메뉴 건너뛰기




Volumn 36, Issue 3, 2012, Pages 1731-1743

Classification of epilepsy using high-order spectra features and principle component analysis

Author keywords

Classifiers; EEG; Epilepsy; High order spectra; Principle component analysis

Indexed keywords

AREA UNDER THE CURVE; ARTICLE; CLINICAL ARTICLE; CONTROLLED STUDY; DISEASE CLASSIFICATION; ELECTROENCEPHALOGRAM; EPILEPSY; HUMAN; LOGISTIC REGRESSION ANALYSIS; NONLINEAR SYSTEM; PRINCIPAL COMPONENT ANALYSIS; RECEIVER OPERATING CHARACTERISTIC; SIGNAL DETECTION; SPECTROMETRY;

EID: 84864031840     PISSN: 01485598     EISSN: 1573689X     Source Type: Journal    
DOI: 10.1007/s10916-010-9633-6     Document Type: Article
Times cited : (44)

References (51)
  • 1
    • 76449108621 scopus 로고    scopus 로고
    • Automatic identification of epileptic EEG signals using nonlinear parameters
    • Acharya, U. R., Chua, C. K., Lim, T. C., Dorithy, and Suri, J. S., Automatic identification of epileptic EEG signals using nonlinear parameters. J. Mech. Med. Biol. 9(4):539-553, 2009.
    • (2009) J. Mech. Med. Biol. , vol.9 , Issue.4 , pp. 539-553
    • Acharya, U.R.1    Chua, C.K.2    Lim, T.C.3    Dorithy4    Suri, J.S.5
  • 2
    • 0035682573 scopus 로고    scopus 로고
    • Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state
    • Andrzejak, R. G., Lehnertz, K., Rieke, C., Mormann, F., David, P., and Elger, C. E., Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Phys. Rev. E 64, 2001.
    • (2001) Phys. Rev. e , vol.64
    • Andrzejak, R.G.1    Lehnertz, K.2    Rieke, C.3    Mormann, F.4    David, P.5    Elger, C.E.6
  • 3
    • 0345306183 scopus 로고    scopus 로고
    • How well can epileptic seizures be predicted? An evaluation of a nonlinear method
    • DOI 10.1093/brain/awg265
    • Aschenbrenner-Scheibe, R., Maiwald, T., Winterhalder, M., Voss, H. U., Timmer, J., and Schulze-Bonhage, A., How well can epileptic seizures be predicted? An evaluation of a nonlinear method. Brain 12:2616-2626, 2003. (Pubitemid 37463081)
    • (2003) Brain , vol.126 , Issue.12 , pp. 2616-2626
    • Aschenbrenner-Scheibe, R.1    Maiwald, T.2    Winterhalder, M.3    Voss, H.U.4    Timmer, J.5    Schulze-Bonhage, A.6
  • 5
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • DOI 10.1023/A:1010933404324
    • Breiman, L., Random Forests. Mach Learn 45:5-32, 2001. (Pubitemid 32933532)
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 7
    • 57649228948 scopus 로고    scopus 로고
    • Higher order spectral (HOS) analysis of epileptic EEG signals
    • Lyon
    • Chua, K. C., Chandran, V., Acharya, U. R., and Lim, C. M., Higher order spectral (HOS) analysis of epileptic EEG signals, 29th IEEE-EMBS-2007, Lyon, 6495-6498, 2007.
    • (2007) 29th IEEE-EMBS-2007 , pp. 6495-6498
    • Chua, K.C.1    Chandran, V.2    Acharya, U.R.3    Lim, C.M.4
  • 8
    • 67449161052 scopus 로고    scopus 로고
    • Automatic identification of epileptic electroencephalography signals using higher-order spectra
    • Chua, K. C., Chandran, V., Acharya, U. R., and Lim, C. M., Automatic identification of epileptic electroencephalography signals using higher-order spectra. Proc Inst Mech Eng H J Eng Med 223(4):485-495, 2009.
    • (2009) Proc Inst Mech Eng H J Eng Med , vol.223 , Issue.4 , pp. 485-495
