메뉴 건너뛰기




Volumn 115, Issue 2, 2014, Pages 64-75

Epileptic seizure detection in EEGs signals using a fast weighted horizontal visibility algorithm

Author keywords

Computational complexity; Epilepsy; Mean degree; Mean strength; Weighted horizontal visibility graph

Indexed keywords

ALGORITHMS; COMPUTATIONAL COMPLEXITY; ENTROPY; FEATURE EXTRACTION;

EID: 84899918319     PISSN: 01692607     EISSN: 18727565     Source Type: Journal    
DOI: 10.1016/j.cmpb.2014.04.001     Document Type: Article
Times cited : (151)

References (41)
  • 1
    • 79953693243 scopus 로고    scopus 로고
    • Automatic feature extraction using genetic programming: an application to epileptic EEG classification
    • Guo L., Rivero D., Dorado J., Munteanu C.R., Pazos A. Automatic feature extraction using genetic programming: an application to epileptic EEG classification. Expert Syst. Appl. 2011, 38:10425-10436.
    • (2011) Expert Syst. Appl. , vol.38 , pp. 10425-10436
    • Guo, L.1    Rivero, D.2    Dorado, J.3    Munteanu, C.R.4    Pazos, A.5
  • 2
    • 24044474732 scopus 로고    scopus 로고
    • Artificial neural network based epileptic detection using time-domain and frequency-domain features
    • Srinivasan V., Eswaran C., Sriraam A. Artificial neural network based epileptic detection using time-domain and frequency-domain features. J. Med. Syst. 2005, 29:647-660.
    • (2005) J. Med. Syst. , vol.29 , pp. 647-660
    • Srinivasan, V.1    Eswaran, C.2    Sriraam, A.3
  • 3
    • 79957981604 scopus 로고    scopus 로고
    • EEG signals classification using the K-means clustering and a multilayer perceptron neural network model
    • Orhan U., Hekim M., Ozer M. EEG signals classification using the K-means clustering and a multilayer perceptron neural network model. Expert Syst. Appl. 2011, 38:13475-13481.
    • (2011) Expert Syst. Appl. , vol.38 , pp. 13475-13481
    • Orhan, U.1    Hekim, M.2    Ozer, M.3
  • 4
    • 33749337076 scopus 로고    scopus 로고
    • Quantitative evaluation of linear and nonlinear methods characterizing interdependencies between brain signals
    • Ansari-Asl K., Senhadji L., Bellanger J.-J., Wendling F. Quantitative evaluation of linear and nonlinear methods characterizing interdependencies between brain signals. Phys. Rev. E 2006, 74:031916.
    • (2006) Phys. Rev. E , vol.74 , pp. 031916
    • Ansari-Asl, K.1    Senhadji, L.2    Bellanger, J.-J.3    Wendling, F.4
  • 5
    • 34247217946 scopus 로고    scopus 로고
    • Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform
    • Polat K., Güneş S. Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform. Appl. Math. Comput. 2007, 187:1017-1026.
    • (2007) Appl. Math. Comput. , vol.187 , pp. 1017-1026
    • Polat, K.1    Güneş, S.2
  • 6
    • 37349026733 scopus 로고    scopus 로고
    • Artificial immune recognition system with fuzzy resource allocation mechanism classifier, principal component analysis and FFT method based new hybrid automated identification system for classification of EEG signals
    • Polat K., Güneş S. Artificial immune recognition system with fuzzy resource allocation mechanism classifier, principal component analysis and FFT method based new hybrid automated identification system for classification of EEG signals. Expert Syst. Appl. 2008, 34:2039-2048.
    • (2008) Expert Syst. Appl. , vol.34 , pp. 2039-2048
    • Polat, K.1    Güneş, S.2
  • 7
    • 0029111414 scopus 로고
    • Dimensional analysis of resting human EEG II: surrogate-data testing indicates nonlinearity but not low-dimensional chaos
    • Pritchard W.S., Duke D.W., Krieble K.K. Dimensional analysis of resting human EEG II: surrogate-data testing indicates nonlinearity but not low-dimensional chaos. Psychophysiology 1995, 32:486-491.
    • (1995) Psychophysiology , vol.32 , pp. 486-491
