-
2
-
-
4243311545
-
Magnetic Flux, Angular Momentum, and Statistics
-
F. Wilczek, Magnetic Flux, Angular Momentum, and Statistics, Phys. Rev. Lett. 48, 1144 (1982).
-
(1982)
Phys. Rev. Lett.
, vol.48
, pp. 1144
-
-
Wilczek, F.1
-
3
-
-
85015125372
-
Flux Metamorphosis
-
F. A. Bais, Flux Metamorphosis, Nucl. Phys. B170, 32 (1980).
-
(1980)
Nucl. Phys
, vol.B170
, pp. 32
-
-
Bais, F.A.1
-
4
-
-
36749118334
-
Representations of a Local Current Algebra in Non-simply Connected Space and the Aharonov-Bohm Effect
-
G. A. Goldin, R. Menikoff, and D. H. Sharp, Representations of a Local Current Algebra in Non-simply Connected Space and the Aharonov-Bohm Effect, J. Math. Phys. (N.Y.) 22, 1664 (1981).
-
(1981)
J. Math. Phys. (N.Y.)
, vol.22
, pp. 1664
-
-
Goldin, G.A.1
Menikoff, R.2
Sharp, D.H.3
-
5
-
-
25544465614
-
Comments on "General Theory for Quantum Statistics in Two Dimensions
-
G. A. Goldin, R. Menikoff, and D. H. Sharp, Comments on "General Theory for Quantum Statistics in Two Dimensions, " Phys. Rev. Lett. 54, 603 (1985).
-
(1985)
" Phys. Rev. Lett.
, vol.54
, pp. 603
-
-
Goldin, G.A.1
Menikoff, R.2
Sharp, D.H.3
-
6
-
-
0010798477
-
Polynomial Equations for Rational Conformal Field Theories
-
G. Moore and N. Seiberg, Polynomial Equations for Rational Conformal Field Theories, Phys. Lett. B 212, 451 (1988).
-
(1988)
Phys. Lett. B
, vol.212
, pp. 451
-
-
Moore, G.1
Seiberg, N.2
-
7
-
-
0346763470
-
Classical and Quantum Conformal Field Theory
-
G. Moore and N. Seiberg, Classical and Quantum Conformal Field Theory, Commun. Math. Phys. 123, 177 (1989).
-
(1989)
Commun. Math. Phys.
, vol.123
, pp. 177
-
-
Moore, G.1
Seiberg, N.2
-
8
-
-
14644388676
-
Quantum Field Theory and the Jones Polynomial
-
E. Witten, Quantum Field Theory and the Jones Polynomial, Commun. Math. Phys. 121, 351 (1989).
-
(1989)
Commun. Math. Phys.
, vol.121
, pp. 351
-
-
Witten, E.1
-
9
-
-
0000440057
-
Superselection Sectors with Braid Group Statistics and Exchange Algebras
-
K. Fredenhagen, K. H. Rehren, and B. Schroer, Superselection Sectors with Braid Group Statistics and Exchange Algebras, Commun. Math. Phys. 125, 201 (1989).
-
(1989)
Commun. Math. Phys.
, vol.125
, pp. 201
-
-
Fredenhagen, K.1
Rehren, K.H.2
Schroer, B.3
-
10
-
-
0000253059
-
Braid Statistics in Local Quantum Theory
-
J. Fröhlich and F. Gabbiani, Braid Statistics in Local Quantum Theory, Rev. Math. Phys. 02, 251 (1990).
-
(1990)
Rev. Math. Phys.
, vol.2
, pp. 251
-
-
Fröhlich, J.1
Gabbiani, F.2
-
11
-
-
13744264462
-
Identical Particles, Exotic Statistics and Braid Groups
-
T. D. Imbo, C. S. Imbo, and E. C. G. Sudarshan, Identical Particles, Exotic Statistics and Braid Groups, Phys. Lett. B 234, 103 (1990).
-
(1990)
Phys. Lett. B
, vol.234
, pp. 103
-
-
Imbo, T.D.1
Imbo, C.S.2
Sudarshan, E.C.G.3
-
12
-
-
0010990112
-
Zero Modes of Non-Abelian Vortices
-
M. G. Alford, K. Benson, S. R. Coleman, J. March-Russell, and F. Wilczek, Zero Modes of Non-Abelian Vortices, Nucl. Phys. B349, 414 (1991).
-
(1991)
Nucl. Phys.
, vol.B349
, pp. 414
-
-
Alford, M.G.1
Benson, K.2
Coleman, S.R.3
March-Russell, J.4
Wilczek, F.5
-
13
-
-
0001210621
-
Quantum Field Theory of Non-Abelian Strings and Vortices
-
M. G. Alford, K.-M. Lee, J. March-Russell, and J. Preskill, Quantum Field Theory of Non-Abelian Strings and Vortices, Nucl. Phys. B384, 251 (1992).
-
(1992)
Nucl. Phys.
, vol.B384
, pp. 251
-
-
Alford, M.G.1
Lee, K.-M.2
March-Russell, J.3
Preskill, J.4
-
14
-
-
0037268624
-
Fault-Tolerant Quantum Computation by Anyons
-
A. Y. Kitaev, Fault-Tolerant Quantum Computation by Anyons, Ann. Phys. (Amsterdam) 303, 2 (2003).
-
(2003)
Ann. Phys. (Amsterdam)
, vol.303
, pp. 2
-
-
Kitaev, A.Y.1
-
16
-
-
0037220758
-
Topological Quantum Computation
-
M. H. Freedman, A. Kitaev, M. J. Larsen, and Z. Wang, Topological Quantum Computation, Bull. Am. Math. Soc. 40, 31 (2003).
-
(2003)
Bull. Am. Math. Soc.
, vol.40
, pp. 31
-
-
Freedman, M.H.1
Kitaev, A.2
Larsen, M.J.3
Wang, Z.4
-
17
-
-
46949084304
-
Measurement-Only Topological Quantum Computation
-
010501
-
P. Bonderson, M. Freedman, and C. Nayak, Measurement-Only Topological Quantum Computation, Phys. Rev. Lett. 101, 010501 (2008).
-
(2008)
Phys. Rev. Lett.
, vol.101
-
-
Bonderson, P.1
Freedman, M.2
Nayak, C.3
-
18
-
-
52249107842
-
Non-Abelian Anyons and Topological Quantum Computation
-
C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. D. Sarma, Non-Abelian Anyons and Topological Quantum Computation, Rev. Mod. Phys. 80, 1083 (2008).
-
(2008)
Rev. Mod. Phys.
, vol.80
, pp. 1083
-
-
Nayak, C.1
Simon, S.H.2
Stern, A.3
Freedman, M.4
Sarma, S.D.5
-
19
-
-
37349048977
-
Anyons and the Quantum Hall Effect-A Pedagogical Review
-
A. Stern, Anyons and the Quantum Hall Effect-A Pedagogical Review, Ann. Phys. (Amsterdam) 323, 204 (2008).
-
(2008)
Ann. Phys. (Amsterdam)
, vol.323
, pp. 204
-
-
Stern, A.1
-
20
-
-
35949019065
-
Two-Dimensional Magnetotransport in the Extreme Quantum Limit
-
D. C. Tsui, H. L. Stormer, and A. C. Gossard, Two-Dimensional Magnetotransport in the Extreme Quantum Limit, Phys. Rev. Lett. 48, 1559 (1982).
-
(1982)
Phys. Rev. Lett.
, vol.48
, pp. 1559
-
-
Tsui, D.C.1
Stormer, H.L.2
Gossard, A.C.3
-
21
-
-
70449627005
-
Fractional Quantum Hall Effect and Insulating Phase of Dirac Electrons in Graphene
-
X. Du, I. Skachko, F. Duerr, A. Luican, and E. Y. Andrei, Fractional Quantum Hall Effect and Insulating Phase of Dirac Electrons in Graphene, Nature (London) 462, 192 (2009).
-
(2009)
Nature (London)
, vol.462
, pp. 192
-
-
Du, X.1
Skachko, I.2
Duerr, F.3
Luican, A.4
Andrei, E.Y.5
-
22
-
-
70449642218
-
Observation of the Fractional Quantum Hall Effect in Graphene
-
K. I. Bolotin, F. Ghahari, M. D. Shulman, H. L. Stormer, and P. Kim, Observation of the Fractional Quantum Hall Effect in Graphene, Nature (London) 462, 196 (2009).
-
(2009)
Nature (London)
, vol.462
, pp. 196
-
-
Bolotin, K.I.1
Ghahari, F.2
Shulman, M.D.3
Stormer, H.L.4
Kim, P.5
-
23
-
-
77958483248
-
Observation of the Fractional Quantum Hall Effect in an Oxide
-
A. Tsukazaki, S. Akasaka, K. Nakahara, Y. Ohno, H. Ohno, D. Maryenko, A. Ohtomo, and M. Kawasaki, Observation of the Fractional Quantum Hall Effect in an Oxide, Nat. Mater. 9, 889 (2010).
-
(2010)
Nat. Mater.
, vol.9
, pp. 889
-
-
Tsukazaki, A.1
Akasaka, S.2
Nakahara, K.3
Ohno, Y.4
Ohno, H.5
Maryenko, D.6
Ohtomo, A.7
Kawasaki, M.8
-
24
-
-
84856102117
-
Emergent Phenomena at Oxide Interfaces
-
H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura, Emergent Phenomena at Oxide Interfaces, Nat. Mater. 11, 103 (2012).