    • Chua, K.C.1    Chandran, V.2    Acharya, U.R.3    Lim, C.M.4
  • 9
    • 79960060943 scopus 로고    scopus 로고
    • Application of higher order spectra to identify epileptic EEG
    • (In Press)
    • Chua, K. C., Chandran, V., Acharya, U. R., Lim, C. M., Application of higher order spectra to identify epileptic EEG. J. Med. Syst., 2010, (In Press).
    • (2010) J. Med. Syst.
    • Chua, K.C.1    Chandran, V.2    Acharya, U.R.3    Lim, C.M.4
  • 10
    • 58149159364 scopus 로고    scopus 로고
    • Analysis of epileptic EEG signals using higher order spectra
    • Chua, K. C., Chandran, V., Acharya, U. R., and Lim, C. M., Analysis of epileptic EEG signals using higher order spectra. J Med Eng Technol UK 33(1):42-50, 2009.
    • (2009) J Med Eng Technol UK , vol.33 , Issue.1 , pp. 42-50
    • Chua, K.C.1    Chandran, V.2    Acharya, U.R.3    Lim, C.M.4
  • 11
    • 0028094534 scopus 로고
    • Mortality from epilepsy: Results from a prospective population-based study
    • DOI 10.1016/S0140-6736(94)92270-5
    • Cockerell, O. C., Hart, Y. M., Sander, J. W. A. S., Goodridge, D. M. G., Shorvon, S. D., and Johnson, A. L., Mortality from epilepsy: Results from a prospective population-based study. Lancet 344:918-921, 1994. (Pubitemid 24295878)
    • (1994) Lancet , vol.344 , Issue.8927 , pp. 918-921
    • Cockerell, O.C.1    Johnson, A.L.2    Sander, J.W.A.S.3    Hart, Y.M.4    Goodridge, D.M.G.5    Shorvon, S.D.6
  • 12
    • 84873070535 scopus 로고    scopus 로고
    • EEG time series database. http://www.meb.unibonn.de/epileptologie/ science/physik/eegdata
    • EEG Time Series Database
  • 13
    • 78649560818 scopus 로고    scopus 로고
    • Analysis and automatic identification of sleep stages using higher order spectra
    • Acharya, U. R., Chua, E. C. P., Chua, K. C., Lim, C. M., and Tamura, T., Analysis and automatic identification of sleep stages using higher order spectra. Int J Neural Syst 20(6):509-521, 2010.
    • (2010) Int J Neural Syst , vol.20 , Issue.6 , pp. 509-521
    • Acharya, U.R.1    Chua, E.C.P.2    Chua, K.C.3    Lim, C.M.4    Tamura, T.5
  • 14
    • 77951577412 scopus 로고    scopus 로고
    • Automatic identification of epileptic and background EEG signals using frequency domain parameters
    • Faust, O., Acharya, U. R., and Lim, C. M., Automatic identification of epileptic and background EEG signals using frequency domain parameters. Int J Neural Syst 20(2):159-176, 2010.
    • (2010) Int J Neural Syst , vol.20 , Issue.2 , pp. 159-176
    • Faust, O.1    Acharya, U.R.2    Lim, C.M.3
  • 16
    • 0023186918 scopus 로고
    • Simulation of chaotic EEG patterns with a dynamic model of the olfactory system
    • DOI 10.1007/BF00317988
    • Freeman, W. J., Simulation of chaotic EEG patterns with a dynamic model of the olfactory system. Biol Cybern 56:139-150, 1987. (Pubitemid 17093973)
    • (1987) Biological Cybernetics , vol.56 , Issue.2-3 , pp. 139-150
    • Freeman, W.J.1
  • 18
    • 24144470790 scopus 로고    scopus 로고
    • Recurrent neural networks employing Lyapunov exponents for EEG signals classification
    • DOI 10.1016/j.eswa.2005.04.011, PII S0957417405000679
    • Guler, N. F., Ubey, E. D., and Guler, I., Recurrent neural network employing Lyapunovexponents for EEG signals classification. Exp Syst Appl 29(3):506-514, 2005. (Pubitemid 41230775)
