메뉴 건너뛰기




Volumn 93, Issue 8, 2014, Pages 1702-1729

Soliton dynamics for fractional Schrödinger equations

Author keywords

fractional Schr dinger equation; ground states; soliton dynamics

Indexed keywords


EID: 84902652640     PISSN: 00036811     EISSN: 1563504X     Source Type: Journal    
DOI: 10.1080/00036811.2013.844793     Document Type: Article
Times cited : (68)

References (29)
  • 2
    • 0002641421 scopus 로고    scopus 로고
    • The random walk's guide to anomalous diffusion: a fractional dynamics approach
    • Metzler R, Klafter J. The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 2000;339:1-77.
    • (2000) Phys. Rep , vol.339 , pp. 1-77
    • Metzler, R.1    Klafter, J.2
  • 3
    • 4043151477 scopus 로고    scopus 로고
    • The restaurant at the random walk: recent developments in the description of anomalous transport by fractional dynamics
    • Metzler R, Klafter J. The restaurant at the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A. 2004;37:161-208.
    • (2004) J. Phys. A , vol.37 , pp. 161-208
    • Metzler, R.1    Klafter, J.2
  • 4
    • 41349084761 scopus 로고    scopus 로고
    • Fractional Schrödinger equations
    • Laskin N. Fractional Schrödinger equations. Phys. Rev. E. 2002;66:056108.
    • (2002) Phys. Rev. E , vol.66 , pp. 056108
    • Laskin, N.1
  • 7
    • 33646386672 scopus 로고    scopus 로고
    • Semiclassical limit for nonlinear Schrödinger equation with potential II
    • Keraani S. Semiclassical limit for nonlinear Schrödinger equation with potential II. Asymptot. Anal. 2006;47:171-186.
    • (2006) Asymptot. Anal , vol.47 , pp. 171-186
    • Keraani, S.1
  • 8
    • 78049270826 scopus 로고    scopus 로고
    • The nonlinear Schrödinger equation: soliton dynamics
    • Benci V, Ghimenti MG, Micheletti AM. The nonlinear Schrödinger equation: soliton dynamics. J. Differ. Equ. 2010;249:3312-3341.
    • (2010) J. Differ. Equ , vol.249 , pp. 3312-3341
    • Benci, V.1    Ghimenti, M.G.2    Micheletti, A.M.3
  • 9
    • 84864342329 scopus 로고    scopus 로고
    • On the dynamics of solitons in the nonlinear Schrödinger equation
    • Benci V, Ghimenti MG, Micheletti AM. On the dynamics of solitons in the nonlinear Schrödinger equation. Arch. Ration. Mech. Anal. 2012;205:467-492.
    • (2012) Arch. Ration. Mech. Anal , vol.205 , pp. 467-492
    • Benci, V.1    Ghimenti, M.G.2    Micheletti, A.M.3
  • 11
    • 0000686130 scopus 로고
    • Modulational stability of ground states of nonlinear Schrödinger equations
    • Weinstein MI. Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal. 1985;16:472-491.
    • (1985) SIAM J. Math. Anal , vol.16 , pp. 472-491
    • Weinstein, M.I.1
  • 12
    • 84990553584 scopus 로고
    • Lyapunov stability of ground states of nonlinear dispersive evolution equations
    • Weinstein MI. Lyapunov stability of ground states of nonlinear dispersive evolution equations. Commun. Pure Appl. Math. 1986;39:51-67.
    • (1986) Commun. Pure Appl. Math , vol.39 , pp. 51-67
    • Weinstein, M.I.1
  • 13
    • 58649105782 scopus 로고    scopus 로고
    • Why are solitons stable?
    • Tao T. Why are solitons stable? Bull. Am. Math. Soc. 2009;46:1-33.
    • (2009) Bull. Am. Math. Soc , vol.46 , pp. 1-33
    • Tao, T.1
  • 14
    • 84865725307 scopus 로고    scopus 로고
    • Existence and stability of standing waves for nonlinear fractional Schrödinger equations
    • Guo B, Huang D. Existence and stability of standing waves for nonlinear fractional Schrödinger equations. J. Math. Phys. 2012;53:083702.
    • (2012) J. Math. Phys , vol.53 , pp. 083702
    • Guo, B.1    Huang, D.2
  • 15
    • 78650272195 scopus 로고    scopus 로고
    • Global well-posedness for the fractional nonlinear Schrodinger equation
    • Guo B, Huo Z. Global well-posedness for the fractional nonlinear Schrodinger equation. Commun. Partial Differ. Equ. 2011;36:247-255.
    • (2011) Commun. Partial Differ. Equ , vol.36 , pp. 247-255
    • Guo, B.1    Huo, Z.2
  • 16
    • 84879425154 scopus 로고    scopus 로고
    • Uniqueness of non-linear ground states for fractional Laplacians in ℝ
    • Frank RL, Lenzmann E. Uniqueness of non-linear ground states for fractional Laplacians in ℝ. Acta Mathematica 210, 2013;2:261-318.
    • (2013) Acta Mathematica 210 , vol.2 , pp. 261-318
    • Frank, R.L.1    Lenzmann, E.2
  • 18
    • 84891903164 scopus 로고    scopus 로고
    • Nonlinear equations for fractional Laplacians II: existence, uniqueness, and qualitative properties of solutions
    • in press
    • Cabre X, Sire Y. Nonlinear equations for fractional Laplacians II: existence, uniqueness, and qualitative properties of solutions. Trans. Am. Math. Soc. in press.
    • Trans. Am. Math. Soc.
    • Cabre, X.1    Sire, Y.2
  • 19
    • 85012488097 scopus 로고    scopus 로고
    • Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian
    • Felmer P, Quaas A, Tan J. Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian. Proc. Royal Soc. Edinburgh A. 2012;142:1237-1262.
    • (2012) Proc. Royal Soc. Edinburgh A , vol.142 , pp. 1237-1262
    • Felmer, P.1    Quaas, A.2    Tan, J.3
  • 21
    • 70449525913 scopus 로고    scopus 로고
    • Uniqueness of ground states for pseudorelativistic Hartree equations
    • Lenzmann E. Uniqueness of ground states for pseudorelativistic Hartree equations. Anal. PDE. 2009;2:1-27.
    • (2009) Anal. PDE , vol.2 , pp. 1-27
    • Lenzmann, E.1
  • 23
    • 84863469913 scopus 로고    scopus 로고
    • Hitchhiker's guide to the fractional Sobolev spaces
    • Nezza E, Palatucci G, Valdinoci E. Hitchhiker's guide to the fractional Sobolev spaces. Bull. Sci. math. 2012;136:512-573.
    • (2012) Bull. Sci. math , vol.136 , pp. 512-573
    • Nezza, E.1    Palatucci, G.2    Valdinoci, E.3
  • 25
    • 0003276928 scopus 로고
    • Linear operators in Hilbert spaces
    • New York, NY, Berlin: Springer
    • Weidmann J. Linear operators in Hilbert spaces. Vol. 68, Graduate Texts in Mathematics. New York, NY, Berlin: Springer; 1980.
    • (1980) Graduate Texts in Mathematics , vol.68
    • Weidmann, J.1
  • 29
    • 0000090159 scopus 로고
    • Orbital stability of standing waves for some nonlinear Schrödinger equations
    • Cazenave T, Lions PL. Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 1982;85:549-561.
    • (1982) Commun. Math. Phys , vol.85 , pp. 549-561
    • Cazenave, T.1    Lions, P.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.