-
2
-
-
52249107842
-
-
RMPHAT 0034-6861 10.1103/RevModPhys.80.1083
-
C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. D. Sarma, Rev. Mod. Phys. RMPHAT 0034-6861 10.1103/RevModPhys.80.1083 80, 1083 (2008).
-
(2008)
Rev. Mod. Phys.
, vol.80
, pp. 1083
-
-
Nayak, C.1
Simon, S.H.2
Stern, A.3
Freedman, M.4
Sarma, S.D.5
-
3
-
-
80054934761
-
-
RMPHAT 0034-6861 10.1103/RevModPhys.83.1057
-
X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. RMPHAT 0034-6861 10.1103/RevModPhys.83.1057 83, 1057 (2011).
-
(2011)
Rev. Mod. Phys.
, vol.83
, pp. 1057
-
-
Qi, X.-L.1
Zhang, S.-C.2
-
4
-
-
78349239882
-
-
RMPHAT 0034-6861 10.1103/RevModPhys.82.3045
-
M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. RMPHAT 0034-6861 10.1103/RevModPhys.82.3045 82, 3045 (2010).
-
(2010)
Rev. Mod. Phys.
, vol.82
, pp. 3045
-
-
Hasan, M.Z.1
Kane, C.L.2
-
5
-
-
0000049832
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.61.10267
-
N. Read and D. Green, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.61. 10267 61, 10267 (2000).
-
(2000)
Phys. Rev. B
, vol.61
, pp. 10267
-
-
Read, N.1
Green, D.2
-
6
-
-
84863528622
-
-
RPPHAG 0034-4885 10.1088/0034-4885/75/7/076501
-
J. Alicea, Rep. Prog. Phys. RPPHAG 0034-4885 10.1088/0034-4885/75/7/ 076501 75, 076501 (2012).
-
(2012)
Rep. Prog. Phys.
, vol.75
, pp. 076501
-
-
Alicea, J.1
-
7
-
-
77954833403
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.105.030403
-
H. Bombin, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.105. 030403 105, 030403 (2010).
-
(2010)
Phys. Rev. Lett.
, vol.105
, pp. 030403
-
-
Bombin, H.1
-
8
-
-
84862844227
-
-
CMPHAY 0010-3616 10.1007/s00220-012-1500-5
-
A. Kitaev and L. Kong, Commun. Math. Phys. CMPHAY 0010-3616 10.1007/s00220-012-1500-5 313, 351 (2012).
-
(2012)
Commun. Math. Phys.
, vol.313
, pp. 351
-
-
Kitaev, A.1
Kong, L.2
-
9
-
-
84867787618
-
-
2160-3308 10.1103/PhysRevX.2.031013
-
M. Barkeshli and X.-L. Qi, Phys. Rev. X 2160-3308 10.1103/PhysRevX.2. 031013 2, 031013 (2012).
-
(2012)
Phys. Rev. X
, vol.2
, pp. 031013
-
-
Barkeshli, M.1
Qi, X.-L.2
-
10
-
-
84867767912
-
-
10.1103/PhysRevB.86.161107
-
Y.-Z. You and X.-G. Wen, Phys. Rev. B 10.1103/PhysRevB.86.161107 86, 161107 (R) (2012).
-
(2012)
Phys. Rev. B
, vol.86
, pp. 161107
-
-
You, Y.-Z.1
Wen, X.-G.2
-
11
-
-
84872919940
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.87.045106
-
Y.-Z. You, C.-M. Jian, and X.-G. Wen, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.87.045106 87, 045106 (2013).
-
(2013)
Phys. Rev. B
, vol.87
, pp. 045106
-
-
You, Y.-Z.1
Jian, C.-M.2
Wen, X.-G.3
-
12
-
-
75949127424
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.104.046401
-
J. C. Y. Teo and C. L. Kane, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.104.046401 104, 046401 (2010).
-
(2010)
Phys. Rev. Lett.
, vol.104
, pp. 046401
-
-
Teo, J.C.Y.1
Kane, C.L.2
-
13
-
-
79961064524
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.83.115132
-
M. Freedman, M. B. Hastings, C. Nayak, X.-L. Qi, K. Walker, and Z. Wang, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.83.115132 83, 115132 (2011).
