus 로고
    • Fractional Schrödinger equation
    • 05618
    • Laskin N. Fractional Schrödinger equation. Phys. Rev. E 2002, 66. 05618.
    • (2002) Phys. Rev. E , vol.66
    • Laskin, N.1
  • 4
    • 33748296360 scopus 로고    scopus 로고
    • Some physical applications of fractional Schrödinger equation
    • Guo X., Xu M. Some physical applications of fractional Schrödinger equation. J. Math. Phys. 2006, 47:82-104.
    • (2006) J. Math. Phys. , vol.47 , pp. 82-104
    • Guo, X.1    Xu, M.2
  • 5
    • 77954562023 scopus 로고    scopus 로고
    • On the nonlocality of the fractional Schrödinger equation
    • Jeng M., Xu S.L.Y., Hawkins E., Schwarz J.M. On the nonlocality of the fractional Schrödinger equation. J. Math. Phys. 2010, 51:062102.
    • (2010) J. Math. Phys. , vol.51 , pp. 062102
    • Jeng, M.1    Xu, S.L.Y.2    Hawkins, E.3    Schwarz, J.M.4
  • 6
    • 84860428508 scopus 로고    scopus 로고
    • On the consistency of the solutions of the space fractional Schrödinger equation
    • Bayin S.S. On the consistency of the solutions of the space fractional Schrödinger equation. J. Math. Phys. 2012, 53:042105.
    • (2012) J. Math. Phys. , vol.53 , pp. 042105
    • Bayin, S.S.1
  • 7
    • 84873440127 scopus 로고    scopus 로고
    • Fractional Schrödinger equation for a particle moving in a potential well
    • Luchko Y. Fractional Schrödinger equation for a particle moving in a potential well. J. Math. Phys. 2013, 54:012111.
    • (2013) J. Math. Phys. , vol.54 , pp. 012111
    • Luchko, Y.1
  • 9
    • 84875797647 scopus 로고    scopus 로고
    • Crank-Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative
    • Wang D., Xiao A., Yang W. Crank-Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative. J. Comput. Phys. 2013, 242:670-681.
    • (2013) J. Comput. Phys. , vol.242 , pp. 670-681
    • Wang, D.1    Xiao, A.2    Yang, W.3
  • 10
    • 84878689420 scopus 로고    scopus 로고
    • Stability and convergence of the space fractional variable-order Schröinger equation
    • Atangana A., Cloot A.H. Stability and convergence of the space fractional variable-order Schröinger equation. Adv. Differ. Equ. 2013, 2013:80.
    • (2013) Adv. Differ. Equ. , vol.2013 , pp. 80
    • Atangana, A.1    Cloot, A.H.2
  • 11
    • 67650863152 scopus 로고    scopus 로고
    • Coupled nonlinear Schrödinger equations in optic fibers theory: from general to solitonic aspects
    • Leble S., Reichel B. Coupled nonlinear Schrödinger equations in optic fibers theory: from general to solitonic aspects. Eur. Phys. J. Spec. Top. 2009, 173:5-55.
    • (2009) Eur. Phys. J. Spec. Top. , vol.173 , pp. 5-55
    • Leble, S.1    Reichel, B.2
  • 12
    • 84871811620 scopus 로고    scopus 로고
    • Well-posedness for the nonlinear fractional Schrödinger equation and inviscid limit behavior of solution for the fractional Ginzburg-Landau equation
    • Guo B., Huo Z. Well-posedness for the nonlinear fractional Schrödinger equation and inviscid limit behavior of solution for the fractional Ginzburg-Landau equation. Fract. Calc. Appl. Anal. 2013, 16(1):226-242.
    • (2013) Fract. Calc. Appl. Anal. , vol.16 , Issue.1 , pp. 226-242
    • Guo, B.1    Huo, Z.2
  • 13
    • 84872681857 scopus 로고    scopus 로고
    • On the continuum limit for discrete NLS with long-range lattice interactions
    • Kirkpatrick K., Lenzmann E., Staffilani G. On the continuum limit for discrete NLS with long-range lattice interactions. Commun. Math. Phys. 2013, 317(3):563-591.
    • (2013) Commun. Math. Phys. , vol.317 , Issue.3 , pp. 563-591
    • Kirkpatrick, K.1    Lenzmann, E.2    Staffilani, G.3
  • 14
    • 84902652640 scopus 로고    scopus 로고
    • Soliton dynamics for fractional Schrodinger equations
    • Secchi S., Squassina M. Soliton dynamics for fractional Schrodinger equations. Appl. Anal. 2013, 1-28. 10.1080/00036811.2013.844793.