-
(2012)
Nat. Mater.
, vol.11
, pp. 103
-
-
Hwang, H.Y.1
Iwasa, Y.2
Kawasaki, M.3
Keimer, B.4
Nagaosa, N.5
Tokura, Y.6
-
25
-
-
77957591844
-
Fractional Quantum Hall Effect in CdTe
-
081307
-
B. A. Piot, J. Kunc, M. Potemski, D. K. Maude, C. Betthausen, A. Vogl, D. Weiss, G. Karczewski, and T. Wojtowicz, Fractional Quantum Hall Effect in CdTe, Phys. Rev. B 82, 081307 (2010).
-
(2010)
Phys. Rev. B
, vol.82
-
-
Piot, B.A.1
Kunc, J.2
Potemski, M.3
Maude, D.K.4
Betthausen, C.5
Vogl, A.6
Weiss, D.7
Karczewski, G.8
Wojtowicz, T.9
-
26
-
-
1842460762
-
Non-Abelions in the Fractional Quantum Hall Effect
-
G. Moore and N. Read, Non-Abelions in the Fractional Quantum Hall Effect, Nucl. Phys. B360, 362 (1991).
-
(1991)
Nucl. Phys.
, vol.B360
, pp. 362
-
-
Moore, G.1
Read, N.2
-
27
-
-
0001549186
-
Edge Excitations of Paired Fractional Quantum Hall States
-
M. Milovanovic and N. Read, Edge Excitations of Paired Fractional Quantum Hall States, Phys. Rev. B 53, 13559 (1996).
-
(1996)
Phys. Rev. B
, vol.53
, pp. 13559
-
-
Milovanovic, M.1
Read, N.2
-
28
-
-
85173595197
-
-
The term "Ising anyon" refers to a non-Abelian particle whose nontrivial braiding statistics derives from bound Majorana zero modes. Strictly speaking, Ising anyons have a particular overall U(1) phase associated with their braiding, although we will use this terminology even when this overall phase is ill-defined.
-
The term "Ising anyon" refers to a non-Abelian particle whose nontrivial braiding statistics derives from bound Majorana zero modes. Strictly speaking, Ising anyons have a particular overall U(1) phase associated with their braiding, although we will use this terminology even when this overall phase is ill-defined.
-
-
-
-
29
-
-
0030592675
-
-1-Dimensional Spinor Braiding Statistics in Paired Quantum Hall States
-
-1-Dimensional Spinor Braiding Statistics in Paired Quantum Hall States, Nucl. Phys. B479, 529 (1996).
-
(1996)
Nucl. Phys.
, vol.B479
, pp. 529
-
-
Nayak, C.1
Wilczek, F.2
-
30
-
-
0031498067
-
A Plasma Analogy and Berry Matrices for Non-Abelian Quantum Hall States
-
V. Gurarie and C. Nayak, A Plasma Analogy and Berry Matrices for Non-Abelian Quantum Hall States, Nucl. Phys. B506, 685 (1997).
-
(1997)
Nucl. Phys.
, vol.B506
, pp. 685
-
-
Gurarie, V.1
Nayak, C.2
-
31
-
-
0037428604
-
Monte Carlo Evaluation of Non-Abelian Statistics
-
016802
-
Y. Tserkovnyak and S. H. Simon, Monte Carlo Evaluation of Non-Abelian Statistics, Phys. Rev. Lett. 90, 016802 (2003).
-
(2003)
Phys. Rev. Lett.
, vol.90
-
-
Tserkovnyak, Y.1
Simon, S.H.2
-
32
-
-
55849118789
-
Pfaffian Statistics through Adiabatic Transport in the 1D Coherent State Representation
-
196802
-
A. Seidel, Pfaffian Statistics through Adiabatic Transport in the 1D Coherent State Representation, Phys. Rev. Lett. 101, 196802 (2008).
-
(2008)
Phys. Rev. Lett.
, vol.101
-
-
Seidel, A.1
-
33
-
-
59249089187
-
Non-Abelian Adiabatic Statistics and Hall Viscosity in Quantum Hall States and px + ipy Paired Superfluids
-
045308
-
N. Read, Non-Abelian Adiabatic Statistics and Hall Viscosity in Quantum Hall States and px + ipy Paired Superfluids, Phys. Rev. B 79, 045308 (2009).
-
(2009)
Phys. Rev. B
, vol.79
-
-
Read, N.1
-
34
-
-
68949113958
-
Numerical Analysis of Quasiholes of the Moore-Read Wave Function
-
076801
-
M. Baraban, G. Zikos, N. Bonesteel, and S. H. Simon, Numerical Analysis of Quasiholes of the Moore-Read Wave Function, Phys. Rev. Lett. 103, 076801 (2009).
-
(2009)
Phys. Rev. Lett.
, vol.103
-
-
Baraban, M.1
Zikos, G.2
Bonesteel, N.3
Simon, S.H.4
-
35
-
-
70350588716
-
Mapping the Braiding Properties of the Moore-Read State
-
115121
-
E. Prodan and F. D. M. Haldane, Mapping the Braiding Properties of the Moore-Read State, Phys. Rev. B 80, 115121 (2009).
-
(2009)
Phys. Rev. B
, vol.80
-
-
Prodan, E.1
Haldane, F.D.M.2
-
36
-
-
79961111766
-
Plasma Analogy and Non-Abelian Statistics for Ising-Type Quantum Hall States
-
075303
-
P. Bonderson, V. Gurarie, and C. Nayak, Plasma Analogy and Non-Abelian Statistics for Ising-Type Quantum Hall States, Phys. Rev. B 83, 075303 (2011).
-
(2011)
Phys. Rev. B
, vol.83
-
-
Bonderson, P.1
Gurarie, V.2
Nayak, C.3
-
38
-
-
36849058679
-
Particle-Hole Symmetry and the ν = 5/2 Quantum Hall State
-
236807
-
S.-S. Lee, S. Ryu, C. Nayak, and M. P. A. Fisher, Particle-Hole Symmetry and the ν = 5/2 Quantum Hall State, Phys. Rev. Lett. 99, 236807 (2007).
-
(2007)
Phys. Rev. Lett.
, vol.99
-
-
Lee, S.-S.1
Ryu, S.2
Nayak, C.3
Fisher, M.P.A.4
-
39
-
-
13144280693
-
Observation of an Even-Denominator Quantum Number in the Fractional Quantum Hall Effect
-
R. Willett, J. P. Eisenstein, H. L. Störmer, D. C. Tsui, A. C. Gossard, and J. H. English, Observation of an Even-Denominator Quantum Number in the Fractional Quantum Hall Effect, Phys. Rev. Lett. 59, 1776 (1987).
-
(1987)
Phys. Rev. Lett.
, vol.59
, pp. 1776
-
-
Willett, R.1
Eisenstein, J.P.2
Störmer, H.L.3
Tsui, D.C.4
Gossard, A.C.5
English, J.H.6
-
40
-
-
67049144725
-
Measurement of Filling Factor 5/2 Quasiparticle Interference with Observation of Charge e/4 and e/2 Period Oscillations
-
R. L. Willett, L. N. Pfeiffer, and K.W. West, Measurement of Filling Factor 5/2 Quasiparticle Interference with Observation of Charge e/4 and e/2 Period Oscillations, Proc. Natl. Acad. Sci. U.S.A. 106, 8853 (2009).
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 8853
-
-
Willett, R.L.1
Pfeiffer, L.N.2
West, K.W.3
-
41
-
-
78649708954
-
Alternation and Interchange of e/4 and e/2 Period Interference Oscillations Consistent with Filling Factor 5/2 Non-Abelian Quasiparticles
-
205301
-
R. L. Willett, L. N. Pfeiffer, and K.W. West, Alternation and Interchange of e/4 and e/2 Period Interference Oscillations Consistent with Filling Factor 5/2 Non-Abelian Quasiparticles, Phys. Rev. B 82, 205301 (2010).
-
(2010)
Phys. Rev. B
, vol.82
-
-
Willett, R.L.1
Pfeiffer, L.N.2
West, K.W.3
-
42
-
-
46449093181
-
Quasi-particle Properties from Tunneling in the ν = 5/2 Fractional Quantum Hall State
-
I. P. Radu, J. B. Miller, C. M. Marcus, M. A. Kastner, L. N. Pfeiffer, and K.W. West, Quasi-particle Properties from Tunneling in the ν = 5/2 Fractional Quantum Hall State, Science 320, 899 (2008).
-
(2008)
Science
, vol.320
, pp. 899
-
-
Radu, I.P.1
Miller, J.B.2
Marcus, C.M.3
Kastner, M.A.4
Pfeiffer, L.N.5
West, K.W.6
-
43
-
-
42249111039
-
Observation of a Quarter of an Electron Charge at the ν = 5/2 Quantum Hall State
-
M. Dolev, M. Heiblum, V. Umansky, A. Stern, and D. Mahalu, Observation of a Quarter of an Electron Charge at the ν = 5/2 Quantum Hall State, Nature (London) 452, 829 (2008).
-
(2008)
Nature (London)
, vol.452
, pp. 829
-
-
Dolev, M.1
Heiblum, M.2
Umansky, V.3
Stern, A.4
Mahalu, D.5
-
44
-
-
77955148967
-
Observation of Neutral Modes in the Fractional Quantum Hall Regime
-
A. Bid, N. Ofek, H. Inoue, M. Heiblum, C. L. Kane, V. Umansky, and D. Mahalu, Observation of Neutral Modes in the Fractional Quantum Hall Regime, Nature (London) 466, 585 (2010).
