-
1
-
-
0034271488
-
Fractional quantum mechanics
-
Laskin N. Fractional quantum mechanics. Phys. Rev. E 2000, 62:3135-3145.
-
(2000)
Phys. Rev. E
, vol.62
, pp. 3135-3145
-
-
Laskin, N.1
-
2
-
-
0000415309
-
Fractional quantum mechanics and Lévy path integrals
-
Laskin N. Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 2000, 268(4-6):298-305.
-
(2000)
Phys. Lett. A
, vol.268
, Issue.4-6
, pp. 298-305
-
-
Laskin, N.1
-
3
-
-
33748296360
-
Some physical applications of fractional Schrödinger equation
-
Guo X., Xu M. Some physical applications of fractional Schrödinger equation. J. Math. Phys. 2006, 47:82-104.
-
(2006)
J. Math. Phys.
, vol.47
, pp. 82-104
-
-
Guo, X.1
Xu, M.2
-
5
-
-
78650695944
-
Collocation method for fractional quantum mechanics
-
Amore P., Fernández F.M., Hofmann C.P., Sáenz R.A. Collocation method for fractional quantum mechanics. J. Math. Phys. 2010, 51:122101.
-
(2010)
J. Math. Phys.
, vol.51
, pp. 122101
-
-
Amore, P.1
Fernández, F.M.2
Hofmann, C.P.3
Sáenz, R.A.4
-
6
-
-
67650863152
-
Coupled nonlinear Schrödinger equations in optic fibers theory: from general to solitonic aspects
-
Leble S., Reichel B. Coupled nonlinear Schrödinger equations in optic fibers theory: from general to solitonic aspects. Eur. Phys. J. Spec. Top. 2009, 173:5-55.
-
(2009)
Eur. Phys. J. Spec. Top.
, vol.173
, pp. 5-55
-
-
Leble, S.1
Reichel, B.2
-
7
-
-
0442300961
-
An explicit unconditionally stable numerical method for solving damped nonlinear Schrödinger equations with a focusing nonlinearity
-
Bao W., Jaksch D. An explicit unconditionally stable numerical method for solving damped nonlinear Schrödinger equations with a focusing nonlinearity. SIAM J. Numer. Anal. 2003, 41:1406-1426.
-
(2003)
SIAM J. Numer. Anal.
, vol.41
, pp. 1406-1426
-
-
Bao, W.1
Jaksch, D.2
-
11
-
-
52049103572
-
Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrödinger equation
-
Guo B., Han Y., Xin J. Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrödinger equation. Appl. Math. Comput. 2008, 204:468-477.
-
(2008)
Appl. Math. Comput.
, vol.204
, pp. 468-477
-
-
Guo, B.1
Han, Y.2
Xin, J.3
-
12
-
-
79960972737
-
The global solution for a class of systems of fractional nonlinear Schrödinger equations with periodic boundary condition
-
Hu J., Xin J., Lu H. The global solution for a class of systems of fractional nonlinear Schrödinger equations with periodic boundary condition. Comput. Math. Appl. 2011, 62:1510-1521.
-
(2011)
Comput. Math. Appl.
, vol.62
, pp. 1510-1521
-
-
Hu, J.1
Xin, J.2
Lu, H.3
-
13
-
-
67949117124
-
Analysis of a symplectic difference scheme for a coupled nonlinear Schrödinger system
-
Wang T., Nie T., Zhang L. Analysis of a symplectic difference scheme for a coupled nonlinear Schrödinger system. J. Comput. Appl. Math. 2009, 231(2):745-759.
-
(2009)
J. Comput. Appl. Math.
, vol.231
, Issue.2
, pp. 745-759
-
-
Wang, T.1
Nie, T.2
Zhang, L.3
-
14
-
-
77957281493
-
New conservative difference schemes for a coupled nonlinear Schrödinger system
-
Wang T., Guo B., Zhang L. New conservative difference schemes for a coupled nonlinear Schrödinger system. Appl. Math. Comput. 2010, 217:1604-1619.
-
(2010)
Appl. Math. Comput.