    • (2005) Expert Systems with Applications , vol.29 , Issue.3 , pp. 506-514
    • Guler, N.F.1    Ubeyli, E.D.2    Guler, I.3
  • 22
    • 21244500957 scopus 로고    scopus 로고
    • Logistic model trees
    • DOI 10.1007/s10994-005-0466-3
    • Landwehr, N., Hall, M., and Frank, E., Logistic model trees. Mach Learn 59:161-205, 2005. (Pubitemid 40890416)
    • (2005) Machine Learning , vol.59 , Issue.1-2 , pp. 161-205
    • Landwehr, N.1    Hall, M.2    Frank, E.3
  • 25
    • 0000842646 scopus 로고    scopus 로고
    • Application of the changepoint analysis to the investigation of the brain's electrical activity, [book auth.]
    • Brodsky, B. E., and Darkhovsky, B. S. (Eds.), Kluwer Academic Publishers, Dordrecht
    • Ya Kaplan, A., and Shishkin, S. L., Application of the changepoint analysis to the investigation of the brain's electrical activity, [book auth.]. In: Brodsky, B. E., and Darkhovsky, B. S. (Eds.), Nonparametric statistical disgnosis: Problems and methods. Kluwer Academic Publishers, Dordrecht, pp. 333-388, 2000.
    • (2000) Nonparametric Statistical Disgnosis: Problems and Methods , pp. 333-388
    • Ya Kaplan, A.1    Shishkin, S.L.2
  • 26
    • 0030961890 scopus 로고    scopus 로고
    • Spatial filtering of multichannel electroencephalographic recordings through principal component analysis by singular value decomposition
    • DOI 10.1097/00004691-199701000-00007
    • Lagerlund, T. D., Sharbrough, F. W., and Busacker, N. E., Spatial filtering of multichannel electroencephalographic recordings through principal component analysis by singular velue decomposition. J Clin Neurophysiol 14(1):73-82, 1997. (Pubitemid 27220507)
    • (1997) Journal of Clinical Neurophysiology , vol.14 , Issue.1 , pp. 73-82
    • Lagerlund, T.D.1    Sharbrough, F.W.2    Busacker, N.E.3
  • 28
  • 29
    • 34247179140 scopus 로고    scopus 로고
    • A review of classification algorithms for EEG-based brain-computer interfaces
    • DOI 10.1088/1741-2560/4/2/R01, PII S1741256007300050, R01
    • Lotte, F., Congedo, M., Lecuyer, A., Lamarche, F., and Arnaldi, B., A review of classification algorithms for EEG-based braincomputer interfaces. J Neural Eng 4:R1-R13, 2007. (Pubitemid 46603810)
    • (2007) Journal of Neural Engineering , vol.4 , Issue.2
    • Lotte, F.1    Congedo, M.2    Lecuyer, A.3    Lamarche, F.4    Arnaldi, B.5
  • 30
    • 10244259183 scopus 로고    scopus 로고
    • PCA-based feature selection scheme for machine defect classification
    • Malhi, A., and Gao, R. X., PCA-based feature selection scheme for machine defect classification. IEEE Trans Instrum Meas 53:1517-1525, 2004.
    • (2004) IEEE Trans Instrum Meas , vol.53 , pp. 1517-1525
    • Malhi, A.1    Gao, R.X.2
  • 32
    • 0023066422 scopus 로고
    • Dimensionality of the human electroencephalogram
    • Mayer-Kress, G., and Layne, S. P., Dimensionality of the human electroencephalogram. Ann NY Acad Sci 504:62-87, 1987.
    • (1987) Ann NY Acad Sci , vol.504 , pp. 62-87
    • Mayer-Kress, G.1    Layne, S.P.2
  • 35
    • 33846638294 scopus 로고    scopus 로고
    • Seizure prediction: The long and winding road
    • DOI 10.1093/brain/awl241
    • Mormann, F., Andrzejak, R. G., Elger, C. E., andLehnertz, K., Seizure prediction: The long and winding road. Brain 130:314-333, 2007. (Pubitemid 46181087)
