메뉴 건너뛰기




Volumn 242, Issue , 2013, Pages 670-681

Crank-Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative

Author keywords

Crank Nicolson scheme; Fractional centered difference; Fractional Schr dinger equation

Indexed keywords

FIXED POINT ARITHMETIC;

EID: 84875797647     PISSN: 00219991     EISSN: 10902716     Source Type: Journal    
DOI: 10.1016/j.jcp.2013.02.037     Document Type: Article
Times cited : (185)

References (32)
  • 1
    • 0034271488 scopus 로고    scopus 로고
    • Fractional quantum mechanics
    • Laskin N. Fractional quantum mechanics. Phys. Rev. E 2000, 62:3135-3145.
    • (2000) Phys. Rev. E , vol.62 , pp. 3135-3145
    • Laskin, N.1
  • 2
    • 0000415309 scopus 로고    scopus 로고
    • Fractional quantum mechanics and Lévy path integrals
    • Laskin N. Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 2000, 268(4-6):298-305.
    • (2000) Phys. Lett. A , vol.268 , Issue.4-6 , pp. 298-305
    • Laskin, N.1
  • 3
    • 33748296360 scopus 로고    scopus 로고
    • Some physical applications of fractional Schrödinger equation
    • Guo X., Xu M. Some physical applications of fractional Schrödinger equation. J. Math. Phys. 2006, 47:82-104.
    • (2006) J. Math. Phys. , vol.47 , pp. 82-104
    • Guo, X.1    Xu, M.2
  • 6
    • 67650863152 scopus 로고    scopus 로고
    • Coupled nonlinear Schrödinger equations in optic fibers theory: from general to solitonic aspects
    • Leble S., Reichel B. Coupled nonlinear Schrödinger equations in optic fibers theory: from general to solitonic aspects. Eur. Phys. J. Spec. Top. 2009, 173:5-55.
    • (2009) Eur. Phys. J. Spec. Top. , vol.173 , pp. 5-55
    • Leble, S.1    Reichel, B.2
  • 7
    • 0442300961 scopus 로고    scopus 로고
    • An explicit unconditionally stable numerical method for solving damped nonlinear Schrödinger equations with a focusing nonlinearity
    • Bao W., Jaksch D. An explicit unconditionally stable numerical method for solving damped nonlinear Schrödinger equations with a focusing nonlinearity. SIAM J. Numer. Anal. 2003, 41:1406-1426.
    • (2003) SIAM J. Numer. Anal. , vol.41 , pp. 1406-1426
    • Bao, W.1    Jaksch, D.2
  • 11
    • 52049103572 scopus 로고    scopus 로고
    • Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrödinger equation
    • Guo B., Han Y., Xin J. Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrödinger equation. Appl. Math. Comput. 2008, 204:468-477.
    • (2008) Appl. Math. Comput. , vol.204 , pp. 468-477
    • Guo, B.1    Han, Y.2    Xin, J.3
  • 12
    • 79960972737 scopus 로고    scopus 로고
    • The global solution for a class of systems of fractional nonlinear Schrödinger equations with periodic boundary condition
    • Hu J., Xin J., Lu H. The global solution for a class of systems of fractional nonlinear Schrödinger equations with periodic boundary condition. Comput. Math. Appl. 2011, 62:1510-1521.
    • (2011) Comput. Math. Appl. , vol.62 , pp. 1510-1521
    • Hu, J.1    Xin, J.2    Lu, H.3
  • 13
    • 67949117124 scopus 로고    scopus 로고
    • Analysis of a symplectic difference scheme for a coupled nonlinear Schrödinger system
    • Wang T., Nie T., Zhang L. Analysis of a symplectic difference scheme for a coupled nonlinear Schrödinger system. J. Comput. Appl. Math. 2009, 231(2):745-759.
    • (2009) J. Comput. Appl. Math. , vol.231 , Issue.2 , pp. 745-759
    • Wang, T.1    Nie, T.2    Zhang, L.3
  • 14
    • 77957281493 scopus 로고    scopus 로고
    • New conservative difference schemes for a coupled nonlinear Schrödinger system
    • Wang T., Guo B., Zhang L. New conservative difference schemes for a coupled nonlinear Schrödinger system. Appl. Math. Comput. 2010, 217:1604-1619.
