메뉴 건너뛰기




Volumn 53, Issue 4, 2012, Pages

Bound state for the fractional Schrödinger equation with unbounded potential

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84860494475     PISSN: 00222488     EISSN: None     Source Type: Journal    
DOI: 10.1063/1.3701574     Document Type: Article
Times cited : (165)

References (17)
  • 1
    • 0000415309 scopus 로고    scopus 로고
    • Fractional quantum mechanics and Lévy path integrals
    • 10.1016/S0375-9601(00)00201-2.
    • Laskin N. Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 2000, 268:298. 10.1016/S0375-9601(00)00201-2,.
    • (2000) Phys. Lett. A , vol.268 , pp. 298
    • Laskin, N.1
  • 2
    • 41349084761 scopus 로고    scopus 로고
    • Fractional Schrödinger equation
    • 10.1103/PhysRevE.66.056108.
    • Laskin N. Fractional Schrödinger equation. Phys. Rev. E 2002, 66:05618. 10.1103/PhysRevE.66.056108,.
    • (2002) Phys. Rev. E , vol.66 , pp. 05618
    • Laskin, N.1
  • 3
    • 0034271488 scopus 로고    scopus 로고
    • Fractional quantum mechanics
    • 10.1103/PhysRevE.62.3135.
    • Laskin N. Fractional quantum mechanics. Phys. Rev. E 2000, 62:3135. 10.1103/PhysRevE.62.3135,.
    • (2000) Phys. Rev. E , vol.62 , pp. 3135
    • Laskin, N.1
  • 4
    • 34249835055 scopus 로고
    • On a class of nonlinear Schrödinger equation
    • 10.1007/BF00946631.
    • Rabinowitz P.H. On a class of nonlinear Schrödinger equation. Z. Angew. Math. Phys. 1992, 43:270. 10.1007/BF00946631,.
    • (1992) Z. Angew. Math. Phys. , vol.43 , pp. 270
    • Rabinowitz, P.H.1
  • 5
    • 34250081368 scopus 로고
    • On concentration of positive bound states of nonlinear Schrödinger equations
    • 10.1007/BF02096642.
    • Wang X. On concentration of positive bound states of nonlinear Schrödinger equations. Commun. Math. Phys. 1993, 153:229. 10.1007/BF02096642,.
    • (1993) Commun. Math. Phys. , vol.153 , pp. 229
    • Wang, X.1
  • 6
    • 0041473959 scopus 로고
    • Nonlinear Schrödinger equations and sharp interpolation estimates
    • 10.1007/BF01208265.
    • Weinstein W. Nonlinear Schrödinger equations and sharp interpolation estimates. Commun. Math. Phys. 1983, 87:567. 10.1007/BF01208265,.
    • (1983) Commun. Math. Phys. , vol.87 , pp. 567
    • Weinstein, W.1
  • 7
    • 0034342269 scopus 로고    scopus 로고
    • Stability of standing waves for nonlinear Schrödinger equations with unbounded potentials
    • 10.1007/PL00001512.
    • Zhang J. Stability of standing waves for nonlinear Schrödinger equations with unbounded potentials. Z. Angew. Math. Phys. 2000, 51:498. 10.1007/PL00001512,.
    • (2000) Z. Angew. Math. Phys. , vol.51 , pp. 498
    • Zhang, J.1
  • 8
    • 33748296360 scopus 로고    scopus 로고
    • Some physical applications of fractional Schrödinger equation
    • 10.1063/1.2235026
    • Guo X. Xu M. Some physical applications of fractional Schrödinger equation. J. Math. Phys. 2006, 47:082104. 10.1063/1.2235026
    • (2006) J. Math. Phys. , vol.47 , pp. 082104
    • Guo, X.1    Xu, M.2
  • 9
    • 78650709709 scopus 로고    scopus 로고
    • The fractional Schrödinger equation for delta potentials
    • 10.1063/1.3525976
    • de Oliveira E.C. Costa F.S. Vaz J. The fractional Schrödinger equation for delta potentials. J. Math. Phys. 2010, 51:123517. 10.1063/1.3525976
    • (2010) J. Math. Phys. , vol.51 , pp. 123517
    • de Oliveira, E.C.1    Costa, F.S.2    Vaz, J.3
