메뉴 건너뛰기




Volumn 76, Issue 5, 2014, Pages 1081-1116

Translated Chemical Reaction Networks

Author keywords

Chemical kinetics; Complex balancing; Mass action system; Steady state; Weakly reversible

Indexed keywords

CHEMICAL MODEL; COMPUTER SIMULATION; KINETICS;

EID: 84900300985     PISSN: 00928240     EISSN: 15229602     Source Type: Journal    
DOI: 10.1007/s11538-014-9947-5     Document Type: Article
Times cited : (66)

References (42)
  • 1
    • 35248864435 scopus 로고    scopus 로고
    • Translation-invariant monotone systems, and a global convergence result for enzymatic futile cycles
    • Angeli, D., & Sontag, E. (2008). Translation-invariant monotone systems, and a global convergence result for enzymatic futile cycles. Nonlinear Anal., Real World Appl., 9, 128-140.
    • (2008) Nonlinear Anal., Real World Appl. , vol.9 , pp. 128-140
    • Angeli, D.1    Sontag, E.2
  • 2
    • 34548532883 scopus 로고    scopus 로고
    • A Petri net approach to the study of persistence in chemical reaction networks
    • Angeli, D., Leenheer, P., & Sontag, E. (2007). A Petri net approach to the study of persistence in chemical reaction networks. Math. Biosci., 210(2), 598-618.
    • (2007) Math. Biosci. , vol.210 , Issue.2 , pp. 598-618
    • Angeli, D.1    Leenheer, P.2    Sontag, E.3
  • 3
    • 0002013127 scopus 로고
    • Stability of complex reaction networks
    • Clarke, B. L. (1980). Stability of complex reaction networks. Adv. Chem. Phys., 43, 1-215.
    • (1980) Adv. Chem. Phys. , vol.43 , pp. 1-215
    • Clarke, B.L.1
  • 4
    • 37549009180 scopus 로고    scopus 로고
    • Multistationarity in the activation of a MAPK: parametrizing the relevant region in parameter space
    • Conradi, C., Flockerzi, D., & Raisch, J. (2008). Multistationarity in the activation of a MAPK: parametrizing the relevant region in parameter space. Math. Biosci., 211, 105-131.
    • (2008) Math. Biosci. , vol.211 , pp. 105-131
    • Conradi, C.1    Flockerzi, D.2    Raisch, J.3
  • 6
    • 27844475135 scopus 로고    scopus 로고
    • Multiple equilibria in complex chemical reaction networks: I. The injectivity property
    • Craciun, G., & Feinberg, M. (2005). Multiple equilibria in complex chemical reaction networks: I. The injectivity property. SIAM J. Appl. Math., 65(5), 1526-1546.
    • (2005) SIAM J. Appl. Math. , vol.65 , Issue.5 , pp. 1526-1546
    • Craciun, G.1    Feinberg, M.2
  • 7
    • 33745027709 scopus 로고    scopus 로고
    • Multiple equilibria in complex chemical reaction networks: II. The species-reaction graph
    • Craciun, G., & Feinberg, M. (2006). Multiple equilibria in complex chemical reaction networks: II. The species-reaction graph. SIAM J. Appl. Math., 66(4), 1321-1338.
    • (2006) SIAM J. Appl. Math. , vol.66 , Issue.4 , pp. 1321-1338
    • Craciun, G.1    Feinberg, M.2
  • 10
    • 79953080096 scopus 로고    scopus 로고
    • How far is complex balancing from detailed balancing?
    • Dickenstein, A., & Pérez Millán, M. (2011). How far is complex balancing from detailed balancing? Bull. Math. Biol., 73, 811-828.
    • (2011) Bull. Math. Biol. , vol.73 , pp. 811-828
    • Dickenstein, A.1    Pérez Millán, M.2
  • 12
    • 0015482348 scopus 로고
    • Complex balancing in general kinetic systems
    • Feinberg, M. (1972). Complex balancing in general kinetic systems. Arch. Ration. Mech. Anal., 49, 187-194.
    • (1972) Arch. Ration. Mech. Anal. , vol.49 , pp. 187-194
    • Feinberg, M.1
  • 13
    • 0003834324 scopus 로고
    • Unpublished written versions of lectures given at the Mathematics Research Center, University of Wisconsin. Available at
    • Feinberg, M. (1979). Lectures on chemical reaction networks. Unpublished written versions of lectures given at the Mathematics Research Center, University of Wisconsin. Available at http://www. chbmeng. ohio-state. edu/~feinberg/LecturesOnReactionNetworks/.
    • (1979) Lectures on chemical reaction networks
    • Feinberg, M.1
  • 14
    • 0023531427 scopus 로고
    • Chemical reaction network structure and the stability of complex isothermal reactors: I. The deficiency zero and deficiency one theorems
    • Feinberg, M. (1987). Chemical reaction network structure and the stability of complex isothermal reactors: I. The deficiency zero and deficiency one theorems. Chem. Eng. Sci., 42(10), 2229-2268.
