메뉴 건너뛰기




Volumn 16, Issue 1, 2013, Pages 226-242

Well-posedness for the nonlinear fractional Schrödinger equation and inviscid limit behavior of solution for the fractional Ginzburg-Landau equation

Author keywords

fractional Ginzburg Landau equation; fractional Schr dinger equation; inviscid limit behavior; well posedness

Indexed keywords


EID: 84871811620     PISSN: 13110454     EISSN: 13142444     Source Type: Journal    
DOI: 10.2478/s13540-013-0014-y     Document Type: Article
Times cited : (77)

References (11)
  • 1
    • 34250084341 scopus 로고
    • Fourier restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, Part I: Schrödinger equations, Part II: The KdV equation
    • 1209299 0787.35097 10.1007/BF01896020
    • J. Bourgain, Fourier restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, Part I: Schrödinger equations, Part II: the KdV equation. Geom. Funct. Anal., 3 (1993), 107-156, 209-262.
    • (1993) Geom. Funct. Anal. , vol.3 , pp. 107-156
    • Bourgain, J.1
  • 2
    • 1642641759 scopus 로고    scopus 로고
    • Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency
    • 10.1121/1.1646399
    • W. Chen, S. Holm, Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency. J. Acoust. Soc. Am. 115 (2004), 1424-1430.
    • (2004) J. Acoust. Soc. Am. , vol.115 , pp. 1424-1430
    • Chen, W.1    Holm, S.2
  • 3
    • 52049103572 scopus 로고    scopus 로고
    • Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrödinger equation
    • 2458385 1163.35483 10.1016/j.amc.2008.07.003
    • B. Guo, Y. Han and J. Xin, Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrödinger equation. Appl. Math. Comput. 204, No 1 (2008), 468-477.
    • (2008) Appl. Math. Comput. , vol.204 , Issue.1 , pp. 468-477
    • Guo, B.1    Han, Y.2    Xin, J.3
  • 4
    • 78650272195 scopus 로고    scopus 로고
    • Global well-posedness for the fractional nonlinear Schrödinger equation
    • 2763340 10.1080/03605302.2010.503769
    • B. Guo and Z. Huo, Global well-posedness for the fractional nonlinear Schrödinger equation. Comm. Partial Differential Equations 36, No 2 (Dec. 2010), 247-255.
    • (2010) Comm. Partial Differential Equations , vol.36 , Issue.2 , pp. 247-255
    • Guo, B.1    Huo, Z.2
  • 5
    • 34447516606 scopus 로고    scopus 로고
    • Global well-posedness of the Benjamin-Ono equation in low-regularity spaces
    • 2291918 1123.35055 10.1090/S0894-0347-06-00551-0
    • A.D. Ionescu and C. E. Kenig, Global well-posedness of the Benjamin-Ono equation in low-regularity spaces. J. Amer. Math. Soc. 20, No 3 (2007), 753-798.
    • (2007) J. Amer. Math. Soc. , vol.20 , Issue.3 , pp. 753-798
    • Ionescu, A.D.1    Kenig, C.E.2
  • 6
    • 84974004169 scopus 로고
    • The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices
    • 1230283 0787.35090 10.1215/S0012-7094-93-07101-3
    • C.E. Kenig, G. Ponce and L. Vega, The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices. Duke Math. J. 71 (1993), 1-21.
    • (1993) Duke Math. J. , vol.71 , pp. 1-21
    • Kenig, C.E.1    Ponce, G.2    Vega, L.3
  • 7
    • 0030528276 scopus 로고    scopus 로고
    • A bilinear estimate with applications to the KdV equation
    • 1329387 0848.35114 10.1090/S0894-0347-96-00200-7
    • C.E. Kenig, G. Ponce and L. Vega, A bilinear estimate with applications to the KdV equation. J. Amer. Math. Soc. 9 (1996), 573-603.
    • (1996) J. Amer. Math. Soc. , vol.9 , pp. 573-603
    • Kenig, C.E.1    Ponce, G.2    Vega, L.3
  • 8
    • 0000415309 scopus 로고    scopus 로고
    • Fractional quantum mechanics and Lévy path integrals
    • 1755089 0948.81595 10.1016/S0375-9601(00)00201-2
    • N. Laskin, Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268, No 4-6 (2000), 298-305.
    • (2000) Phys. Lett. A , vol.268 , Issue.4-6 , pp. 298-305
    • Laskin, N.1
  • 9
    • 41349084761 scopus 로고    scopus 로고
    • Fractional Schrödinger equation
    • 1948569 10.1103/PhysRevE.66.056108
    • N. Laskin, Fractional Schrödinger equation. Phys. Rev. E (3) 66 (2002), 056108.
    • (2002) Phys. Rev. e (3) , vol.66 , pp. 056108
    • Laskin, N.1
  • 10
    • 0035486554 scopus 로고    scopus 로고
    • 2 functions, and applications to nonlinear dispersive equation
    • 1854113 0998.42005 10.1353/ajm.2001.0035
    • 2 functions, and applications to nonlinear dispersive equation. Amer. J. Math. 123 (2001), 839-908.
    • (2001) Amer. J. Math. , vol.123 , pp. 839-908
    • Tao, T.1
  • 11
    • 19944384253 scopus 로고    scopus 로고
    • Fractional Ginzburg-Landau equation for fractal media
    • 10.1016/j.physa.2005.02.047
    • V.E. Tarasov and G.M. Zaslavsky, Fractional Ginzburg-Landau equation for fractal media. Phys. A 354 (2005), 249-261.
    • (2005) Phys. A , vol.354 , pp. 249-261
    • Tarasov, V.E.1    Zaslavsky, G.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.