    • (2013) Appl. Anal. , pp. 1-28
    • Secchi, S.1    Squassina, M.2
  • 16
    • 84860494475 scopus 로고    scopus 로고
    • Bound state for the fractional Schrödinger equation with unbounded potential
    • Cheng M. Bound state for the fractional Schrödinger equation with unbounded potential. J. Math. Phys. 2012, 53:043507.
    • (2012) J. Math. Phys. , vol.53 , pp. 043507
    • Cheng, M.1
  • 17
    • 52049103572 scopus 로고    scopus 로고
    • Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrödinger equation
    • Guo B., Han Y., Xin J. Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrödinger equation. Appl. Math. Comput. 2008, 204:468-477.
    • (2008) Appl. Math. Comput. , vol.204 , pp. 468-477
    • Guo, B.1    Han, Y.2    Xin, J.3
  • 18
    • 79960972737 scopus 로고    scopus 로고
    • The global solution for a class of systems of fractional nonlinear Schrödinger equations with periodic boundary condition
    • Hu J., Xin J., Lu H. The global solution for a class of systems of fractional nonlinear Schrödinger equations with periodic boundary condition. Comput. Math. Appl. 2011, 62:1510-1521.
    • (2011) Comput. Math. Appl. , vol.62 , pp. 1510-1521
    • Hu, J.1    Xin, J.2    Lu, H.3
  • 19
    • 77957281493 scopus 로고    scopus 로고
    • New conservative difference schemes for a coupled nonlinear Schrödinger system
    • Wang T., Guo B., Zhang L. New conservative difference schemes for a coupled nonlinear Schrödinger system. Appl. Math. Comput. 2010, 217:1604-1619.
    • (2010) Appl. Math. Comput. , vol.217 , pp. 1604-1619
    • Wang, T.1    Guo, B.2    Zhang, L.3
  • 21
    • 77953128366 scopus 로고    scopus 로고
    • L ∞ convergence of a difference secheme for coupled nonlinear Schrödinger equations
    • L ∞ convergence of a difference secheme for coupled nonlinear Schrödinger equations. Comput. Math. Appl. 2010, 59:3286-3300.
    • (2010) Comput. Math. Appl. , vol.59 , pp. 3286-3300
    • Sun, Z.1    Zhao, D.2
  • 22
    • 0040709337 scopus 로고    scopus 로고
    • On Tsertsvadze's difference scheme for the Kuramoto-Tsuzuki equation
    • Sun Z., Zhu Q. On Tsertsvadze's difference scheme for the Kuramoto-Tsuzuki equation. J. Comput. Appl. Math. 1998, 98(2):289-304.
    • (1998) J. Comput. Appl. Math. , vol.98 , Issue.2 , pp. 289-304
    • Sun, Z.1    Zhu, Q.2
  • 23
    • 33847107061 scopus 로고    scopus 로고
    • A linearly implicit conservative scheme for the coupled nonlinear Schrödinger equation
    • Ismail M.S., Taha T.R. A linearly implicit conservative scheme for the coupled nonlinear Schrödinger equation. Math. Comput. Simul. 2007, 74:302-311.
    • (2007) Math. Comput. Simul. , vol.74 , pp. 302-311
    • Ismail, M.S.1    Taha, T.R.2
  • 24
    • 84872198833 scopus 로고    scopus 로고
    • Optimal error estimates of finite difference methods for the Gross-Pitaevskii equation with angular momentum rotation
    • Bao W., Cai Y. Optimal error estimates of finite difference methods for the Gross-Pitaevskii equation with angular momentum rotation. Math. Comput. 2013, 82:99-128.
    • (2013) Math. Comput. , vol.82 , pp. 99-128
    • Bao, W.1    Cai, Y.2
  • 25
    • 84872170647 scopus 로고    scopus 로고
    • Mathematical theory and numerical methods for Bose-Einstein condensation
    • Bao W., Cai Y. Mathematical theory and numerical methods for Bose-Einstein condensation. Kinet. Relat. Models 2013, 6:1-135.
    • (2013) Kinet. Relat. Models , vol.6 , pp. 1-135
    • Bao, W.1    Cai, Y.2
  • 26
    • 84871016569 scopus 로고    scopus 로고
    • Numerical methods and comparison for computing dark and bright solitons in the nonlinear Schrödinger equation
    • Bao W., Tang Q., Xu Z. Numerical methods and comparison for computing dark and bright solitons in the nonlinear Schrödinger equation. J. Comput. Phys. 2013, 235:423-445.