    • (1987) Chem. Eng. Sci. , vol.42 , Issue.10 , pp. 2229-2268
    • Feinberg, M.1
  • 15
    • 0023842283 scopus 로고
    • Chemical reaction network structure and the stability of complex isothermal reactors: II. Multiple steady states for networks of deficiency one
    • Feinberg, M. (1988). Chemical reaction network structure and the stability of complex isothermal reactors: II. Multiple steady states for networks of deficiency one. Chem. Eng. Sci., 43(1), 1-25.
    • (1988) Chem. Eng. Sci. , vol.43 , Issue.1 , pp. 1-25
    • Feinberg, M.1
  • 16
    • 0024881071 scopus 로고
    • Necessary and sufficient conditions for detailed balancing in mass action systems of arbitrary complexity
    • Feinberg, M. (1989). Necessary and sufficient conditions for detailed balancing in mass action systems of arbitrary complexity. Chem. Eng. Sci., 44(9), 1819-1827.
    • (1989) Chem. Eng. Sci. , vol.44 , Issue.9 , pp. 1819-1827
    • Feinberg, M.1
  • 17
    • 0001364051 scopus 로고
    • The existence and uniqueness of steady states for a class of chemical reaction networks
    • Feinberg, M. (1995a). The existence and uniqueness of steady states for a class of chemical reaction networks. Arch. Ration. Mech. Anal., 132, 311-370.
    • (1995) Arch. Ration. Mech. Anal. , vol.132 , pp. 311-370
    • Feinberg, M.1
  • 18
    • 0000112210 scopus 로고
    • Multiple steady states for chemical reaction networks of deficiency one
    • Feinberg, M. (1995b). Multiple steady states for chemical reaction networks of deficiency one. Arch. Ration. Mech. Anal., 132, 371-406.
    • (1995) Arch. Ration. Mech. Anal. , vol.132 , pp. 371-406
    • Feinberg, M.1
  • 19
    • 65249097835 scopus 로고    scopus 로고
    • Subnetwork analysis for multistationarity in mass-action kinetics
    • Flockerzi, D., & Conradi, C. (2008). Subnetwork analysis for multistationarity in mass-action kinetics. J. Phys. Conf. Ser., 138(1).
    • (2008) J. Phys. Conf. Ser. , vol.138 , Issue.1
    • Flockerzi, D.1    Conradi, C.2
  • 20
    • 11244254407 scopus 로고    scopus 로고
    • Counting stable solutions of sparse polynomial systems in chemistry
    • Contemporary math, E. L. Green, S. Hosten, R. C. Laubenbacher, and V. A. Powers (Eds.)
    • Gatermann, K. (2001). Counting stable solutions of sparse polynomial systems in chemistry. In E. L. Green, S. Hosten, R. C. Laubenbacher, & V. A. Powers (Eds.), Contemporary math: Vol. 286. Symbolic computation: solving equations in algebra, geometry and engineering (pp. 53-69).
    • (2001) Symbolic Computation: Solving Equations in Algebra, Geometry and Engineering , vol.286 , pp. 53-69
    • Gatermann, K.1
  • 21
    • 0036183849 scopus 로고    scopus 로고
    • A family of sparse polynomial systems arising in chemical reaction systems
    • Gatermann, K., & Huber, B. (2002). A family of sparse polynomial systems arising in chemical reaction systems. J. Symb. Comput., 33(3), 275-305.
    • (2002) J. Symb. Comput. , vol.33 , Issue.3 , pp. 275-305
    • Gatermann, K.1    Huber, B.2
  • 22
    • 11244271554 scopus 로고    scopus 로고
    • Bernstein's second theorem and Viro's method for sparse polynomial systems in chemistry
    • Gatermann, K., & Wolfrum, M. (2005). Bernstein's second theorem and Viro's method for sparse polynomial systems in chemistry. Adv. Appl. Math., 34(2), 252-294.
    • (2005) Adv. Appl. Math. , vol.34 , Issue.2 , pp. 252-294
    • Gatermann, K.1    Wolfrum, M.2
  • 23
    • 26844571282 scopus 로고    scopus 로고
    • Multisite protein phosphorylation makes a good threshold but can be a poor switch
    • Gunawardena, J. (2005). Multisite protein phosphorylation makes a good threshold but can be a poor switch. Proc. Natl. Acad. Sci. USA, 102, 14617-14622.
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , pp. 14617-14622
    • Gunawardena, J.1
  • 24
    • 36849019999 scopus 로고    scopus 로고
    • Distributivity and processivity in multisite phosphorylation can be distinguished through steady-state invariants
    • Gunawardena, J. (2007). Distributivity and processivity in multisite phosphorylation can be distinguished through steady-state invariants. Biophys. J., 93, 3828-3834.
    • (2007) Biophys. J. , vol.93 , pp. 3828-3834
    • Gunawardena, J.1
  • 25
    • 84892847601 scopus 로고    scopus 로고