, vol.217
, pp. 1604-1619
-
-
Wang, T.1
Guo, B.2
Zhang, L.3
-
15
-
-
77953128366
-
L∞ convergence of a difference scheme for coupled nonlinear Schrödinger equations
-
L∞ convergence of a difference scheme for coupled nonlinear Schrödinger equations. Comput. Math. Appl. 2010, 59:3286-3300.
-
(2010)
Comput. Math. Appl.
, vol.59
, pp. 3286-3300
-
-
Sun, Z.1
Zhao, D.2
-
16
-
-
38049089855
-
A fourth-order explicit schemes for the coupled nonlinear Schrödinger equation
-
Ismail M.S. A fourth-order explicit schemes for the coupled nonlinear Schrödinger equation. Appl. Math. Comput. 2008, 196:273-284.
-
(2008)
Appl. Math. Comput.
, vol.196
, pp. 273-284
-
-
Ismail, M.S.1
-
17
-
-
0041730125
-
On convergence and stability of the explicit difference method for solution of nonlinear Schrödinger equations
-
F. Ivanauskas, M. Radžiunas, On convergence and stability of the explicit difference method for solution of nonlinear Schrödinger equations, SIAM J. Numer. Anal. 36 (1999) 1466-1481.
-
(1999)
SIAM J. Numer. Anal
, vol.36
, pp. 1466-1481
-
-
Ivanauskas, F.1
Radžiunas, M.2
-
18
-
-
77954088723
-
Nonlinear Schrödinger equations and their spectral discretizations over long times
-
Gauckler L., Lubich C. Nonlinear Schrödinger equations and their spectral discretizations over long times. Found. Comput. Math. 2010, 10:141-169.
-
(2010)
Found. Comput. Math.
, vol.10
, pp. 141-169
-
-
Gauckler, L.1
Lubich, C.2
-
19
-
-
0142216144
-
Multi-symplectic methods for the coupled 1D nonlinear Schrödinger system
-
Sun J., Qin M. Multi-symplectic methods for the coupled 1D nonlinear Schrödinger system. Comput. Phys. Commun. 2003, 155:221-235.
-
(2003)
Comput. Phys. Commun.
, vol.155
, pp. 221-235
-
-
Sun, J.1
Qin, M.2
-
20
-
-
67651163723
-
Multi-symplectic integration of coupled nonlinear Schrödinger system with soliton solutions
-
Aydin A., Karasözen B. Multi-symplectic integration of coupled nonlinear Schrödinger system with soliton solutions. Int. J. Comput. Math. 2009, 86:864-882.
-
(2009)
Int. J. Comput. Math.
, vol.86
, pp. 864-882
-
-
Aydin, A.1
Karasözen, B.2
-
21
-
-
84907893973
-
Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term
-
Zhuang P., Liu F., Anh V., Turner I. Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 2009, 47:1760-1781.
-
(2009)
SIAM J. Numer. Anal.
, vol.47
, pp. 1760-1781
-
-
Zhuang, P.1
Liu, F.2
Anh, V.3
Turner, I.4
-
22
-
-
69249214155
-
Numerical methods for fractional partial differential equations with Riesz space fractional derivatives
-
Yang Q., Liu F., Turner I. Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model. 2010, 34(1):200-218.
-
(2010)
Appl. Math. Model.
, vol.34
, Issue.1
, pp. 200-218
-
-
Yang, Q.1
Liu, F.2
Turner, I.3
-
23
-
-
64249135201
-
Numerical approximation of a fractional-in-space diffusion equation. I.
-
Ilić M., Liu F., Turner I., Anh V. Numerical approximation of a fractional-in-space diffusion equation. I. Fract. Calc. Appl. Anal. 2005, 8(3):323-341.
-
(2005)
Fract. Calc. Appl. Anal.