-
(2011)
Phys. Rev. B
, vol.83
, pp. 115132
-
-
Freedman, M.1
Hastings, M.B.2
Nayak, C.3
Qi, X.-L.4
Walker, K.5
Wang, Z.6
-
14
-
-
80053902847
-
-
PRVDAQ 1550-7998 10.1103/PhysRevD.84.065019
-
J. McGreevy and B. Swingle, Phys. Rev. D PRVDAQ 1550-7998 10.1103/PhysRevD.84.065019 84, 065019 (2011).
-
(2011)
Phys. Rev. D
, vol.84
, pp. 065019
-
-
McGreevy, J.1
Swingle, B.2
-
15
-
-
84873207190
-
-
Projective representations of the permutation group were proposed for arbitrary dimensions in Ref., and later shown to be inconsistent with locality in Ref.. A different possibility, called projective ribbon permutation statistics, was found to occur 3+1 dimensions. In this paper, we instead concentrate on projective representations of the braid group, which has received little attention in the physics literature.
-
Projective representations of the permutation group were proposed for arbitrary dimensions in Ref., and later shown to be inconsistent with locality in Ref.. A different possibility, called projective ribbon permutation statistics, was found to occur 3 + 1 dimensions. In this paper, we instead concentrate on projective representations of the braid group, which has received little attention in the physics literature.
-
-
-
-
16
-
-
84873168546
-
-
arXiv: hep-th/9806228.
-
F. Wilczek, arXiv: hep-th/9806228.
-
-
-
Wilczek, F.1
-
17
-
-
0037329568
-
Non-Abelian braid statistics versus projective permutation statistics
-
DOI 10.1063/1.1530369
-
N. Read, J. Math. Phys. JMAPAQ 0022-2488 10.1063/1.1530369 44, 558 (2003). (Pubitemid 36229109)
-
(2003)
Journal of Mathematical Physics
, vol.44
, Issue.2
, pp. 558-563
-
-
Read, N.1
-
18
-
-
1842460762
-
-
NUPBBO 0550-3213 10.1016/0550-3213(91)90407-O
-
G. Moore and N. Read, Nucl. Phys. B NUPBBO 0550-3213 10.1016/0550- 3213(91)90407-O 360, 362 (1991).
-
(1991)
Nucl. Phys. B
, vol.360
, pp. 362
-
-
Moore, G.1
Read, N.2
-
19
-
-
0030592675
-
n-1-dimensional spinor braiding statistics in paired quantum hall states
-
DOI 10.1016/0550-3213(96)00430-0, PII S0550321396004300
-
C. Nayak and F. Wilczek, Nucl. Phys. B 10.1016/0550-3213(96)00430-0 479, 529 (1996). (Pubitemid 126161210)
-
(1996)
Nuclear Physics B
, vol.479
, Issue.3
, pp. 529-553
-
-
Nayak, C.1
Wilczek, F.2
-
20
-
-
79961111766
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.83.075303
-
P. Bonderson, V. Gurarie, and C. Nayak, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.83.075303 83, 075303 (2011).
-
(2011)
Phys. Rev. B
, vol.83
, pp. 075303
-
-
Bonderson, P.1
Gurarie, V.2
Nayak, C.3
-
21
-
-
84873123486
-
-
J. Preskill, http://www.theory.caltech.edu/∼preskill/ph219/ topological.ps (2004).
-
(2004)
-
-
Preskill, J.1
-
22
-
-
79960631219
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.106.236803
-
K. Sun, Z. Gu, H. Katsura, and S. Das Sarma, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.106.236803 106, 236803 (2011).
-
(2011)
Phys. Rev. Lett.
, vol.106
, pp. 236803
-
-
Sun, K.1
Gu, Z.2
Katsura, H.3
Das Sarma, S.4
-
23
-
-
79960640281
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.106.236804
-
T. Neupert, L. Santos, C. Chamon, and C. Mudry, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.106.236804 106, 236804 (2011).
-
(2011)
Phys. Rev. Lett.
, vol.106
, pp. 236804
-
-
Neupert, T.1
Santos, L.2
Chamon, C.3
Mudry, C.4
-
24
-
-
79960644022
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.106.236802
-
E. Tang, J.-W. Mei, and X.-G. Wen, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.106.236802 106, 236802 (2011).
-
(2011)
Phys. Rev. Lett.