-
(2010)
Nature (London)
, vol.466
, pp. 585
-
-
Bid, A.1
Ofek, N.2
Inoue, H.3
Heiblum, M.4
Kane, C.L.5
Umansky, V.6
Mahalu, D.7
-
45
-
-
84867499660
-
-
arXiv:1112.3400
-
S. An, P. Jiang, H. Choi, W. Kang, S. H. Simon, L. N. Pfeiffer, K.W. West, and K.W. Baldwin, Braiding of Abelian and Non-Abelian Anyons in the Fractional Quantum Hall Effect, arXiv:1112.3400.
-
Braiding of Abelian and Non-Abelian Anyons in the Fractional Quantum Hall Effect
-
-
An, S.1
Jiang, P.2
Choi, H.3
Kang, W.4
Simon, S.H.5
Pfeiffer, L.N.6
West, K.W.7
Baldwin, K.W.8
-
46
-
-
84857366967
-
Unraveling the Spin Polarization of the ν = 5/2 Fractional Quantum Hall State
-
L. Tiemann, G. Gamez, N. Kumada, and K. Muraki, Unraveling the Spin Polarization of the ν = 5/2 Fractional Quantum Hall State, Science 335, 828 (2012).
-
(2012)
Science
, vol.335
, pp. 828
-
-
Tiemann, L.1
Gamez, G.2
Kumada, N.3
Muraki, K.4
-
47
-
-
84886791510
-
Magnetic Field-Tuned Aharonov-Bohm Oscillations and Evidence for Non-Abelian Anyons at ν = 5/2
-
186401
-
R. L.Willett, C. Nayak, K. Shtengel, L. N. Pfeiffer, and K. W. West, Magnetic Field-Tuned Aharonov-Bohm Oscillations and Evidence for Non-Abelian Anyons at ν = 5/2, Phys. Rev. Lett. 111, 186401 (2013).
-
(2013)
Phys. Rev. Lett.
, vol.111
-
-
Willett, R.L.1
Nayak, C.2
Shtengel, K.3
Pfeiffer, L.N.4
West, K.W.5
-
48
-
-
0000011912
-
Beyond Paired Quantum Hall States: Parafermions and Incompressible States in the First Excited Landau Level
-
N. Read and E. Rezayi Beyond Paired Quantum Hall States: Parafermions and Incompressible States in the First Excited Landau Level, Phys. Rev. B 59, 8084 (1999).
-
(1999)
Phys. Rev. B
, vol.59
, pp. 8084
-
-
Read, N.1
Rezayi, E.2
-
49
-
-
67349201968
-
Boundary Conformal Field Theory and Tunneling of Edge Quasiparticles in Non-Abelian Topological States
-
P. Fendley, M. P. A. Fisher, and C. Nayak, Boundary Conformal Field Theory and Tunneling of Edge Quasiparticles in Non-Abelian Topological States, Ann. Phys. (Amsterdam) 324, 1547 (2009).
-
(2009)
Ann. Phys. (Amsterdam)
, vol.324
, pp. 1547
-
-
Fendley, P.1
Fisher, M.P.A.2
Nayak, C.3
-
50
-
-
45749107135
-
Quantum Hall States at ν = 2/k+2: Analysis of the Particle-Hole Conjugates of the General Level-k Read-Rezayi States
-
241306
-
W. Bishara, G. A. Fiete, and C. Nayak, Quantum Hall States at ν = 2/k+2: Analysis of the Particle-Hole Conjugates of the General Level-k Read-Rezayi States, Phys. Rev. B 77, 241306 (2008).
-
(2008)
Phys. Rev. B
, vol.77
-
-
Bishara, W.1
Fiete, G.A.2
Nayak, C.3
-
51
-
-
0000515995
-
Exact Quantization of the Even-Denominator Fractional Quantum Hall State at ν = 5/2 Landau Level Filling Factor
-
W. Pan, J.-S. Xia, V. Shvarts, D. E. Adams, H. L. Stormer, D. C. Tsui, L. N. Pfeiffer, K.W. Baldwin, and K.W. West, Exact Quantization of the Even-Denominator Fractional Quantum Hall State at ν = 5/2 Landau Level Filling Factor, Phys. Rev. Lett. 83, 3530 (1999).
-
(1999)
Phys. Rev. Lett.
, vol.83
, pp. 3530
-
-
Pan, W.1
Xia, J.-S.2
Shvarts, V.3
Adams, D.E.4
Stormer, H.L.5
Tsui, D.C.6
Pfeiffer, L.N.7
Baldwin, K.W.8
West, K.W.9
-
52
-
-
20844445954
-
Electron Correlation in the Second Landau Level: A Competition between Many Nearly Degenerate Quantum Phases
-
176809
-
J. S. Xia, W. Pan, C. L. Vicente, E. D. Adams, N. S. Sullivan, H. L. Stormer, D. C. Tsui, L. N. Pfeiffer, K.W. Baldwin, and K.W. West, Electron Correlation in the Second Landau Level: A Competition between Many Nearly Degenerate Quantum Phases, Phys. Rev. Lett. 93, 176809 (2004).
-
(2004)
Phys. Rev. Lett.
, vol.93
-
-
Xia, J.S.1
Pan, W.2
Vicente, C.L.3
Adams, E.D.4
Sullivan, N.S.5
Stormer, H.L.6
Tsui, D.C.7
Pfeiffer, L.N.8
Baldwin, K.W.9
West, K.W.10
-
53
-
-
40949105699
-
Experimental Studies of the Fractional Quantum Hall Effect in the First Excited Landau Level
-
075307
-
W. Pan, J. S. Xia, H. L. Stormer, D. C. Tsui, C. Vicente, E. D. Adams, N. S. Sullivan, L. N. Pfeiffer, K.W. Baldwin, and K.W. West, Experimental Studies of the Fractional Quantum Hall Effect in the First Excited Landau Level, Phys. Rev. B 77, 075307 (2008).
-
(2008)
Phys. Rev. B
, vol.77
-
-
Pan, W.1
Xia, J.S.2
Stormer, H.L.3
Tsui, D.C.4
Vicente, C.5
Adams, E.D.6
Sullivan, N.S.7
Pfeiffer, L.N.8
Baldwin, K.W.9
West, K.W.10
-
54
-
-
0000049832
-
Paired States of Fermions in Two Dimensions with Breaking of Parity and Time-Reversal Symmetries and the Fractional Quantum Hall Effect
-
N. Read and D. Green, Paired States of Fermions in Two Dimensions with Breaking of Parity and Time-Reversal Symmetries and the Fractional Quantum Hall Effect, Phys. Rev. B 61, 10 267 (2000).
-
(2000)
Phys. Rev. B
, vol.61
, Issue.10
, pp. 267
-
-
Read, N.1
Green, D.2
-
55
-
-
85173594899
-
-
Throughout, when referring to spinless p-wave superconductivity we implicitly mean the topologically nontrivial weak pairing phase.
-
Throughout, when referring to spinless p-wave superconductivity we implicitly mean the topologically nontrivial weak pairing phase.
-
-
-
-
56
-
-
0035129985
-
Non-Abelian Statistics of Half-Quantum Vortices in p-Wave Superconductors
-
D. A. Ivanov, Non-Abelian Statistics of Half-Quantum Vortices in p-Wave Superconductors, Phys. Rev. Lett. 86, 268 (2001).
-
(2001)
Phys. Rev. Lett.
, vol.86
, pp. 268
-
-
Ivanov, D.A.1
-
57
-
-
79961064524
-
Projective Ribbon Permutation Statistics: A Remnant of Non-Abelian Braiding in Higher Dimensions
-
115132
-
M. Freedman, M. B. Hastings, C. Nayak, X.-L. Qi, K. Walker, and Z. Wang, Projective Ribbon Permutation Statistics: A Remnant of Non-Abelian Braiding in Higher Dimensions, Phys. Rev. B 83, 115132 (2011).
-
(2011)
Phys. Rev. B
, vol.83
-
-
Freedman, M.1
Hastings, M.B.2
Nayak, C.3
Qi, X.-L.4
Walker, K.5
Wang, Z.6
-
58
-
-
84873156619
-
Twist Defects and Projective Non-Abelian Braiding Statistics
-
045130
-
M. Barkeshli, C.-M. Jian, and X.-L. Qi, Twist Defects and Projective Non-Abelian Braiding Statistics, Phys. Rev. B 87, 045130 (2013).
-
(2013)
Phys. Rev. B
, vol.87
-
-
Barkeshli, M.1
Jian, C.-M.2
Qi, X.-L.3
-
59
-
-
55049105990
-
Unpaired Majorana Fermions in Quantum Wires
-
A. Y. Kitaev, Unpaired Majorana Fermions in Quantum Wires, Sov. Phys. Usp. 44, 131 (2001).
-
(2001)
Sov. Phys. Usp.
, vol.44
, pp. 131
-
-
Kitaev, A.Y.1
-
60
-
-
79955653230
-
Non-Abelian Statistics and Topological Quantum Information Processing in 1D Wire Networks
-
J. Alicea, Y. Oreg, G. Refael, F. von Oppen, and M. P. A. Fisher, Non-Abelian Statistics and Topological Quantum Information Processing in 1D Wire Networks, Nat. Phys. 7, 412 (2011).