    • Pritchard, W.S.1    Duke, D.W.2    Krieble, K.K.3
  • 8
    • 0035682573 scopus 로고    scopus 로고
    • Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state
    • Andrzejak R.G., Lehnertz K., Mormann F., Rieke C., David P., Elger C.E. Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys. Rev. E 2001, 64:061907.
    • (2001) Phys. Rev. E , vol.64 , pp. 061907
    • Andrzejak, R.G.1    Lehnertz, K.2    Mormann, F.3    Rieke, C.4    David, P.5    Elger, C.E.6
  • 9
    • 33846672121 scopus 로고    scopus 로고
    • A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy
    • Adeli H., Ghosh-Dastidar S., Dadmehr N. A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy. IEEE Trans. Biomed. Eng. 2007, 54:205-211.
    • (2007) IEEE Trans. Biomed. Eng. , vol.54 , pp. 205-211
    • Adeli, H.1    Ghosh-Dastidar, S.2    Dadmehr, N.3
  • 10
    • 80053348045 scopus 로고    scopus 로고
    • Automatic detection of epileptic EEG signals using higher order cumulant features
    • Suri J.S., Acharya U.R., Sree S.V. Automatic detection of epileptic EEG signals using higher order cumulant features. Int. J. Neural Syst. 2011, 21:403-414.
    • (2011) Int. J. Neural Syst. , vol.21 , pp. 403-414
    • Suri, J.S.1    Acharya, U.R.2    Sree, S.V.3
  • 11
    • 84899927727 scopus 로고    scopus 로고
    • The sample entropy and its application in EEG based epilepsy detection
    • Bai D., Qiu T., Li X. The sample entropy and its application in EEG based epilepsy detection. J. Biomed. Eng. 2007, 24:5.
    • (2007) J. Biomed. Eng. , vol.24 , pp. 5
    • Bai, D.1    Qiu, T.2    Li, X.3
  • 12
    • 81855221797 scopus 로고    scopus 로고
    • Detection of epileptic electroencephalogram based on permutation entropy and support vector machines
    • Nicolaou N., Georgiou J. Detection of epileptic electroencephalogram based on permutation entropy and support vector machines. Expert Syst. Appl. 2012, 39:202-209.
    • (2012) Expert Syst. Appl. , vol.39 , pp. 202-209
    • Nicolaou, N.1    Georgiou, J.2
  • 13
    • 78651302006 scopus 로고    scopus 로고
    • A new approach for epileptic seizure detection: sample entropy based feature extraction and extreme learning machine
    • Song Y., Liò P. A new approach for epileptic seizure detection: sample entropy based feature extraction and extreme learning machine. J. Biomed. Sci. Eng. 2010, 3:556-567.
    • (2010) J. Biomed. Sci. Eng. , vol.3 , pp. 556-567
    • Song, Y.1    Liò, P.2
  • 15
    • 84887971931 scopus 로고    scopus 로고
    • Epileptogenic focus detection in intracranial EEG based on delay permutation entropy
    • Zhu G., Li Y., Wen P.P., Wang S., Xi M. Epileptogenic focus detection in intracranial EEG based on delay permutation entropy. AIP Conf. Proc. 2013, 1559:31-36.
    • (2013) AIP Conf. Proc. , vol.1559 , pp. 31-36
    • Zhu, G.1    Li, Y.2    Wen, P.P.3    Wang, S.4    Xi, M.5
  • 16
    • 84864031840 scopus 로고    scopus 로고
    • Classification of epilepsy using high-order spectra features and principle component analysis
    • Du X., Dua S., Acharya R., Chua C. Classification of epilepsy using high-order spectra features and principle component analysis. J. Med. Syst. 2012, 36:1731-1743.
    • (2012) J. Med. Syst. , vol.36 , pp. 1731-1743
    • Du, X.1    Dua, S.2    Acharya, R.3    Chua, C.4
  • 17
    • 84856227784 scopus 로고    scopus 로고
    • Application of higher order spectra to identify epileptic EEG
    • Chua K., Chandran V., Acharya U.R., Lim C.M. Application of higher order spectra to identify epileptic EEG. J. Med. Syst. 2011, 35:1563-1571.
    • (2011) J. Med. Syst. , vol.35 , pp. 1563-1571
    • Chua, K.1    Chandran, V.2    Acharya, U.R.3    Lim, C.M.4
  • 18
    • 79960037752 scopus 로고    scopus 로고