, vol.106
, pp. 236802
-
-
Tang, E.1
Mei, J.-W.2
Wen, X.-G.3
-
25
-
-
79960324766
-
-
2041-1723 10.1038/ncomms1380
-
D. N. Sheng, Z.-C. Gu, K. Sun, and L. Sheng, Nat. Commun. 2041-1723 10.1038/ncomms1380 2, 389 (2011).
-
(2011)
Nat. Commun.
, vol.2
, pp. 389
-
-
Sheng, D.N.1
Gu, Z.-C.2
Sun, K.3
Sheng, L.4
-
26
-
-
84856184341
-
-
2160-3308 10.1103/PhysRevX.1.021014
-
N. Regnault and B. A. Bernevig, Phys. Rev. X 2160-3308 10.1103/PhysRevX.1.021014 1, 021014 (2011).
-
(2011)
Phys. Rev. X
, vol.1
, pp. 021014
-
-
Regnault, N.1
Bernevig, B.A.2
-
28
-
-
84870195746
-
-
10.1103/PhysRevX.2.041002
-
N. H. Lindner, E. Berg, G. Refael, and A. Stern, Phys. Rev. X 10.1103/PhysRevX.2.041002 2, 041002 (2012).
-
(2012)
Phys. Rev. X
, vol.2
, pp. 041002
-
-
Lindner, N.H.1
Berg, E.2
Refael, G.3
Stern, A.4
-
30
-
-
84870189852
-
-
10.1103/PhysRevB.86.195126
-
M. Cheng, Phys. Rev. B 10.1103/PhysRevB.86.195126 86, 195126 (2012).
-
(2012)
Phys. Rev. B
, vol.86
, pp. 195126
-
-
Cheng, M.1
-
31
-
-
84873112498
-
-
arXiv: 1204.6245.
-
A. Vaezi, arXiv: 1204.6245.
-
-
-
Vaezi, A.1
-
32
-
-
77954830894
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.81.045323
-
M. Barkeshli and X.-G. Wen, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.81.045323 81, 045323 (2010).
-
(2010)
Phys. Rev. B
, vol.81
, pp. 045323
-
-
Barkeshli, M.1
Wen, X.-G.2
-
33
-
-
66249133696
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.79.161408
-
L. Fu and C. L. Kane, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.79. 161408 79, 161408 (2009).
-
(2009)
Phys. Rev. B
, vol.79
, pp. 161408
-
-
Fu, L.1
Kane, C.L.2
-
34
-
-
84873128498
-
-
We would like to clarify that this name has a different meaning from the concept of geon in the general relativity literature, which refers to a certain type of gravitational electromagnetic soliton solution. However, we also note that the topological geon studied in the quantum gravity literature has some similarity to our genon, since both are related to manifold topology and the mapping class group.
-
We would like to clarify that this name has a different meaning from the concept of geon in the general relativity literature, which refers to a certain type of gravitational electromagnetic soliton solution. However, we also note that the topological geon studied in the quantum gravity literature has some similarity to our genon, since both are related to manifold topology and the mapping class group.
-
-
-
-
35
-
-
36149004849
-
-
PHRVAO 0031-899X 10.1103/PhysRev.97.511
-
J. A. Wheeler, Phys. Rev. PHRVAO 0031-899X 10.1103/PhysRev.97.511 97, 511 (1955).
-
(1955)
Phys. Rev.
, vol.97
, pp. 511
-
-
Wheeler, J.A.1
-
36
-
-
84873198582
-
-
APCPCS 0094-243X 10.1063/1.53264
-
R. D. Sorkin and S. Surya, AIP Conf. Proc. APCPCS 0094-243X 10.1063/1.53264 400, 505 (1997).
-
(1997)
AIP Conf. Proc.
, vol.400
, pp. 505
-
-
Sorkin, R.D.1
Surya, S.2
-
37
-
-
30444456387
-
Anyons in an exactly solved model and beyond
-
DOI 10.1016/j.aop.2005.10.005, PII S0003491605002381
-
A. Kitaev, Ann. Phys. APNYA6 0003-4916 10.1016/j.aop.2005.10.005 321, 2 (2006). (Pubitemid 43072824)
-
(2006)
Annals of Physics
, vol.321
, Issue.1
, pp. 2-111
-
-
Kitaev, A.1
-
39
-
-
33744908572
-
Towards universal topological quantum computation in the ν= 5 2 fractional quantum Hall state
-
DOI 10.1103/PhysRevB.73.245307
-
M. Freedman, C. Nayak, and K. Walker, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.73.245307 73, 245307 (2006). (Pubitemid 43849228)
-
(2006)
Physical Review B - Condensed Matter and Materials Physics
, vol.73
, Issue.24
, pp. 245307
-
-
Freedman, M.1
Nayak, C.2
Walker, K.3
-
40
-
-
84873166721
-
-
2 twist defects, we expect this can occur physically by proliferating double-defects.