  • 10
    • 34547601480 scopus 로고    scopus 로고
    • Some solutions to the space fractional Schrödinger equation using momentum representation method
    • 10.1063/1.2749172
    • Dong J. Xu M. Some solutions to the space fractional Schrödinger equation using momentum representation method. J. Math. Phys. 2007, 48:072105. 10.1063/1.2749172
    • (2007) J. Math. Phys. , vol.48 , pp. 072105
    • Dong, J.1    Xu, M.2
  • 11
    • 34247620479 scopus 로고    scopus 로고
    • Generalized fractional Schrödinger equation with space-time fractional derivatives
    • 10.1063/1.2716203
    • Wang S. Xu M. Generalized fractional Schrödinger equation with space-time fractional derivatives. J. Math. Phys. 2007, 48:043502. 10.1063/1.2716203
    • (2007) J. Math. Phys. , vol.48 , pp. 043502
    • Wang, S.1    Xu, M.2
  • 12
    • 79955051827 scopus 로고    scopus 로고
    • Tunneling in fractional quantum mechanics
    • 10.1088/1751-8113/44/18/185303
    • de Oliveira E.C. Vaz J. Tunneling in fractional quantum mechanics. J. Phys. A: Math. Theor. 2011, 44:185303. 10.1088/1751-8113/44/18/185303
    • (2011) J. Phys. A: Math. Theor. , vol.44 , pp. 185303
    • de Oliveira, E.C.1    Vaz, J.2
  • 13
    • 78650272195 scopus 로고    scopus 로고
    • Global well-posedness for the fractional nonlinear Schrödinger equation
    • 10.1080/03605302.2010.503769
    • Guo B. Huo Z. Global well-posedness for the fractional nonlinear Schrödinger equation. Commun. Partial Differ. Equ. 2011, 36:247. 10.1080/03605302.2010.503769
    • (2011) Commun. Partial Differ. Equ. , vol.36 , pp. 247
    • Guo, B.1    Huo, Z.2
  • 14
    • 52049103572 scopus 로고    scopus 로고
    • Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrödinger equation
    • 10.1016/j.amc.2008.07.003
    • Guo B. Han Y. Xin J. Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrödinger equation. Appl. Math. Comput. 2008, 204:468. 10.1016/j.amc.2008.07.003
    • (2008) Appl. Math. Comput. , vol.204 , pp. 468
    • Guo, B.1    Han, Y.2    Xin, J.3
  • 15
    • 84857803408 scopus 로고    scopus 로고
    • Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian
    • Proceedings of the Royal Society of Edinburgh: Section A Mathematics (in press).
    • Felmer P. Quaas A. Tan J. Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian. and Proceedings of the Royal Society of Edinburgh: Section A Mathematics (in press).
    • Felmer, P.1    Quaas, A.2    Tan, J.3
  • 16
    • 84860467392 scopus 로고    scopus 로고
    • CBMS Regional Conference Series in Mathematics (Conference Board of the Mathematical Sciences, Washington, DC, 2006) (Local and global analysis).
    • Tao T. Nonlinear dispersive equations CBMS Regional Conference Series in Mathematics (Conference Board of the Mathematical Sciences, Washington, DC, 2006) (Local and global analysis).
    • Nonlinear dispersive equations
    • Tao, T.1
  • 17
    • 27744448601 scopus 로고    scopus 로고
    • Exponential decay of solutions to nonlinear elliptic equations with potentials
    • 10.1007/s00033-005-4060-0
    • Fukuizumi R. Ozawa T. Exponential decay of solutions to nonlinear elliptic equations with potentials. Z. Angew. Math. Phys. 2005, 56:1000. 10.1007/s00033-005-4060-0
    • (2005) Z. Angew. Math. Phys. , vol.56 , pp. 1000
    • Fukuizumi, R.1    Ozawa, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.