-
1
-
-
0000415309
-
Fractional quantum mechanics and Lévy path integrals
-
10.1016/S0375-9601(00)00201-2.
-
Laskin N. Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 2000, 268:298. 10.1016/S0375-9601(00)00201-2,.
-
(2000)
Phys. Lett. A
, vol.268
, pp. 298
-
-
Laskin, N.1
-
2
-
-
41349084761
-
Fractional Schrödinger equation
-
10.1103/PhysRevE.66.056108.
-
Laskin N. Fractional Schrödinger equation. Phys. Rev. E 2002, 66:05618. 10.1103/PhysRevE.66.056108,.
-
(2002)
Phys. Rev. E
, vol.66
, pp. 05618
-
-
Laskin, N.1
-
3
-
-
0034271488
-
Fractional quantum mechanics
-
10.1103/PhysRevE.62.3135.
-
Laskin N. Fractional quantum mechanics. Phys. Rev. E 2000, 62:3135. 10.1103/PhysRevE.62.3135,.
-
(2000)
Phys. Rev. E
, vol.62
, pp. 3135
-
-
Laskin, N.1
-
4
-
-
34249835055
-
On a class of nonlinear Schrödinger equation
-
10.1007/BF00946631.
-
Rabinowitz P.H. On a class of nonlinear Schrödinger equation. Z. Angew. Math. Phys. 1992, 43:270. 10.1007/BF00946631,.
-
(1992)
Z. Angew. Math. Phys.
, vol.43
, pp. 270
-
-
Rabinowitz, P.H.1
-
5
-
-
34250081368
-
On concentration of positive bound states of nonlinear Schrödinger equations
-
10.1007/BF02096642.
-
Wang X. On concentration of positive bound states of nonlinear Schrödinger equations. Commun. Math. Phys. 1993, 153:229. 10.1007/BF02096642,.
-
(1993)
Commun. Math. Phys.
, vol.153
, pp. 229
-
-
Wang, X.1
-
6
-
-
0041473959
-
Nonlinear Schrödinger equations and sharp interpolation estimates
-
10.1007/BF01208265.
-
Weinstein W. Nonlinear Schrödinger equations and sharp interpolation estimates. Commun. Math. Phys. 1983, 87:567. 10.1007/BF01208265,.
-
(1983)
Commun. Math. Phys.
, vol.87
, pp. 567
-
-
Weinstein, W.1
-
7
-
-
0034342269
-
Stability of standing waves for nonlinear Schrödinger equations with unbounded potentials
-
10.1007/PL00001512.
-
Zhang J. Stability of standing waves for nonlinear Schrödinger equations with unbounded potentials. Z. Angew. Math. Phys. 2000, 51:498. 10.1007/PL00001512,.
-
(2000)
Z. Angew. Math. Phys.
, vol.51
, pp. 498
-
-
Zhang, J.1
-
8
-
-
33748296360
-
Some physical applications of fractional Schrödinger equation
-
10.1063/1.2235026
-
Guo X. Xu M. Some physical applications of fractional Schrödinger equation. J. Math. Phys. 2006, 47:082104. 10.1063/1.2235026
-
(2006)
J. Math. Phys.
, vol.47
, pp. 082104
-
-
Guo, X.1
Xu, M.2
-
9
-
-
78650709709
-
The fractional Schrödinger equation for delta potentials
-
10.1063/1.3525976
-
de Oliveira E.C. Costa F.S. Vaz J. The fractional Schrödinger equation for delta potentials. J. Math. Phys. 2010, 51:123517. 10.1063/1.3525976
-
(2010)
J. Math. Phys.
, vol.51
, pp. 123517
-
-
de Oliveira, E.C.1
Costa, F.S.2
Vaz, J.3
-
10
-
-
34547601480
-
Some solutions to the space fractional Schrödinger equation using momentum representation method
-
10.1063/1.2749172
-
Dong J. Xu M. Some solutions to the space fractional Schrödinger equation using momentum representation method. J. Math. Phys. 2007, 48:072105. 10.1063/1.2749172
-
(2007)
J. Math. Phys.
, vol.48
, pp. 072105
-
-
Dong, J.1
Xu, M.2
-
11
-
-
34247620479
-
Generalized fractional Schrödinger equation with space-time fractional derivatives
-
10.1063/1.2716203
-
Wang S. Xu M. Generalized fractional Schrödinger equation with space-time fractional derivatives. J. Math. Phys. 2007, 48:043502. 10.1063/1.2716203
-
(2007)
J. Math. Phys.
, vol.48
, pp. 043502
-
-
Wang, S.1
Xu, M.2
-
12
-
-
79955051827
-
Tunneling in fractional quantum mechanics
-
10.1088/1751-8113/44/18/185303
-
de Oliveira E.C. Vaz J. Tunneling in fractional quantum mechanics. J. Phys. A: Math. Theor. 2011, 44:185303. 10.1088/1751-8113/44/18/185303
-
(2011)
J. Phys. A: Math. Theor.
, vol.44
, pp. 185303
-
-
de Oliveira, E.C.1
Vaz, J.2
-
13
-
-
78650272195
-
Global well-posedness for the fractional nonlinear Schrödinger equation
-
10.1080/03605302.2010.503769
-
Guo B. Huo Z. Global well-posedness for the fractional nonlinear Schrödinger equation. Commun. Partial Differ. Equ. 2011, 36:247. 10.1080/03605302.2010.503769
-
(2011)
Commun. Partial Differ. Equ.
, vol.36
, pp. 247
-
-
Guo, B.1
Huo, Z.2
-
14
-
-
52049103572
-
Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrödinger equation
-
10.1016/j.amc.2008.07.003
-
Guo B. Han Y. Xin J. Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrödinger equation. Appl. Math. Comput. 2008, 204:468. 10.1016/j.amc.2008.07.003
-
(2008)
Appl. Math. Comput.
, vol.204
, pp. 468
-
-
Guo, B.1
Han, Y.2
Xin, J.3
-
15
-
-
84857803408
-
Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian
-
Proceedings of the Royal Society of Edinburgh: Section A Mathematics (in press).
-
Felmer P. Quaas A. Tan J. Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian. and Proceedings of the Royal Society of Edinburgh: Section A Mathematics (in press).
-
-
-
Felmer, P.1
Quaas, A.2
Tan, J.3
-
16
-
-
84860467392
-
-
CBMS Regional Conference Series in Mathematics (Conference Board of the Mathematical Sciences, Washington, DC, 2006) (Local and global analysis).
-
Tao T. Nonlinear dispersive equations CBMS Regional Conference Series in Mathematics (Conference Board of the Mathematical Sciences, Washington, DC, 2006) (Local and global analysis).
-
Nonlinear dispersive equations
-
-
Tao, T.1
-
17
-
-
27744448601
-
Exponential decay of solutions to nonlinear elliptic equations with potentials
-
10.1007/s00033-005-4060-0
-
Fukuizumi R. Ozawa T. Exponential decay of solutions to nonlinear elliptic equations with potentials. Z. Angew. Math. Phys. 2005, 56:1000. 10.1007/s00033-005-4060-0
-
(2005)
Z. Angew. Math. Phys.
, vol.56
, pp. 1000
-
-
Fukuizumi, R.1
Ozawa, T.2
|