    • Multistationarity in sequentially distributed multisite phosphorylation networks
    • Holstein, K., Flockerzi, D., & Conradi, C. (2013). Multistationarity in sequentially distributed multisite phosphorylation networks. Bull. Math. Biol., 75, 2028-2058.
    • (2013) Bull. Math. Biol. , vol.75 , pp. 2028-2058
    • Holstein, K.1    Flockerzi, D.2    Conradi, C.3
  • 26
    • 0015489310 scopus 로고
    • Necessary and sufficient conditions for complex balancing in chemical kinetics
    • Horn, F. (1972). Necessary and sufficient conditions for complex balancing in chemical kinetics. Arch. Ration. Mech. Anal., 49, 172-186.
    • (1972) Arch. Ration. Mech. Anal. , vol.49 , pp. 172-186
    • Horn, F.1
  • 29
    • 58749090027 scopus 로고    scopus 로고
    • The geometry of multisite phosphorylation
    • Manrai, A., & Gunawardena, J. (2009). The geometry of multisite phosphorylation. Biophys. J., 95, 5533-5543.
    • (2009) Biophys. J. , vol.95 , pp. 5533-5543
    • Manrai, A.1    Gunawardena, J.2
  • 30
    • 0842288229 scopus 로고    scopus 로고
    • Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades
    • Markevich, N. I., Hoek, J. B., & Kholodenko, B. N. (2004). Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. J. Cell Biol., 164(3), 353-359.
    • (2004) J. Cell Biol. , vol.164 , Issue.3 , pp. 353-359
    • Markevich, N.I.1    Hoek, J.B.2    Kholodenko, B.N.3
  • 31
    • 84871367577 scopus 로고    scopus 로고
    • Generalized mass action systems: complex balancing equilibria and sign vectors of the stoichiometric and kinetic-order subspaces
    • Müller, S., & Regensburger, G. (2012). Generalized mass action systems: complex balancing equilibria and sign vectors of the stoichiometric and kinetic-order subspaces. SIAM J. Appl. Math., 72(6), 1926-1947.
    • (2012) SIAM J. Appl. Math. , vol.72 , Issue.6 , pp. 1926-1947
    • Müller, S.1    Regensburger, G.2
  • 34
    • 0014658880 scopus 로고
    • Biochemical systems analysis II. The steady-state solutions for an n-pool system using a power-law approximation
    • Savageau, M. A. (1969). Biochemical systems analysis II. The steady-state solutions for an n-pool system using a power-law approximation. J. Theor. Biol., 25, 370-379.
    • (1969) J. Theor. Biol. , vol.25 , pp. 370-379
    • Savageau, M.A.1
  • 35
    • 77949398351 scopus 로고    scopus 로고
    • Structural sources of robustness in biochemical reaction networks
    • Shinar, G., & Feinberg, M. (2010). Structural sources of robustness in biochemical reaction networks. Science, 327(5971), 1389-1391.
    • (2010) Science , vol.327 , Issue.5971 , pp. 1389-1391
    • Shinar, G.1    Feinberg, M.2
  • 36
    • 84867854824 scopus 로고    scopus 로고
    • Concordant chemical reaction networks
    • Shinar, G., & Feinberg, M. (2012). Concordant chemical reaction networks. Math. Biosci., 240(2), 92-113.
    • (2012) Math. Biosci. , vol.240 , Issue.2 , pp. 92-113
    • Shinar, G.1    Feinberg, M.2
  • 38
    • 0003652674 scopus 로고    scopus 로고
    • Cambridge: Cambridge University Press
    • Stanley, R. (1999). Enumerative combinatorics (Vol. 2). Cambridge: Cambridge University Press.
    • (1999) Enumerative Combinatorics , vol.2
    • Stanley, R.1
  • 40
    • 42149099412 scopus 로고    scopus 로고
    • On the number of steady states in a multiple futile cycle
    • Wang, L., & Sontag, E. (2008). On the number of steady states in a multiple futile cycle. J. Math. Biol., 57(1), 25-52.
    • (2008) J. Math. Biol. , vol.57 , Issue.1 , pp. 25-52
    • Wang, L.1    Sontag, E.2
  • 41
    • 21844516029 scopus 로고
    • Smallest chemical reaction system with Hopf bifurcations
    • Wilhelm, T., & Heinrich, R. (1995). Smallest chemical reaction system with Hopf bifurcations. J. Math. Chem., 17(1), 1-14.
    • (1995) J. Math. Chem. , vol.17 , Issue.1 , pp. 1-14
    • Wilhelm, T.1    Heinrich, R.2
  • 42
    • 0030544099 scopus 로고    scopus 로고
    • Mathematical analysis of the smallest chemical reaction system with Hopf bifurcation
    • Wilhelm, T., & Heinrich, R. (1996). Mathematical analysis of the smallest chemical reaction system with Hopf bifurcation. J. Math. Chem., 19(2), 111-130.
    • (1996) J. Math. Chem. , vol.19 , Issue.2 , pp. 111-130
    • Wilhelm, T.1    Heinrich, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.