-
(2011)
Nat. Phys.
, vol.7
, pp. 412
-
-
Alicea, J.1
Oreg, Y.2
Refael, G.3
von Oppen, F.4
Fisher, M.P.A.5
-
61
-
-
84860234490
-
Adiabatic Manipulations of Majorana Fermions in a Three-Dimensional Network of Quantum Wires
-
144501
-
B. I. Halperin, Y. Oreg, A. Stern, G. Refael, J. Alicea, and F. von Oppen, Adiabatic Manipulations of Majorana Fermions in a Three-Dimensional Network of Quantum Wires, Phys. Rev. B 85, 144501 (2012).
-
(2012)
Phys. Rev. B
, vol.85
-
-
Halperin, B.I.1
Oreg, Y.2
Stern, A.3
Refael, G.4
Alicea, J.5
von Oppen, F.6
-
62
-
-
79961212216
-
Majorana Fermion Exchange in Quasi-One-Dimensional Networks
-
035120
-
D. J. Clarke, J. D. Sau, and S. Tewari, Majorana Fermion Exchange in Quasi-One-Dimensional Networks, Phys. Rev. B 84, 035120 (2011).
-
(2011)
Phys. Rev. B
, vol.84
-
-
Clarke, D.J.1
Sau, J.D.2
Tewari, S.3
-
63
-
-
84872948849
-
Measurement-Only Topological Quantum Computation via Tunable Interactions
-
035113
-
P. Bonderson, Measurement-Only Topological Quantum Computation via Tunable Interactions, Phys. Rev. B 87, 035113 (2013).
-
(2013)
Phys. Rev. B
, vol.87
-
-
Bonderson, P.1
-
64
-
-
40849098643
-
Superconducting Proximity Effect and Majorana Fermions at the Surface of a Topological Insulator
-
096407
-
L. Fu and C. L. Kane, Superconducting Proximity Effect and Majorana Fermions at the Surface of a Topological Insulator, Phys. Rev. Lett. 100, 096407 (2008).
-
(2008)
Phys. Rev. Lett.
, vol.100
-
-
Fu, L.1
Kane, C.L.2
-
65
-
-
66249133696
-
Josephson Current and Noise at a Superconductor/Quantum-Spin-Hall-Insulator/ Superconductor Junction
-
161408(R)
-
L. Fu and C. L. Kane, Josephson Current and Noise at a Superconductor/Quantum-Spin-Hall-Insulator/ Superconductor Junction, Phys. Rev. B 79, 161408(R) (2009).
-
(2009)
Phys. Rev. B
, vol.79
-
-
Fu, L.1
Kane, C.L.2
-
66
-
-
75749086848
-
Generic New Platform for Topological Quantum Computation Using Semiconductor Heterostructures
-
040502
-
J. D. Sau, R. M. Lutchyn, S. Tewari, and S. D. Sarma, Generic New Platform for Topological Quantum Computation Using Semiconductor Heterostructures, Phys. Rev. Lett. 104, 040502 (2010).
-
(2010)
Phys. Rev. Lett.
, vol.104
-
-
Sau, J.D.1
Lutchyn, R.M.2
Tewari, S.3
Sarma, S.D.4
-
67
-
-
77954945903
-
Majorana Fermions in a Tunable Semiconductor Device
-
125318
-
J. Alicea, Majorana Fermions in a Tunable Semiconductor Device, Phys. Rev. B 81, 125318 (2010).
-
(2010)
Phys. Rev. B
, vol.81
-
-
Alicea, J.1
-
68
-
-
77955607008
-
Majorana Fermions and a Topological Phase Transition in Semiconductor-Superconductor Heterostructures
-
077001
-
R. M. Lutchyn, J. D. Sau, and S. D. Sarma, Majorana Fermions and a Topological Phase Transition in Semiconductor-Superconductor Heterostructures, Phys. Rev. Lett. 105, 077001 (2010).
-
(2010)
Phys. Rev. Lett.
, vol.105
-
-
Lutchyn, R.M.1
Sau, J.D.2
Sarma, S.D.3
-
69
-
-
77958138382
-
Helical Liquids and Majorana Bound States in Quantum Wires
-
177002
-
Y. Oreg, G. Refael, and F. von Oppen, Helical Liquids and Majorana Bound States in Quantum Wires, Phys. Rev. Lett. 105, 177002 (2010).
-
(2010)
Phys. Rev. Lett.
, vol.105
-
-
Oreg, Y.1
Refael, G.2
von Oppen, F.3
-
70
-
-
82655166358
-
Majorana Fermions in a Topological-Insulator Nanowire Proximity-Coupled to an s-Wave Superconductor
-
201105
-
A. Cook and M. Franz, Majorana Fermions in a Topological-Insulator Nanowire Proximity-Coupled to an s-Wave Superconductor, Phys. Rev. B 84, 201105 (2011).
-
(2011)
Phys. Rev. B
, vol.84
-
-
Cook, A.1
Franz, M.2
-
71
-
-
84873508485
-
Search for Majorana Fermions in Superconductors
-
C.W. J. Beenakker, Search for Majorana Fermions in Superconductors, Annu. Rev. Condens. Matter Phys. 4, 113 (2013).
-
(2013)
Annu. Rev. Condens. Matter Phys.
, vol.4
, pp. 113
-
-
Beenakker, C.W.J.1
-
72
-
-
84863528622
-
New Directions in the Pursuit of Majorana Fermions in Solid State Systems
-
076501
-
J. Alicea, New Directions in the Pursuit of Majorana Fermions in Solid State Systems, Rep. Prog. Phys. 75, 076501 (2012).
-
(2012)
Rep. Prog. Phys.
, vol.75
-
-
Alicea, J.1
-
73
-
-
84861435254
-
Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices
-
V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, and L. P. Kouwenhoven, Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices, Science 336, 1003 (2012).
-
(2012)
Science
, vol.336
, pp. 1003
-
-
Mourik, V.1
Zuo, K.2
Frolov, S.M.3
Plissard, S.R.4
Bakkers, E.P.A.M.5
Kouwenhoven, L.P.6
-
74
-
-
84870624180
-
Zero-Bias Peaks and Splitting in an Al-InAs Nanowire Topological Superconductor as a Signature of Majorana Fermions
-
A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and H. Shtrikman, Zero-Bias Peaks and Splitting in an Al-InAs Nanowire Topological Superconductor as a Signature of Majorana Fermions, Nat. Phys. 8, 887 (2012).
-
(2012)
Nat. Phys.
, vol.8
, pp. 887
-
-
Das, A.1
Ronen, Y.2
Most, Y.3
Oreg, Y.4
Heiblum, M.5
Shtrikman, H.6
-
75
-
-
84868706104
-
The Fractional a.c. Josephson Effect in a Semiconductor-Superconductor Nanowire as a Signature of Majorana Particles
-
L. P. Rokhinson, X. Liu, and J. K. Furdyna, The Fractional a.c. Josephson Effect in a Semiconductor-Superconductor Nanowire as a Signature of Majorana Particles, Nat. Phys. 8, 795 (2012).
-
(2012)
Nat. Phys.
, vol.8
, pp. 795
-
-
Rokhinson, L.P.1
Liu, X.2
Furdyna, J.K.3
-
76
-
-
84870902104
-
Anomalous Zero-Bias Conductance Peak in a Nb-InSb Nanowire-Nb Hybrid Device
-
M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson, P. Caroff, and H. Q. Xu, Anomalous Zero-Bias Conductance Peak in a Nb-InSb Nanowire-Nb Hybrid Device, Nano Lett. 12, 6414 (2012).
-
(2012)
Nano Lett.
, vol.12
, pp. 6414
-
-
Deng, M.T.1
Yu, C.L.2
Huang, G.Y.3
Larsson, M.4
Caroff, P.5
Xu, H.Q.6
-
77
-
-
84875467477
-
Anomalous Modulation of a Zero-Bias Peak in a Hybrid Nanowire-Superconductor Device
-
126406
-
A. D. K. Finck, D. J. Van Harlingen, P. K. Mohseni, K. Jung, and X. Li, Anomalous Modulation of a Zero-Bias Peak in a Hybrid Nanowire-Superconductor Device, Phys. Rev. Lett. 110, 126406 (2013).
-
(2013)
Phys. Rev. Lett.
, vol.110
-
-
Finck, A.D.K.1
Van Harlingen, D.J.2
Mohseni, P.K.3
Jung, K.4
Li, X.5
-
78
-
-
84879022519
-
Superconductor-Nanowire Devices from Tunneling to the Multichannel Regime: Zero-Bias Oscillations and Magnetoconductance Crossover
-
241401
-
H. O. H. Churchill, V. Fatemi, K. Grove-Rasmussen, M. T. Deng, P. Caroff, H. Q. Xu, and C. M. Marcus, Superconductor-Nanowire Devices from Tunneling to the Multichannel Regime: Zero-Bias Oscillations and Magnetoconductance Crossover, Phys. Rev. B 87, 241401 (2013).
-
(2013)
Phys. Rev. B
, vol.87
-
-
Churchill, H.O.H.1
Fatemi, V.2
Grove-Rasmussen, K.3
Deng, M.T.4
Caroff, P.5
Xu, H.Q.6
Marcus, C.M.7
-
79
-
-
84874544630
-
Exotic Non-Abelian Anyons from Conventional Fractional Quantum Hall States
-
D. J. Clarke, J. Alicea, and K. Shtengel, Exotic Non-Abelian Anyons from Conventional Fractional Quantum Hall States, Nat. Commun. 4, 1348 (2013).