    • Application of recurrence quantification analysis for the automated identification of epileptic EEG signals
    • Acharya U.R., Sree S.V., Chattopadhyay S., Yu W., Ang P.C.A. Application of recurrence quantification analysis for the automated identification of epileptic EEG signals. Int. J. Neural Syst. 2011, 21:199-211.
    • (2011) Int. J. Neural Syst. , vol.21 , pp. 199-211
    • Acharya, U.R.1    Sree, S.V.2    Chattopadhyay, S.3    Yu, W.4    Ang, P.C.A.5
  • 19
    • 45849133827 scopus 로고    scopus 로고
    • Using recurrence plot for determinism analysis of EEG recordings in genetic absence epilepsy rats
    • Ouyang G., Li X., Dang C., Richards D.A. Using recurrence plot for determinism analysis of EEG recordings in genetic absence epilepsy rats. Clin. Neurophysiol. 2008, 119:1747-1755.
    • (2008) Clin. Neurophysiol. , vol.119 , pp. 1747-1755
    • Ouyang, G.1    Li, X.2    Dang, C.3    Richards, D.A.4
  • 20
    • 84883021594 scopus 로고    scopus 로고
    • New approach to epileptic diagnosis using visibility graph of high-frequency signal
    • Tang X., Xia L., Liao Y., Liu W., Peng Y., Gao T., et al. New approach to epileptic diagnosis using visibility graph of high-frequency signal. Clin. EEG Neurosci. 2013, 44(March):150-156.
    • (2013) Clin. EEG Neurosci. , vol.44 , Issue.MARCH , pp. 150-156
    • Tang, X.1    Xia, L.2    Liao, Y.3    Liu, W.4    Peng, Y.5    Gao, T.6
  • 22
    • 70350043594 scopus 로고    scopus 로고
    • Horizontal visibility graphs: exact results for random time series
    • Luque B., Lacasa L., Ballesteros F., Luque J. Horizontal visibility graphs: exact results for random time series. Phys. Rev. E 2009, 80:046103.
    • (2009) Phys. Rev. E , vol.80 , pp. 046103
    • Luque, B.1    Lacasa, L.2    Ballesteros, F.3    Luque, J.4
  • 24
    • 77249125413 scopus 로고    scopus 로고
    • Network analysis of human heartbeat dynamics
    • 073703-1-073703-3
    • Shao Z.-G. Network analysis of human heartbeat dynamics. Appl. Phys. Lett. 2010, 96. 073703-1-073703-3.
    • (2010) Appl. Phys. Lett. , vol.96
    • Shao, Z.-G.1
  • 25
    • 84871539140 scopus 로고    scopus 로고
    • An efficient visibility graph similarity algorithm and its application on sleep stages classification
    • Springer Berlin, Heidelberg
    • Zhu G., Li Y., Wen P.P. An efficient visibility graph similarity algorithm and its application on sleep stages classification. Brain Informatics 2012, vol. 7670:185-195. Springer Berlin, Heidelberg.
    • (2012) Brain Informatics , vol.7670 , pp. 185-195
    • Zhu, G.1    Li, Y.2    Wen, P.P.3
  • 26
    • 0038718854 scopus 로고    scopus 로고
    • The structure and function of complex networks
    • Newman M. The structure and function of complex networks. SIAM Rev. 2003, 45:167-256.
    • (2003) SIAM Rev. , vol.45 , pp. 167-256
    • Newman, M.1
  • 28
    • 24944510331 scopus 로고    scopus 로고
    • Finding, counting and listing all triangles in large graphs an experimental study
    • Springer Berlin, Heidelberg
    • Schank T., Wagner D. Finding, counting and listing all triangles in large graphs an experimental study. Experimental and Efficient Algorithms 2005, vol. 3503:606-609. Springer Berlin, Heidelberg.
    • (2005) Experimental and Efficient Algorithms , vol.3503 , pp. 606-609
    • Schank, T.1    Wagner, D.2
  • 29
    • 0011704450 scopus 로고
    • A heuristic improvement of the Bellman-Ford algorithm
    • Goldberg A.V., Radzik T. A heuristic improvement of the Bellman-Ford algorithm. Appl. Math. Lett. 1993, 6:3-6.
    • (1993) Appl. Math. Lett. , vol.6 , pp. 3-6
    • Goldberg, A.V.1    Radzik, T.2
  • 30
    • 50649106116 scopus 로고    scopus 로고
    • Equipment review: seewave, a free modular tool for sound analysis and synthesis