    • (2013) J. Comput. Phys. , vol.235 , pp. 423-445
    • Bao, W.1    Tang, Q.2    Xu, Z.3
  • 27
    • 77954088723 scopus 로고    scopus 로고
    • Nonlinear Schrödinger equations and their spectral discretizations over long times
    • Gauckler L., Lubich C. Nonlinear Schrödinger equations and their spectral discretizations over long times. Found. Comput. Math. 2010, 10:141-169.
    • (2010) Found. Comput. Math. , vol.10 , pp. 141-169
    • Gauckler, L.1    Lubich, C.2
  • 28
    • 0036532037 scopus 로고    scopus 로고
    • Symplectic and multi-symplectic methods for the nonlinear Schrödinger equation
    • Chen J.B., Qin M.Z., Tang Y.F. Symplectic and multi-symplectic methods for the nonlinear Schrödinger equation. Comput. Math. Appl. 2002, 43(8-9):1095-1106.
    • (2002) Comput. Math. Appl. , vol.43 , Issue.8-9 , pp. 1095-1106
    • Chen, J.B.1    Qin, M.Z.2    Tang, Y.F.3
  • 29
    • 69249214155 scopus 로고    scopus 로고
    • Numerical methods for fractional partial differential equations with Riesz space fractional derivatives
    • Yang Q., Liu F., Turner I. Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model. 2010, 34(1):200-218.
    • (2010) Appl. Math. Model. , vol.34 , Issue.1 , pp. 200-218
    • Yang, Q.1    Liu, F.2    Turner, I.3
  • 30
    • 84901456625 scopus 로고    scopus 로고
    • A novel numerical approximation for the Riesz space fractional advection-dispersion equation
    • Shen S., Liu F., Anh V., Turner I., Chen J. A novel numerical approximation for the Riesz space fractional advection-dispersion equation. IMA J. Appl. Math. 2012, 10.1093/imamat/hxs073.
    • (2012) IMA J. Appl. Math.
    • Shen, S.1    Liu, F.2    Anh, V.3    Turner, I.4    Chen, J.5
  • 31
    • 64249135201 scopus 로고    scopus 로고
    • Numerical approximation of a fractional-in-space diffusion equation, I
    • Ilić M., Liu F., Turner I., Anh V. Numerical approximation of a fractional-in-space diffusion equation, I. Fract. Calc. Appl. Anal. 2005, 8(3):323-341.
    • (2005) Fract. Calc. Appl. Anal. , vol.8 , Issue.3 , pp. 323-341
    • Ilić, M.1    Liu, F.2    Turner, I.3    Anh, V.4
  • 32
    • 33749526684 scopus 로고    scopus 로고
    • Riesz potential operators and inverses via fractional centred derivatives
    • Ortigueira M.D. Riesz potential operators and inverses via fractional centred derivatives. Int. J. Math. Math. Sci. 2006, 1-12.
    • (2006) Int. J. Math. Math. Sci. , pp. 1-12
    • Ortigueira, M.D.1
  • 33
    • 84855207635 scopus 로고    scopus 로고
    • Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative
    • Çelik C., Duman M. Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 2012, 231:1743-1750.
    • (2012) J. Comput. Phys. , vol.231 , pp. 1743-1750
    • Çelik, C.1    Duman, M.2
  • 34
    • 4243132347 scopus 로고
    • Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions
    • Bradley C.C., Sackett C.A., Tollett J.J., Hulet R.G. Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions. Phys. Rev. Lett. 1995, 75:1687-1690.
    • (1995) Phys. Rev. Lett. , vol.75 , pp. 1687-1690
    • Bradley, C.C.1    Sackett, C.A.2    Tollett, J.J.3    Hulet, R.G.4
  • 35
    • 84896974195 scopus 로고    scopus 로고
    • A modulus-squared Dirichlet boundary condition for time-dependent complex partial differential equations and its application to the nonlinear Schrödinger equation
    • Caplan R.M., Carretero-Gonzalez R. A modulus-squared Dirichlet boundary condition for time-dependent complex partial differential equations and its application to the nonlinear Schrödinger equation. SIAM J. Sci. Comput. 2014, 36(1):1-19.
    • (2014) SIAM J. Sci. Comput. , vol.36 , Issue.1 , pp. 1-19
    • Caplan, R.M.1    Carretero-Gonzalez, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.