-
(2013)
Nat. Commun.
, vol.4
, pp. 1348
-
-
Clarke, D.J.1
Alicea, J.2
Shtengel, K.3
-
80
-
-
84870195746
-
Fractionalizing Majorana Fermions: Non-Abelian Statistics on the Edges of Abelian Quantum Hall States
-
041002
-
N. H. Lindner, E. Berg, G. Refael, and A. Stern, Fractionalizing Majorana Fermions: Non-Abelian Statistics on the Edges of Abelian Quantum Hall States, Phys. Rev. X 2, 041002 (2012).
-
(2012)
Phys. Rev. X
, vol.2
-
-
Lindner, N.H.1
Berg, E.2
Refael, G.3
Stern, A.4
-
81
-
-
84870189852
-
Superconducting Proximity Effect on the Edge of Fractional Topological Insulators
-
195126
-
M. Cheng, Superconducting Proximity Effect on the Edge of Fractional Topological Insulators, Phys. Rev. B 86, 195126 (2012).
-
(2012)
Phys. Rev. B
, vol.86
-
-
Cheng, M.1
-
82
-
-
84873024229
-
Fractional Topological Superconductor with Fractionalized Majorana Fermions
-
035132
-
A. Vaezi, Fractional Topological Superconductor with Fractionalized Majorana Fermions, Phys. Rev. B 87, 035132 (2013).
-
(2013)
Phys. Rev. B
, vol.87
-
-
Vaezi, A.1
-
84
-
-
84874720241
-
Topological Quantum Computation-From Basic Concepts to First Experiments
-
A. Stern and N. H. Lindner, Topological Quantum Computation-From Basic Concepts to First Experiments, Science 339, 1179 (2013).
-
(2013)
Science
, vol.339
, pp. 1179
-
-
Stern, A.1
Lindner, N.H.2
-
85
-
-
84867787618
-
Topological Nematic States and Non-Abelian Lattice Dislocations
-
031013
-
M. Barkeshli and X.-L. Qi, Topological Nematic States and Non-Abelian Lattice Dislocations, Phys. Rev. X 2, 031013 (2012).
-
(2012)
Phys. Rev. X
, vol.2
-
-
Barkeshli, M.1
Qi, X.-L.2
-
87
-
-
84871245576
-
Parafermionic Edge Zero Modes in Zn-Invariant Spin Chains
-
P11020.
-
P. Fendley, Parafermionic Edge Zero Modes in Zn-Invariant Spin Chains, J. Stat. Mech. (2012) P11020.
-
(2012)
J. Stat. Mech.
-
-
Fendley, P.1
-
88
-
-
85173589242
-
-
Some references refer to these generalizations as parafermion zero modes. We intentionally avoid this nomenclature here to avoid confusion with the rather different (although related) parafermions that appear in conformal field theory, particularly since both contexts frequently arise in this paper.
-
Some references refer to these generalizations as parafermion zero modes. We intentionally avoid this nomenclature here to avoid confusion with the rather different (although related) parafermions that appear in conformal field theory, particularly since both contexts frequently arise in this paper.
-
-
-
-
89
-
-
84876257056
-
Metaplectic Anyons, Majorana Zero Modes, and Their Computational Power
-
165421
-
M. B. Hastings, C. Nayak, and Z. Wang, Metaplectic Anyons, Majorana Zero Modes, and Their Computational Power, Phys. Rev. B 87, 165421 (2013).
-
(2013)
Phys. Rev. B
, vol.87
-
-
Hastings, M.B.1
Nayak, C.2
Wang, Z.3
-
90
-
-
68849099788
-
Collective States of Interacting Anyons, Edge States, and the Nucleation of Topological Liquids
-
070401
-
C. Gils, E. Ardonne, S. Trebst, A.W.W. Ludwig, M. Troyer, and Z. Wang, Collective States of Interacting Anyons, Edge States, and the Nucleation of Topological Liquids, Phys. Rev. Lett. 103, 070401 (2009).
-
(2009)
Phys. Rev. Lett.
, vol.103
-
-
Gils, C.1
Ardonne, E.2
Trebst, S.3
Ludwig, A.W.W.4
Troyer, M.5
Wang, Z.6
-
91
-
-
79955422769
-
Two-Dimensional Quantum Liquids from Interacting Non-Abelian Anyons
-
045014
-
A.W.W. Ludwig, D. Poilblanc, S. Trebst, and M. Troyer, Two-Dimensional Quantum Liquids from Interacting Non-Abelian Anyons, New J. Phys. 13, 045014 (2011).
-
(2011)
New J. Phys.
, vol.13
-
-
Ludwig, A.W.W.1
Poilblanc, D.2
Trebst, S.3
Troyer, M.4
-
92
-
-
78649697198
-
Chiral Topological Superconductor from the Quantum Hall State
-
184516
-
X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Chiral Topological Superconductor from the Quantum Hall State, Phys. Rev. B 82, 184516 (2010).
-
(2010)
Phys. Rev. B
, vol.82
-
-
Qi, X.-L.1
Hughes, T.L.2
Zhang, S.-C.3
-
93
-
-
79961115511
-
Theory of Edge States in a Quantum Anomalous Hall Insulator/ Spin-Singlet s-Wave Superconductor Hybrid System
-
224524
-
A. Ii, K. Yada, M. Sato, and Y. Tanaka, Theory of Edge States in a Quantum Anomalous Hall Insulator/ Spin-Singlet s-Wave Superconductor Hybrid System, Phys. Rev. B 83, 224524 (2011).
-
(2011)
Phys. Rev. B
, vol.83
-
-
Ii, A.1
Yada, K.2
Sato, M.3
Tanaka, Y.4
-
94
-
-
0001328726
-
Spin Polarization of Composite Fermions: Measurements of the Fermi Energy
-
I. V. Kukushkin, K. von Klitzing, and K. Eberl, Spin Polarization of Composite Fermions: Measurements of the Fermi Energy, Phys. Rev. Lett. 82, 3665 (1999).
-
(1999)
Phys. Rev. Lett.
, vol.82
, pp. 3665
-
-
Kukushkin, I.V.1
von Klitzing, K.2
Eberl, K.3
-
95
-
-
85173597119
-
-
3, so obtaining a similar phase is quite nontrivial.
-
3, so obtaining a similar phase is quite nontrivial.
-
-
-
-
96
-
-
84877916321
-
Topological Phases in Two-Dimensional Arrays of Parafermionic Zero Modes
-
195422
-
M. Burrello, B. van Heck, and E. Cobanera, Topological Phases in Two-Dimensional Arrays of Parafermionic Zero Modes, Phys. Rev. B 87, 195422 (2013).
-
(2013)
Phys. Rev. B
, vol.87
-
-
Burrello, M.1
van Heck, B.2
Cobanera, E.3
-
97
-
-
84897584160
-
From Luttinger Liquid to Non-Abelian Quantum Hall States
-
085101
-
J. C. Y. Teo and C. L. Kane, From Luttinger Liquid to Non-Abelian Quantum Hall States, Phys. Rev. B 89, 085101 (2014).
-
(2014)
Phys. Rev. B
, vol.89
-
-
Teo, J.C.Y.1
Kane, C.L.2
-
98
-
-
77953705468
-
Resources Required for Topological Quantum Factoring
-
062317
-
M. Baraban, N. E. Bonesteel, and S. H. Simon, Resources Required for Topological Quantum Factoring, Phys. Rev. A 81, 062317 (2010).
-
(2010)
Phys. Rev. A
, vol.81
-
-
Baraban, M.1
Bonesteel, N.E.2
Simon, S.H.3
-
99
-
-
33645757945
-
Universal Quantum Computation with the ν = 5/2 Fractional Quantum Hall State
-
042313
-
S. Bravyi, Universal Quantum Computation with the ν = 5/2 Fractional Quantum Hall State, Phys. Rev. A 73, 042313 (2006).
-
(2006)
Phys. Rev. A
, vol.73
-
-
Bravyi, S.1
-
100
-
-
85173593566
-
-
This result is dependent on the specific protocol, and the precise numbers will vary [173].
-
This result is dependent on the specific protocol, and the precise numbers will vary [173].
-
-
-
-
101
-
-
84866411745
-
Topological Indices, Defects, and Majorana Fermions in Chiral Superconductors
-
100504
-
D. Asahi and N. Nagaosa, Topological Indices, Defects, and Majorana Fermions in Chiral Superconductors, Phys. Rev. B 86, 100504 (2012).
-
(2012)
Phys. Rev. B
, vol.86
-
-
Asahi, D.1
Nagaosa, N.2
-
102
-
-
85173597188
-
-
If the quantum Hall edge states are completely spin polarized, then the superconductor should have a triplet component in order to achieve the desired proximity effect.
-
If the quantum Hall edge states are completely spin polarized, then the superconductor should have a triplet component in order to achieve the desired proximity effect.