    • (2010) Appl. Math. Comput. , vol.217 , pp. 1604-1619
    • Wang, T.1    Guo, B.2    Zhang, L.3
  • 15
    • 77953128366 scopus 로고    scopus 로고
    • L∞ convergence of a difference scheme for coupled nonlinear Schrödinger equations
    • L∞ convergence of a difference scheme for coupled nonlinear Schrödinger equations. Comput. Math. Appl. 2010, 59:3286-3300.
    • (2010) Comput. Math. Appl. , vol.59 , pp. 3286-3300
    • Sun, Z.1    Zhao, D.2
  • 16
    • 38049089855 scopus 로고    scopus 로고
    • A fourth-order explicit schemes for the coupled nonlinear Schrödinger equation
    • Ismail M.S. A fourth-order explicit schemes for the coupled nonlinear Schrödinger equation. Appl. Math. Comput. 2008, 196:273-284.
    • (2008) Appl. Math. Comput. , vol.196 , pp. 273-284
    • Ismail, M.S.1
  • 17
    • 0041730125 scopus 로고    scopus 로고
    • On convergence and stability of the explicit difference method for solution of nonlinear Schrödinger equations
    • F. Ivanauskas, M. Radžiunas, On convergence and stability of the explicit difference method for solution of nonlinear Schrödinger equations, SIAM J. Numer. Anal. 36 (1999) 1466-1481.
    • (1999) SIAM J. Numer. Anal , vol.36 , pp. 1466-1481
    • Ivanauskas, F.1    Radžiunas, M.2
  • 18
    • 77954088723 scopus 로고    scopus 로고
    • Nonlinear Schrödinger equations and their spectral discretizations over long times
    • Gauckler L., Lubich C. Nonlinear Schrödinger equations and their spectral discretizations over long times. Found. Comput. Math. 2010, 10:141-169.
    • (2010) Found. Comput. Math. , vol.10 , pp. 141-169
    • Gauckler, L.1    Lubich, C.2
  • 19
    • 0142216144 scopus 로고    scopus 로고
    • Multi-symplectic methods for the coupled 1D nonlinear Schrödinger system
    • Sun J., Qin M. Multi-symplectic methods for the coupled 1D nonlinear Schrödinger system. Comput. Phys. Commun. 2003, 155:221-235.
    • (2003) Comput. Phys. Commun. , vol.155 , pp. 221-235
    • Sun, J.1    Qin, M.2
  • 20
    • 67651163723 scopus 로고    scopus 로고
    • Multi-symplectic integration of coupled nonlinear Schrödinger system with soliton solutions
    • Aydin A., Karasözen B. Multi-symplectic integration of coupled nonlinear Schrödinger system with soliton solutions. Int. J. Comput. Math. 2009, 86:864-882.
    • (2009) Int. J. Comput. Math. , vol.86 , pp. 864-882
    • Aydin, A.1    Karasözen, B.2
  • 21
    • 84907893973 scopus 로고    scopus 로고
    • Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term
    • Zhuang P., Liu F., Anh V., Turner I. Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 2009, 47:1760-1781.
    • (2009) SIAM J. Numer. Anal. , vol.47 , pp. 1760-1781
    • Zhuang, P.1    Liu, F.2    Anh, V.3    Turner, I.4
  • 22
    • 69249214155 scopus 로고    scopus 로고
    • Numerical methods for fractional partial differential equations with Riesz space fractional derivatives
    • Yang Q., Liu F., Turner I. Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model. 2010, 34(1):200-218.
    • (2010) Appl. Math. Model. , vol.34 , Issue.1 , pp. 200-218
    • Yang, Q.1    Liu, F.2    Turner, I.3
  • 23
    • 64249135201 scopus 로고    scopus 로고
    • Numerical approximation of a fractional-in-space diffusion equation. I.
    • Ilić M., Liu F., Turner I., Anh V. Numerical approximation of a fractional-in-space diffusion equation. I. Fract. Calc. Appl. Anal. 2005, 8(3):323-341.
    • (2005) Fract. Calc. Appl. Anal. , vol.8 , Issue.3 , pp. 323-341
    • Ilić, M.1    Liu, F.2    Turner, I.3    Anh, V.4
  • 24
    • 84901456625 scopus 로고    scopus 로고
    • A novel numerical approximation for the Riesz space fractional advection-dispersion equation
    • in press, doi:10.1093/imamat/hxs073