-
2 twist defects, we expect this can occur physically by proliferating double-defects.
-
-
-
-
41
-
-
84865106388
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.86.085114
-
M. Barkeshli and X.-G. Wen, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.86.085114 86, 085114 (2012).
-
(2012)
Phys. Rev. B
, vol.86
, pp. 085114
-
-
Barkeshli, M.1
Wen, X.-G.2
-
42
-
-
80053613795
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.84.115121
-
M. Barkeshli and X.-G. Wen, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.84.115121 84, 115121 (2011).
-
(2011)
Phys. Rev. B
, vol.84
, pp. 115121
-
-
Barkeshli, M.1
Wen, X.-G.2
-
43
-
-
84873151786
-
-
i are only defined modulo π.
-
i are only defined modulo π.
-
-
-
-
46
-
-
84873167894
-
-
arXiv: 1004.2307.
-
A. Kapustin, arXiv: 1004.2307.
-
-
-
Kapustin, A.1
-
47
-
-
78651428675
-
-
NUPBBO 0550-3213 10.1016/j.nuclphysb.2010.12.017
-
A. Kapustin and N. Saulina, Nucl. Phys. B NUPBBO 0550-3213 10.1016/j.nuclphysb.2010.12.017 845, 393 (2011).
-
(2011)
Nucl. Phys. B
, vol.845
, pp. 393
-
-
Kapustin, A.1
Saulina, N.2
-
49
-
-
80052769383
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.107.126803
-
X.-L. Qi, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.107. 126803 107, 126803 (2011).
-
(2011)
Phys. Rev. Lett.
, vol.107
, pp. 126803
-
-
Qi, X.-L.1
-
50
-
-
84863230315
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.85.075116
-
Y.-L. Wu, B. A. Bernevig, and N. Regnault, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.85.075116 85, 075116 (2012).
-
(2012)
Phys. Rev. B
, vol.85
, pp. 075116
-
-
Wu, Y.-L.1
Bernevig, B.A.2
Regnault, N.3
-
51
-
-
84870931200
-
-
10.1103/PhysRevLett.109.246805
-
T. Scaffidi and G. Möller, Phys. Rev. Lett. 10.1103/PhysRevLett.109. 246805 109, 246805 (2012).
-
(2012)
Phys. Rev. Lett.
, vol.109
, pp. 246805
-
-
Scaffidi, T.1
Möller, G.2
-
52
-
-
84855374095
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.84.241103
-
F. Wang and Y. Ran, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.84. 241103 84, 241103 (2011).
-
(2011)
Phys. Rev. B
, vol.84
, pp. 241103
-
-
Wang, F.1
Ran, Y.2
-
53
-
-
84869009632
-
-
1098-0121 10.1103/PhysRevB.86.201101
-
Y.-F. Wang, H. Yao, C.-D. Gong, and D. N. Sheng, Phys. Rev. B 1098-0121 10.1103/PhysRevB.86.201101 86, 201101 (R) (2012).
-
(2012)
Phys. Rev. B
, vol.86
, pp. 201101
-
-
Wang, Y.-F.1
Yao, H.2
Gong, C.-D.3
Sheng, D.N.4
-
55
-
-
84873139543
-
-
To be more precise, the condition above is not in a gauge invariant form and we should require it to be satisfied in a certain gauge choice.
-
To be more precise, the condition above is not in a gauge invariant form and we should require it to be satisfied in a certain gauge choice.
-
-
-
-
56
-
-
0000145935
-
-
IJPBEV 0217-9792 10.1142/S0217979290000139
-
X. Wen, Int. J. Mod. Phys. B IJPBEV 0217-9792 10.1142/S0217979290000139 4, 239 (1990).
-
(1990)
Int. J. Mod. Phys. B
, vol.4
, pp. 239
-
-
Wen, X.1
-
57
-
-
33744531188
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.41.12838
-
X. G. Wen, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.41.12838 41, 12838 (1990).
-
(1990)
Phys. Rev. B
, vol.41
, pp. 12838
-
-
Wen, X.G.1
-
58
-
-
0001080950
-
-
IJPBEV 0217-9792 10.1142/S0217979292000840
-
X. Wen, Int. J. Mod. Phys. B IJPBEV 0217-9792 10.1142/S0217979292000840 6, 1711 (1992).
-
(1992)
Int. J. Mod. Phys. B
, vol.6
, pp. 1711
-
-
Wen, X.1
-
59
-
-
84873170109
-
-
LI is left moving only if the eigenvalues of K are all positive. Otherwise, it is either right-moving or a combination of right- and left-moving modes. Nevertheless, we continue to use the subscripts L or R even in these more general cases.