-
-
-
-
103
-
-
84863658963
-
Strong Side of Weak Topological Insulators
-
045102
-
Z. Ringel, Y. E. Kraus, and A. Stern, Strong Side of Weak Topological Insulators, Phys. Rev. B 86, 045102 (2012).
-
(2012)
Phys. Rev. B
, vol.86
-
-
Ringel, Z.1
Kraus, Y.E.2
Stern, A.3
-
104
-
-
84863393684
-
Quantum Transport and Two-Parameter Scaling at the Surface of a Weak Topological Insulator
-
076804
-
R. S. K. Mong, J. H. Bardarson, and J. E. Moore, Quantum Transport and Two-Parameter Scaling at the Surface of a Weak Topological Insulator, Phys. Rev. Lett. 108, 076804 (2012).
-
(2012)
Phys. Rev. Lett.
, vol.108
-
-
Mong, R.S.K.1
Bardarson, J.H.2
Moore, J.E.3
-
105
-
-
84871311696
-
Topology, Delocalization via Average Symmetry and the Symplectic Anderson Transition
-
246605
-
L. Fu and C. L. Kane, Topology, Delocalization via Average Symmetry and the Symplectic Anderson Transition, Phys. Rev. Lett. 109, 246605 (2012).
-
(2012)
Phys. Rev. Lett.
, vol.109
-
-
Fu, L.1
Kane, C.L.2
-
107
-
-
85173592678
-
-
This state is also sometimes referred to as a "weak 2D topological superconductor, " not to be confused with the weak pairing phase of a spinless 2D p + ip superconductor.
-
This state is also sometimes referred to as a "weak 2D topological superconductor, " not to be confused with the weak pairing phase of a spinless 2D p + ip superconductor.
-
-
-
-
108
-
-
85173595167
-
-
L hopping terms in Eq. (8) must be complex conjugates, as written.
-
L hopping terms in Eq. (8) must be complex conjugates, as written.
-
-
-
-
109
-
-
85173591010
-
-
R/L(y) involves both γR(y) and γL(y), in contrast to the uniform-trench system, so that more terms arise under projection.
-
R/L(y) involves both γR(y) and γL(y), in contrast to the uniform-trench system, so that more terms arise under projection.
-
-
-
-
110
-
-
0000660863
-
Relations between the "Percolation" and "Colouring" Problem and Other Graph-Theoretical Problems Associated with Regular Planar Lattices: Some Exact Results for the "Percolation" Problem
-
H. N. V. Temperley and E. H. Lieb, Relations between the "Percolation" and "Colouring" Problem and Other Graph-Theoretical Problems Associated with Regular Planar Lattices: Some Exact Results for the "Percolation" Problem, Proc. R. Soc. A 322, 251 (1971).
-
(1971)
Proc. R. Soc. A
, vol.322
, pp. 251
-
-
Temperley, H.N.V.1
Lieb, E.H.2
-
111
-
-
0000349609
-
Nonlocal (Parafermion) Currents in Two-Dimensional Conformal Quantum Field Theory and Self-Dual Critical Points in ZNSymmetric Statistical Systems
-
[Sov. Phys. JETP 62, 215 (1985)].
-
A. B. Zamolodchikov and V. Fateev, Nonlocal (Parafermion) Currents in Two-Dimensional Conformal Quantum Field Theory and Self-Dual Critical Points in ZNSymmetric Statistical Systems, Zh. Eksp. Teor. Fiz. 89, 380 (1985) [Sov. Phys. JETP 62, 215 (1985)].
-
(1985)
Zh. Eksp. Teor. Fiz.
, vol.89
, pp. 380
-
-
Zamolodchikov, A.B.1
Fateev, V.2
-
112
-
-
0003063094
-
Disorder Variables and Parafermions in Two-Dimensional Statistical Mechanics
-
E. Fradkin and L. P. Kadanoff, Disorder Variables and Parafermions in Two-Dimensional Statistical Mechanics, Nucl. Phys. B170, 1 (1980).
-
(1980)
Nucl. Phys.
, vol.B170
, pp. 1
-
-
Fradkin, E.1
Kadanoff, L.P.2
-
113
-
-
9744223160
-
Conformal Quantum Field Theory Models in Two Dimensions Having Z3 Symmetry
-
V. A. Fateev and A. B. Zamolodchikov, Conformal Quantum Field Theory Models in Two Dimensions Having Z3 Symmetry, Nucl. Phys. B280, 644 (1987).
-
(1987)
Nucl. Phys.
, vol.B280
, pp. 644
-
-
Fateev, V.A.1
Zamolodchikov, A.B.2
-
114
-
-
0001247722
-
Integrable Deformations in ZN Symmetrical Models of Conformal Quantum Field Theory
-
V. A. Fateev, Integrable Deformations in ZN Symmetrical Models of Conformal Quantum Field Theory, Int. J. Mod. Phys. A 06, 2109 (1991).
-
(1991)
Int. J. Mod. Phys. A
, vol.6
, pp. 2109
-
-
Fateev, V.A.1
-
115
-
-
0002834724
-
Integrable Perturbations of ZN Parafermion Models and O(3) Sigma Model
-
V. A. Fateev and A. B. Zamolodchikov, Integrable Perturbations of ZN Parafermion Models and O(3) Sigma Model, Phys. Lett. B 271, 91 (1991).
-
(1991)
Phys. Lett. B
, vol.271
, pp. 91
-
-
Fateev, V.A.1
Zamolodchikov, A.B.2
-
116
-
-
84900344189
-
-
(to be published).
-
R. S. K. Mong, D. J. Clarke, J. Alicea, N. H. Lindner, and P. Fendley, Parafermionic Field Theory on the Lattice (to be published).
-
Parafermionic Field Theory on the Lattice
-
-
Mong, R.S.K.1
Clarke, D.J.2
Alicea, J.3
Lindner, N.H.4
Fendley, P.5
-
117
-
-
4243755536
-
Randomness at the Edge: Theory of Quantum Hall Transport at Filling ν = 2/3
-
C. L. Kane, M. P. A. Fisher, and J. Polchinski, Randomness at the Edge: Theory of Quantum Hall Transport at Filling ν = 2/3, Phys. Rev. Lett. 72, 4129 (1994).
-
(1994)
Phys. Rev. Lett.
, vol.72
, pp. 4129
-
-
Kane, C.L.1
Fisher, M.P.A.2
Polchinski, J.3
-
119
-
-
0001191058
-
Impurity Scattering and Transport of Fractional Quantum Hall Edge States
-
C. L. Kane and M. P. A. Fisher, Impurity Scattering and Transport of Fractional Quantum Hall Edge States, Phys. Rev. B 51, 13 449 (1995).
-
(1995)
Phys. Rev. B
, vol.51
, Issue.13
, pp. 449
-
-
Kane, C.L.1
Fisher, M.P.A.2
-
120
-
-
85173596771
-
-
By itself this fact does not necessarily imply that the phases generated by the tunneling and pairing terms are distinct, but it turns out that this is the case here.
-
By itself this fact does not necessarily imply that the phases generated by the tunneling and pairing terms are distinct, but it turns out that this is the case here.
-
-
-
-
123
-
-
85173589770
-
-
A discussion of a finite, closed ring of alternating domains can be found in Ref. [80].
-
A discussion of a finite, closed ring of alternating domains can be found in Ref. [80].
-
-
-
-
124
-
-
85173592320
-
-
Note that M̂ does not produce additional ground-state degeneracy since there is no gauge-invariant quantity one can construct from this operator.
-
Note that M̂ does not produce additional ground-state degeneracy since there is no gauge-invariant quantity one can construct from this operator.
-
-
-
-
125
-
-
52649134413
-
Splitting of a Cooper Pair by a Pair of Majorana Bound States
-
120403
-
J. Nilsson, A. R. Akhmerov, and C.W. J. Beenakker, Splitting of a Cooper Pair by a Pair of Majorana Bound States, Phys. Rev. Lett. 101, 120403 (2008).
-
(2008)
Phys. Rev. Lett.
, vol.101
-
-
Nilsson, J.1
Akhmerov, A.R.2
Beenakker, C.W.J.3
-
126
-
-
84867471085
-
Fractional Spin Josephson Effect and Electrically Controlled Magnetization in Quantum Spin Hall Edges
-
165110
-
Q. Meng, V. Shivamoggi, T. L. Hughes, M. J. Gilbert, and S. Vishveshwara, Fractional Spin Josephson Effect and Electrically Controlled Magnetization in Quantum Spin Hall Edges, Phys. Rev. B 86, 165110 (2012).
-
(2012)
Phys. Rev. B
, vol.86
-
-
Meng, Q.1
Shivamoggi, V.2
Hughes, T.L.3
Gilbert, M.J.4
Vishveshwara, S.5
-
127
-
-
84874524672
-
Magneto-Josephson Effects in Junctions with Majorana Bound States
-
075438
-
L. Jiang, D. Pekker, J. Alicea, G. Refael, Y. Oreg, A. Brataas, and F. von Oppen, Magneto-Josephson Effects in Junctions with Majorana Bound States, Phys. Rev. B 87, 075438 (2013).
-
(2013)
Phys. Rev. B
, vol.87
-
-
Jiang, L.1
Pekker, D.2
Alicea, J.3
Refael, G.4
Oreg, Y.5
Brataas, A.6
von Oppen, F.7
-
128
-
-
84887475951
-
Engineering and Manipulating Topological Qubits in 1D Quantum Wires
-
P. Kotetes, G. Schön, and A. Shnirman, Engineering and Manipulating Topological Qubits in 1D Quantum Wires, J. Korean Phys. Soc. 62, 1558 (2013).