, vol.8
, Issue.3
, pp. 323-341
-
-
Ilić, M.1
Liu, F.2
Turner, I.3
Anh, V.4
-
24
-
-
84901456625
-
A novel numerical approximation for the Riesz space fractional advection-dispersion equation
-
in press, doi:10.1093/imamat/hxs073
-
S. Shen, F. Liu, V. Anh, I. Turner, J. Chen, A novel numerical approximation for the Riesz space fractional advection-dispersion equation, IMA J. Appl. Math., in press, doi:10.1093/imamat/hxs073.
-
IMA J. Appl. Math.
-
-
Shen, S.1
Liu, F.2
Anh, V.3
Turner, I.4
Chen, J.5
-
25
-
-
79960431454
-
Novel numerical methods for solving the time-space fractional diffusion equation in 2D
-
Yang Q., Turner I., Liu F., Ilis Milos Novel numerical methods for solving the time-space fractional diffusion equation in 2D. SIAM J. Sci. Comput. 2011, 33:1159-1180.
-
(2011)
SIAM J. Sci. Comput.
, vol.33
, pp. 1159-1180
-
-
Yang, Q.1
Turner, I.2
Liu, F.3
Ilis, M.4
-
26
-
-
77958016082
-
Galerkin finite element approximations of symmetric space-fractional partial differential equations
-
Zhang H., Liu F., Anh V. Galerkin finite element approximations of symmetric space-fractional partial differential equations. Appl. Math. Comput. 2010, 217(6):2534-2545.
-
(2010)
Appl. Math. Comput.
, vol.217
, Issue.6
, pp. 2534-2545
-
-
Zhang, H.1
Liu, F.2
Anh, V.3
-
27
-
-
33749526684
-
Riesz potential operators and inverses via fractional centred derivatives
-
Ortigueira M.D. Riesz potential operators and inverses via fractional centred derivatives. Int. J. Math. Math. Sci. 2006, 1-12.
-
(2006)
Int. J. Math. Math. Sci.
, pp. 1-12
-
-
Ortigueira, M.D.1
-
28
-
-
84855207635
-
Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative
-
Çelik C., Duman M. Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 2012, 231:1743-1750.
-
(2012)
J. Comput. Phys.
, vol.231
, pp. 1743-1750
-
-
Çelik, C.1
Duman, M.2
-
29
-
-
84870058501
-
A computationally effective alternating direction method for the space and time fractional Bloch-Torrey equation in 3-D
-
Yu Q., Liu F., Turner I., Burrage K. A computationally effective alternating direction method for the space and time fractional Bloch-Torrey equation in 3-D. Appl. Math. Comput. 2012, 219:4082-4095.
-
(2012)
Appl. Math. Comput.
, vol.219
, pp. 4082-4095
-
-
Yu, Q.1
Liu, F.2
Turner, I.3
Burrage, K.4
-
30
-
-
79951851714
-
Numerical approximations and solution techniques for the space-time Riesz-Caputo fractional advection-diffusion equation
-
Shen S., Liu F., Anh V. Numerical approximations and solution techniques for the space-time Riesz-Caputo fractional advection-diffusion equation. Numer. Algorithm 2011, 56(3):383-404.
-
(2011)
Numer. Algorithm
, vol.56
, Issue.3
, pp. 383-404
-
-
Shen, S.1
Liu, F.2
Anh, V.3
-
31
-
-
84855194741
-
Numerical simulation of the Riesz fractional diffusion equation with a nonlinear source term
-
Zhang H., Liu F. Numerical simulation of the Riesz fractional diffusion equation with a nonlinear source term. J. Appl. Math. Inf. 2008, 26(1-2):1-14.
-
(2008)
J. Appl. Math. Inf.
, vol.26
, Issue.1-2
, pp. 1-14
-
-
Zhang, H.1
Liu, F.2
-
32
-
-
57649137996
-
The fundamental solution and numerical solution of the Riesz fractional advection-dispersion equation
-
Shen S., Liu F., Anh V., Turner I. The fundamental solution and numerical solution of the Riesz fractional advection-dispersion equation. IMA J. Appl. Math. 2008, 73:850-872.
-
(2008)
IMA J. Appl. Math.
, vol.73
, pp. 850-872
-
-
Shen, S.1
Liu, F.2
Anh, V.3
Turner, I.4
|