    • S. Shen, F. Liu, V. Anh, I. Turner, J. Chen, A novel numerical approximation for the Riesz space fractional advection-dispersion equation, IMA J. Appl. Math., in press, doi:10.1093/imamat/hxs073.
    • IMA J. Appl. Math.
    • Shen, S.1    Liu, F.2    Anh, V.3    Turner, I.4    Chen, J.5
  • 25
    • 79960431454 scopus 로고    scopus 로고
    • Novel numerical methods for solving the time-space fractional diffusion equation in 2D
    • Yang Q., Turner I., Liu F., Ilis Milos Novel numerical methods for solving the time-space fractional diffusion equation in 2D. SIAM J. Sci. Comput. 2011, 33:1159-1180.
    • (2011) SIAM J. Sci. Comput. , vol.33 , pp. 1159-1180
    • Yang, Q.1    Turner, I.2    Liu, F.3    Ilis, M.4
  • 26
    • 77958016082 scopus 로고    scopus 로고
    • Galerkin finite element approximations of symmetric space-fractional partial differential equations
    • Zhang H., Liu F., Anh V. Galerkin finite element approximations of symmetric space-fractional partial differential equations. Appl. Math. Comput. 2010, 217(6):2534-2545.
    • (2010) Appl. Math. Comput. , vol.217 , Issue.6 , pp. 2534-2545
    • Zhang, H.1    Liu, F.2    Anh, V.3
  • 27
    • 33749526684 scopus 로고    scopus 로고
    • Riesz potential operators and inverses via fractional centred derivatives
    • Ortigueira M.D. Riesz potential operators and inverses via fractional centred derivatives. Int. J. Math. Math. Sci. 2006, 1-12.
    • (2006) Int. J. Math. Math. Sci. , pp. 1-12
    • Ortigueira, M.D.1
  • 28
    • 84855207635 scopus 로고    scopus 로고
    • Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative
    • Çelik C., Duman M. Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 2012, 231:1743-1750.
    • (2012) J. Comput. Phys. , vol.231 , pp. 1743-1750
    • Çelik, C.1    Duman, M.2
  • 29
    • 84870058501 scopus 로고    scopus 로고
    • A computationally effective alternating direction method for the space and time fractional Bloch-Torrey equation in 3-D
    • Yu Q., Liu F., Turner I., Burrage K. A computationally effective alternating direction method for the space and time fractional Bloch-Torrey equation in 3-D. Appl. Math. Comput. 2012, 219:4082-4095.
    • (2012) Appl. Math. Comput. , vol.219 , pp. 4082-4095
    • Yu, Q.1    Liu, F.2    Turner, I.3    Burrage, K.4
  • 30
    • 79951851714 scopus 로고    scopus 로고
    • Numerical approximations and solution techniques for the space-time Riesz-Caputo fractional advection-diffusion equation
    • Shen S., Liu F., Anh V. Numerical approximations and solution techniques for the space-time Riesz-Caputo fractional advection-diffusion equation. Numer. Algorithm 2011, 56(3):383-404.
    • (2011) Numer. Algorithm , vol.56 , Issue.3 , pp. 383-404
    • Shen, S.1    Liu, F.2    Anh, V.3
  • 31
    • 84855194741 scopus 로고    scopus 로고
    • Numerical simulation of the Riesz fractional diffusion equation with a nonlinear source term
    • Zhang H., Liu F. Numerical simulation of the Riesz fractional diffusion equation with a nonlinear source term. J. Appl. Math. Inf. 2008, 26(1-2):1-14.
    • (2008) J. Appl. Math. Inf. , vol.26 , Issue.1-2 , pp. 1-14
    • Zhang, H.1    Liu, F.2
  • 32
    • 57649137996 scopus 로고    scopus 로고
    • The fundamental solution and numerical solution of the Riesz fractional advection-dispersion equation
    • Shen S., Liu F., Anh V., Turner I. The fundamental solution and numerical solution of the Riesz fractional advection-dispersion equation. IMA J. Appl. Math. 2008, 73:850-872.
    • (2008) IMA J. Appl. Math. , vol.73 , pp. 850-872
    • Shen, S.1    Liu, F.2    Anh, V.3    Turner, I.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.