-
(2013)
J. Korean Phys. Soc.
, vol.62
, pp. 1558
-
-
Kotetes, P.1
Schön, G.2
Shnirman, A.3
-
129
-
-
85173597892
-
-
Tunneling of e/3 (rather than 2e/3) charge can also, in principle, arise. However, those processes have no effect in the low-energy subspace in which we are working since such tunneling operators project trivially.
-
Tunneling of e/3 (rather than 2e/3) charge can also, in principle, arise. However, those processes have no effect in the low-energy subspace in which we are working since such tunneling operators project trivially.
-
-
-
-
130
-
-
33744718491
-
Perturbative Evaluation of the Conformal Anomaly at New Critical Points with Applications to Random Systems
-
A.W.W. Ludwig and J. L. Cardy, Perturbative Evaluation of the Conformal Anomaly at New Critical Points with Applications to Random Systems, Nucl. Phys. B285, 687 (1987).
-
(1987)
Nucl. Phys.
, vol.B285
, pp. 687
-
-
Ludwig, A.W.W.1
Cardy, J.L.2
-
131
-
-
0001247719
-
Exact S-Matrices for f1;2-Perturbated Minimal Models of Conformal Field Theory
-
F. A. Smirnov, Exact S-Matrices for f1;2-Perturbated Minimal Models of Conformal Field Theory, Int. J. Mod. Phys. A 06, 1407 (1991).
-
(1991)
Int. J. Mod. Phys. A
, vol.6
, pp. 1407
-
-
Smirnov, F.A.1
-
132
-
-
0001645406
-
Hidden Quantum Group Symmetry and Integrable Perturbations of Conformal Field Theories
-
N. Reshetikhin and F. Smirnov, Hidden Quantum Group Symmetry and Integrable Perturbations of Conformal Field Theories, Commun. Math. Phys. 131, 157 (1990).
-
(1990)
Commun. Math. Phys.
, vol.131
, pp. 157
-
-
Reshetikhin, N.1
Smirnov, F.2
-
133
-
-
33644941237
-
Realizing Non-Abelian Statistics
-
024412
-
P. Fendley and E. Fradkin, Realizing Non-Abelian Statistics, Phys. Rev. B 72, 024412 (2005).
-
(2005)
Phys. Rev. B
, vol.72
-
-
Fendley, P.1
Fradkin, E.2
-
134
-
-
0000796473
-
Truncated Conformal Space Approach to Scaling Lee-Yang Model
-
V. P. Yurov and A. B. Zamolodchikov, Truncated Conformal Space Approach to Scaling Lee-Yang Model, Int. J. Mod. Phys. A 05, 3221 (1990).
-
(1990)
Int. J. Mod. Phys. A
, vol.5
, pp. 3221
-
-
Yurov, V.P.1
Zamolodchikov, A.B.2
-
135
-
-
0000864481
-
Truncated-Fermionic-Space Approach to the Critical 2D Ising Model with Magnetic Field
-
V. P. Yurov and A. B. Zamolodchikov, Truncated-Fermionic-Space Approach to the Critical 2D Ising Model with Magnetic Field, Int. J. Mod. Phys. A 06, 4557 (1991).
-
(1991)
Int. J. Mod. Phys. A
, vol.6
, pp. 4557
-
-
Yurov, V.P.1
Zamolodchikov, A.B.2
-
136
-
-
0001457919
-
The Scaling Region of the Tricritical Ising Model in Two Dimensions
-
M. Lassig, G. Mussardo, and J. L. Cardy, The Scaling Region of the Tricritical Ising Model in Two Dimensions, Nucl. Phys. B348, 591 (1991).
-
(1991)
Nucl. Phys.
, vol.B348
, pp. 591
-
-
Lassig, M.1
Mussardo, G.2
Cardy, J.L.3
-
138
-
-
85173590367
-
-
† because the ladder Hamiltonian Eq. (58) is written for two different chains. Reference [116] gives a detailed treatment of the perturbation and addresses some of the subtleties that are beyond the scope of this paper.
-
† because the ladder Hamiltonian Eq. (58) is written for two different chains. Reference [116] gives a detailed treatment of the perturbation and addresses some of the subtleties that are beyond the scope of this paper.
-
-
-
-
139
-
-
33744667096
-
Effect of Boundary Conditions on the Operator Content of Two-Dimensional Conformally Invariant Theories
-
J. L. Cardy, Effect of Boundary Conditions on the Operator Content of Two-Dimensional Conformally Invariant Theories, Nucl. Phys. B275, 200 (1986).
-
(1986)
Nucl. Phys.
, vol.B275
, pp. 200
-
-
Cardy, J.L.1
-
140
-
-
84863312083
-
Quasiparticle Statistics and Braiding from Ground-State Entanglement
-
235151
-
Y. Zhang, T. Grover, A. Turner, M. Oshikawa, and A. Vishwanath, Quasiparticle Statistics and Braiding from Ground-State Entanglement, Phys. Rev. B 85, 235151 (2012).
-
(2012)
Phys. Rev. B
, vol.85
-
-
Zhang, Y.1
Grover, T.2
Turner, A.3
Oshikawa, M.4
Vishwanath, A.5
-
141
-
-
33645151438
-
Topological Entanglement Entropy
-
110404
-
A. Kitaev and J. Preskill, Topological Entanglement Entropy, Phys. Rev. Lett. 96, 110404 (2006).
-
(2006)
Phys. Rev. Lett.
, vol.96
-
-
Kitaev, A.1
Preskill, J.2
-
142
-
-
33645161396
-
Detecting Topological Order in a Ground State Wave Function
-
110405
-
M. Levin and X.-G. Wen, Detecting Topological Order in a Ground State Wave Function, Phys. Rev. Lett. 96, 110405 (2006).
-
(2006)
Phys. Rev. Lett.
, vol.96
-
-
Levin, M.1
Wen, X.-G.2
-
143
-
-
47249103427
-
Topological Entanglement Entropy in Chern-Simons Theories and Quantum Hall Fluids
-
S. Dong, E. Fradkin, R. G. Leigh, and S. Nowling, Topological Entanglement Entropy in Chern-Simons Theories and Quantum Hall Fluids, J. High Energy Phys. 05 (2008) 016.
-
(2008)
J. High Energy Phys.
, vol.5
, pp. 016
-
-
Dong, S.1
Fradkin, E.2
Leigh, R.G.3
Nowling, S.4
-
144
-
-
26844535199
-
Rigorous Results on Valence-Bond Ground States in Antiferromagnets
-
I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Rigorous Results on Valence-Bond Ground States in Antiferromagnets, Phys. Rev. Lett. 59, 799 (1987).
-
(1987)
Phys. Rev. Lett.
, vol.59
, pp. 799
-
-
Affleck, I.1
Kennedy, T.2
Lieb, E.H.3
Tasaki, H.4
-
145
-
-
70350234930
-
On Classification of Modular Tensor Categories
-
E. Rowell, R. Stong, and Z. Wang, On Classification of Modular Tensor Categories, Commun. Math. Phys. 292, 343 (2009).
-
(2009)
Commun. Math. Phys.
, vol.292
, pp. 343
-
-
Rowell, E.1
Stong, R.2
Wang, Z.3
-
146
-
-
67649541403
-
A Short Introduction to Fibonacci Anyon Models
-
S. Trebst, M. Troyer, Z. Wang, and A.W.W. Ludwig, A Short Introduction to Fibonacci Anyon Models, Prog. Theor. Phys. Suppl. 176, 384 (2008).
-
(2008)
Prog. Theor. Phys. Suppl.
, vol.176
, pp. 384
-
-
Trebst, S.1
Troyer, M.2
Wang, Z.3
Ludwig, A.W.W.4
-
147
-
-
85173593676
-
-
The term "Fibonacci anyon" is often used for the e particle and for the phase that supports it; the meaning is usually clear from the context.
-
The term "Fibonacci anyon" is often used for the e particle and for the phase that supports it; the meaning is usually clear from the context.
-
-
-
-
148
-
-
0035998074
-
A Modular Functor Which is Universal for Quantum Computation
-
M. H. Freedman, M. J. Larsen, and Z. Wang, A Modular Functor Which is Universal for Quantum Computation, Commun. Math. Phys. 227, 605 (2002).
-
(2002)
Commun. Math. Phys.
, vol.227
, pp. 605
-
-
Freedman, M.H.1
Larsen, M.J.2
Wang, Z.3
-
149
-
-
0036019253
-
The Two-Eigenvalue Problem and Density of Jones Representation of Braid Groups
-
M. H. Freedman, M. J. Larsen, and Z. Wang, The Two-Eigenvalue Problem and Density of Jones Representation of Braid Groups, Commun. Math. Phys. 228, 177 (2002).
-
(2002)
Commun. Math. Phys.
, vol.228
, pp. 177
-
-
Freedman, M.H.1
Larsen, M.J.2
Wang, Z.3
-
150
-
-
42749105473
-
Edge Modes, Edge Currents, and Gauge Invariance in px+ipy Superfluids and Superconductors
-
184511
-
M. Stone and R. Roy, Edge Modes, Edge Currents, and Gauge Invariance in px+ipy Superfluids and Superconductors, Phys. Rev. B 69, 184511 (2004).
-
(2004)
Phys. Rev. B
, vol.69
-
-
Stone, M.1
Roy, R.2
-
151
-
-
33846444377
-
Edge States and Tunneling of Non-Abelian Quasiparticles in the ν = 5/2 Quantum Hall State and p + ip Superconductors
-
045317
-
P. Fendley, M. P. A. Fisher, and C. Nayak, Edge States and Tunneling of Non-Abelian Quasiparticles in the ν = 5/2 Quantum Hall State and p + ip Superconductors, Phys. Rev. B 75, 045317 (2007).