    • Sueur J., Aubin T., Simonis C. Equipment review: seewave, a free modular tool for sound analysis and synthesis. Bioacoustics 2008, 18:213-226.
    • (2008) Bioacoustics , vol.18 , pp. 213-226
    • Sueur, J.1    Aubin, T.2    Simonis, C.3
  • 31
    • 0033949457 scopus 로고    scopus 로고
    • Physiological time-series analysis using approximate entropy and sample entropy
    • Richman J.S., Moorman J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Phys. - Heart Circul. Physiol. 2000, 278(June):H2039-H2049.
    • (2000) Am. J. Phys. - Heart Circul. Physiol. , vol.278 , Issue.JUNE
    • Richman, J.S.1    Moorman, J.R.2
  • 33
    • 84926662675 scopus 로고
    • Nearest neighbor pattern classification
    • Cover T., Hart P. Nearest neighbor pattern classification. IEEE Trans. Inform. Theory 1967, 13:21-27.
    • (1967) IEEE Trans. Inform. Theory , vol.13 , pp. 21-27
    • Cover, T.1    Hart, P.2
  • 34
    • 84879900101 scopus 로고    scopus 로고
    • Band selection for hyperspectral imagery: a new approach based on complex networks
    • Xia W., Wang B., Zhang L. Band selection for hyperspectral imagery: a new approach based on complex networks. IEEE Geosci. Remote Sens. Lett. 2013, 10:1229-1233.
    • (2013) IEEE Geosci. Remote Sens. Lett. , vol.10 , pp. 1229-1233
    • Xia, W.1    Wang, B.2    Zhang, L.3
  • 35
    • 79954592663 scopus 로고    scopus 로고
    • A characterization of horizontal visibility graphs and combinatorics on words
    • Gutin G., Mansour T., Severini S. A characterization of horizontal visibility graphs and combinatorics on words. Phys. A: Stat. Mech. Appl. 2011, 390:2421-2428.
    • (2011) Phys. A: Stat. Mech. Appl. , vol.390 , pp. 2421-2428
    • Gutin, G.1    Mansour, T.2    Severini, S.3
  • 36
    • 0021867672 scopus 로고
    • Methods of analysis of nonstationary EEGs, with emphasis on segmentation techniques: a comparative review
    • Barlow J.S. Methods of analysis of nonstationary EEGs, with emphasis on segmentation techniques: a comparative review. J. Clin. Neurophysiol. Off. Publ. Am. Electroencephalogr. Soc. 1985, 2:267-304.
    • (1985) J. Clin. Neurophysiol. Off. Publ. Am. Electroencephalogr. Soc. , vol.2 , pp. 267-304
    • Barlow, J.S.1
  • 37
    • 84877000317 scopus 로고    scopus 로고
    • Dynamic characteristics of absence EEG recordings with multiscale permutation entropy analysis
    • Ouyang G., Li J., Liu X., Li X. Dynamic characteristics of absence EEG recordings with multiscale permutation entropy analysis. Epilepsy Res. 2013, 104:246-252.
    • (2013) Epilepsy Res. , vol.104 , pp. 246-252
    • Ouyang, G.1    Li, J.2    Liu, X.3    Li, X.4
  • 39
    • 2442498714 scopus 로고    scopus 로고
    • Estimating measurement noise in a time series by exploiting nonstationarity
    • Hu J., Gao J.B., White K.D. Estimating measurement noise in a time series by exploiting nonstationarity. Chaos Solitons Fractals 2004, 22:807-819.
    • (2004) Chaos Solitons Fractals , vol.22 , pp. 807-819
    • Hu, J.1    Gao, J.B.2    White, K.D.3
  • 40
    • 78651338617 scopus 로고    scopus 로고
    • Description of stochastic and chaotic series using visibility graphs
    • Lacasa L., Toral R. Description of stochastic and chaotic series using visibility graphs. Phys. Rev. E 2010, 82:036120.
    • (2010) Phys. Rev. E , vol.82 , pp. 036120
    • Lacasa, L.1    Toral, R.2
  • 41
    • 80055040385 scopus 로고    scopus 로고
    • Clustering technique-based least square support vector machine for EEG signal classification
    • Siuly, Li Y., Wen P.P. Clustering technique-based least square support vector machine for EEG signal classification. Comput. Meth. Prog. Biomed. 2011, 104:358-372.
    • (2011) Comput. Meth. Prog. Biomed. , vol.104 , pp. 358-372
    • Siuly1    Li, Y.2    Wen, P.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.