-
L I is left moving only if the eigenvalues of K are all positive. Otherwise, it is either right-moving or a combination of right- and left-moving modes. Nevertheless, we continue to use the subscripts L or R even in these more general cases.
-
-
-
-
61
-
-
79955653230
-
-
1745-2473 10.1038/nphys1915
-
J. Alicea, Y. Oreg, G. Refael, F. von Oppen, and M. P. A. Fisher, Nature Phys. 1745-2473 10.1038/nphys1915 7, 412 (2010).
-
(2010)
Nature Phys.
, vol.7
, pp. 412
-
-
Alicea, J.1
Oreg, Y.2
Refael, G.3
Von Oppen, F.4
Fisher, M.P.A.5
-
62
-
-
84873173857
-
-
arXiv: 1210.7929.
-
P. Bonderson, arXiv: 1210.7929.
-
-
-
Bonderson, P.1
-
63
-
-
77956343343
-
-
American Mathematics Society, Providence, RI
-
Z. Wang, Topological Quantum Computation (American Mathematics Society, Providence, RI, 2010).
-
(2010)
Topological Quantum Computation
-
-
Wang, Z.1
-
64
-
-
72649087516
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.80.161302
-
G. M. Gusev, S. Wiedmann, O. E. Raichev, A. K. Bakarov, and J. C. Portal, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.80.161302 80, 161302 (2009).
-
(2009)
Phys. Rev. B
, vol.80
, pp. 161302
-
-
Gusev, G.M.1
Wiedmann, S.2
Raichev, O.E.3
Bakarov, A.K.4
Portal, J.C.5
-
65
-
-
0000362166
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.46.9776
-
J. Jo, Y. W. Suen, L. W. Engel, M. B. Santos, and M. Shayegan, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.46.9776 46, 9776 (1992).
-
(1992)
Phys. Rev. B
, vol.46
, pp. 9776
-
-
Jo, J.1
Suen, Y.W.2
Engel, L.W.3
Santos, M.B.4
Shayegan, M.5
-
66
-
-
33744767975
-
-
CMPHAY 0010-3616 10.1007/BF01238812
-
R. Dijkgraaf, C. Vafa, E. Verlinde, and H. Verlinde, Comm. Math. Phys. CMPHAY 0010-3616 10.1007/BF01238812 123, 485 (1989).
-
(1989)
Comm. Math. Phys.
, vol.123
, pp. 485
-
-
Dijkgraaf, R.1
Vafa, C.2
Verlinde, E.3
Verlinde, H.4
-
67
-
-
84873172572
-
-
2 gauge theory emerges by proliferating double vortices in a superfluid.
-
2 gauge theory emerges by proliferating double vortices in a superfluid.
-
-
-
-
68
-
-
78649267347
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.105.216804
-
M. Barkeshli and X.-G. Wen, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.105.216804 105, 216804 (2010).
-
(2010)
Phys. Rev. Lett.
, vol.105
, pp. 216804
-
-
Barkeshli, M.1
Wen, X.-G.2
-
69
-
-
10644250740
-
-
PYLBAJ 0370-2693 10.1016/0370-2693(89)90897-6
-
G. Moore and N. Seiberg, Phys. Lett. B PYLBAJ 0370-2693 10.1016/0370-2693(89)90897-6 220, 422 (1989).
-
(1989)
Phys. Lett. B
, vol.220
, pp. 422
-
-
Moore, G.1
Seiberg, N.2
-
70
-
-
84981750249
-
-
0010-3640 10.1002/cpa.3160220206
-
J. Birman, Commun. Pure Appl. Math. 0010-3640 10.1002/cpa.3160220206 22, 213 (1969).
-
(1969)
Commun. Pure Appl. Math.
, vol.22
, pp. 213
-
-
Birman, J.1
|