-
(2007)
Phys. Rev. B
, vol.75
-
-
Fendley, P.1
Fisher, M.P.A.2
Nayak, C.3
-
152
-
-
79961035160
-
Observing Majorana Bound States of Josephson Vortices in Topological Superconductors
-
E. Grosfeld and A. Stern, Observing Majorana Bound States of Josephson Vortices in Topological Superconductors, Proc. Natl. Acad. Sci. U.S.A. 108, 11 810 (2011).
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, Issue.11
, pp. 810
-
-
Grosfeld, E.1
Stern, A.2
-
153
-
-
85173599929
-
-
Superconductivity technically does not allow for continuous ramping of the flux, but this barrier can be easily avoided. For the purpose of this thought experiment, one can imagine temporarily snaking the flux so that it threads the ν = 2/3 regions but avoids passing through the trenches. Once a value of h/2e is reached, the flux can then be moved entirely within the cylinder.
-
Superconductivity technically does not allow for continuous ramping of the flux, but this barrier can be easily avoided. For the purpose of this thought experiment, one can imagine temporarily snaking the flux so that it threads the ν = 2/3 regions but avoids passing through the trenches. Once a value of h/2e is reached, the flux can then be moved entirely within the cylinder.
-
-
-
-
154
-
-
85173596747
-
-
In fact, modularity requires that the set of all anyons decomposes into pairs (A;Ae{open}), where the Fibonacci anyon completely factorizes within the fusion rules. That is, Ae × B ~ (A × B)e{open} and Ae{open} × Be{open} ~ (A × B)(1 + e{open}).
-
In fact, modularity requires that the set of all anyons decomposes into pairs (A;Ae{open}), where the Fibonacci anyon completely factorizes within the fusion rules. That is, Ae × B ~ (A × B)e{open} and Ae{open} × Be{open} ~ (A × B)(1 + e{open}).
-
-
-
-
155
-
-
0041554226
-
Infinite Additional Symmetries in Two-Dimensional Conformal Quantum Field Theory
-
A. B. Zamolodchikov, Infinite Additional Symmetries in Two-Dimensional Conformal Quantum Field Theory, Theor. Math. Phys. 65, 1205 (1985).
-
(1985)
Theor. Math. Phys.
, vol.65
, pp. 1205
-
-
Zamolodchikov, A.B.1
-
156
-
-
85173598969
-
-
2 symmetry transformations or, in other words, are related by operator product expansions with the currents in Eqs. (81). Physically, the fields differ by bosonic excitations at the edge and therefore correspond to the same bulk anyon.
-
2 symmetry transformations or, in other words, are related by operator product expansions with the currents in Eqs. (81). Physically, the fields differ by bosonic excitations at the edge and therefore correspond to the same bulk anyon.
-
-
-
-
157
-
-
85173597609
-
-
Both perturbations are allowed since charge is conserved only mod 2e in our system.
-
Both perturbations are allowed since charge is conserved only mod 2e in our system.
-
-
-
-
158
-
-
85173594072
-
-
Although we noted earlier that one cannot define an electron operator in the low-energy subspace spanned by the generalized Majorana operators, electrons can still, of course, be added at high energies anywhere in the system's bulk.
-
Although we noted earlier that one cannot define an electron operator in the low-energy subspace spanned by the generalized Majorana operators, electrons can still, of course, be added at high energies anywhere in the system's bulk.
-
-
-
-
159
-
-
85173593727
-
-
Ph.D. thesis, California Institute of Technology
-
P. Bonderson, Ph.D. thesis, California Institute of Technology, 2007.
-
(2007)
-
-
Bonderson, P.1
-
160
-
-
60349131584
-
Condensate-Induced Transitions between Topologically Ordered Phases
-
045316
-
F. A. Bais and J. K. Slingerland, Condensate-Induced Transitions between Topologically Ordered Phases, Phys. Rev. B 79, 045316 (2009).
-
(2009)
Phys. Rev. B
, vol.79
-
-
Bais, F.A.1
Slingerland, J.K.2
-
161
-
-
85173599430
-
-
Bais and Slingerland consider a more general case of "bosons" with d > 1, although we will not need to consider this more complex situation here.
-
Bais and Slingerland consider a more general case of "bosons" with d > 1, although we will not need to consider this more complex situation here.
-
-
-
-
162
-
-
85173591258
-
-
Vortex condensation can actually generate new quasiparticles, depending on the precise structure of the condensate; for interesting recent examples, see Refs. [174-177].
-
Vortex condensation can actually generate new quasiparticles, depending on the precise structure of the condensate; for interesting recent examples, see Refs. [174-177].
-
-
-
-
163
-
-
0037120191
-
Criticality in Self-Dual Sine-Gordon Models
-
P. Lecheminant, A. O. Gogolin, and A. A. Nersesyan, Criticality in Self-Dual Sine-Gordon Models, Nucl. Phys. B639, 502 (2002).
-
(2002)
Nucl. Phys.
, vol.B639
, pp. 502
-
-
Lecheminant, P.1
Gogolin, A.O.2
Nersesyan, A.A.3
-
164
-
-
85173591544
-
-
We use rescaled fields compared to Ref. [163] to highlight the relationship with our ν = 2/3 problem.
-
We use rescaled fields compared to Ref. [163] to highlight the relationship with our ν = 2/3 problem.
-
-
-
-
165
-
-
15744363524
-
String-Net Condensation: Physical Mechanism for Topological Phases
-
045110
-
M. A. Levin and X.-G. Wen, String-Net Condensation: Physical Mechanism for Topological Phases, Phys. Rev. B 71, 045110 (2005).
-
(2005)
Phys. Rev. B
, vol.71
-
-
Levin, M.A.1
Wen, X.-G.2
-
166
-
-
62549090966
-
From String Nets to Non-Abelions
-
L. Fidkowski, M. Freedman, C. Nayak, K. Walker, and Z. Wang, From String Nets to Non-Abelions, Commun. Math. Phys. 287, 805 (2009).
-
(2009)
Commun. Math. Phys.
, vol.287
, pp. 805
-
-
Fidkowski, L.1
Freedman, M.2
Nayak, C.3
Walker, K.4
Wang, Z.5
-
167
-
-
84879676127
-
Fibonacci Topological Order from Quantum Nets
-
260408
-
P. Fendley, S. V. Isakov, and M. Troyer, Fibonacci Topological Order from Quantum Nets, Phys. Rev. Lett. 110, 260408 (2013).
-
(2013)
Phys. Rev. Lett.
, vol.110
-
-
Fendley, P.1
Isakov, S.V.2
Troyer, M.3
-
169
-
-
33847678513
-
Bipolar Supercurrent in Graphene
-
H. B. Heersche, P. Jarillo-Herrero, J. B. Oostinga, L. M. K. Vandersypen, and A. F. Morpurgo, Bipolar Supercurrent in Graphene, Nature (London) 446, 56 (2007).
-
(2007)
Nature (London)
, vol.446
, pp. 56
-
-
Heersche, H.B.1
Jarillo-Herrero, P.2
Oostinga, J.B.3
Vandersypen, L.M.K.4
Morpurgo, A.F.5
-
170
-
-
43549127317
-
Josephson Current and Multiple Andreev Reflections in Graphene SNS Junctions
-
184507
-
X. Du, I. Skachko, and E. Y. Andrei, Josephson Current and Multiple Andreev Reflections in Graphene SNS Junctions, Phys. Rev. B 77, 184507 (2008).
-
(2008)
Phys. Rev. B
, vol.77
-
-
Du, X.1
Skachko, I.2
Andrei, E.Y.3
-
171
-
-
66349086996
-
Tuning the Proximity Effect in a Superconductor-Graphene-Superconductor Junction
-
165436
-
C. Ojeda-Aristizabal, M. Ferrier, S. Guéron, and H. Bouchiat, Tuning the Proximity Effect in a Superconductor-Graphene-Superconductor Junction, Phys. Rev. B 79, 165436 (2009).
-
(2009)
Phys. Rev. B
, vol.79
-
-
Ojeda-Aristizabal, C.1
Ferrier, M.2
Guéron, S.3
Bouchiat, H.4
-
172
-
-
66749119012
-
Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils
-
X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils, Science 324, 1312 (2009).
-
(2009)
Science
, vol.324
, pp. 1312
-
-
Li, X.1
Cai, W.2
An, J.3
Kim, S.4
Nah, J.5
Yang, D.6
Piner, R.7
Velamakanni, A.8
Jung, I.9
Tutuc, E.10
Banerjee, S.K.11
Colombo, L.12
Ruoff, R.S.13
-
173
-
-
85173590739
-
-
(private communication).
-
K. Svore (private communication).
-
-
-
Svore, K.1
-
174
-
-
84885112111
-
A Time-Reversal Invariant Topological Phase at the Surface of a 3D Topological Insulator
-
P09016.
-
P. Bonderson, C. Nayak, and X.-L. Qi, A Time-Reversal Invariant Topological Phase at the Surface of a 3D Topological Insulator, J. Stat. Mech. (2013) P09016.
-
(2013)
J. Stat. Mech.
-
-
Bonderson, P.1
Nayak, C.2
Qi, X.-L.3
|