    • (2007) Brain , vol.130 , Issue.2 , pp. 314-333
    • Mormann, F.1    Andrzejak, R.G.2    Elger, C.E.3    Lehnertz, K.4
  • 37
    • 0842310823 scopus 로고    scopus 로고
    • A neural-network-based detection of epilepsy
    • DOI 10.1179/016164104773026534
    • Nigam, V. P., and Graupe, D., A neural-network-based detection of epilepsy. Neurol Res 26(6):55-60, 2004. (Pubitemid 38174388)
    • (2004) Neurological Research , vol.26 , Issue.1 , pp. 55-60
    • Nigam, V.P.1    Graupe, D.2
  • 39
    • 34748924499 scopus 로고    scopus 로고
    • Classification of epileptiform EEG using a hybrid systems based on decision tree classifier and fast fourier transform
    • Polat, K., and Guenes, S., Classification of epileptiform EEG using a hybrid systems based on decision tree classifier and fast fourier transform. Appl Math Comput 32(2):625-631, 2007.
    • (2007) Appl Math Comput , vol.32 , Issue.2 , pp. 625-631
    • Polat, K.1    Guenes, S.2
  • 41
    • 34250729003 scopus 로고    scopus 로고
    • Epileptic seizure detection using neural fuzzy networks
    • DOI 10.1109/FUZZY.2006.1681772, 1681772, 2006 IEEE International Conference on Fuzzy Systems
    • Sadati, N., Mohseni, H. R., and Magshoudi, A., Epileptic Seizure Detection Using Neural Fuzzy Networks. Proc. IEEE Int. Conf. Fuzzy Syst., Canada 596-600, 2006. (Pubitemid 46948816)
    • (2006) IEEE International Conference on Fuzzy Systems , pp. 596-600
    • Sadati, N.1    Mohseni, H.R.2    Maghsoudi, A.3
  • 43
    • 84973949757 scopus 로고
    • How brains make chaos in order to make sense of the world
    • Skarda, C. A., and Freeman, W. J., How brains make chaos in order to make sense of the world. Behav Brain Sci 19:161-195, 1987.
    • (1987) Behav Brain Sci , vol.19 , pp. 161-195
    • Skarda, C.A.1    Freeman, W.J.2
  • 45
    • 33751396389 scopus 로고    scopus 로고
    • EEG signal classification using wavelet feature and a mixture of expert model
    • Subasi, A., EEG signal classification using wavelet feature and a mixture of expert model. Expert Syst Appl 32(4):1084-1093, 2006.
    • (2006) Expert Syst Appl , vol.32 , Issue.4 , pp. 1084-1093
    • Subasi, A.1
  • 46
    • 33751396389 scopus 로고    scopus 로고
    • EEG signal classification using wavelet feature extraction and a mixture of expert model
    • DOI 10.1016/j.eswa.2006.02.005, PII S0957417406000844
    • Subasi, A., Signal classification using wavelet feature extraction and a mixture of expert model. Exp Syst Appl 32(4):1084-1093, 2007. (Pubitemid 44821797)
    • (2007) Expert Systems with Applications , vol.32 , Issue.4 , pp. 1084-1093
    • Subasi, A.1
  • 47
    • 17744374301 scopus 로고    scopus 로고
    • Classification of EEG signals using neural network and logistic regression
    • DOI 10.1016/j.cmpb.2004.10.009
    • Subasia, A., and Ercelebi, E., Classification of EEG signals using neural network and logistic regression. Comput Methods Programs Biomed 78:87-99, 2005. (Pubitemid 40575687)
    • (2005) Computer Methods and Programs in Biomedicine , vol.78 , Issue.2 , pp. 87-99
    • Subasi, A.1    Ercelebi, E.2
  • 48
    • 0001717058 scopus 로고    scopus 로고
    • Induction of model trees for predicting continuous classes
    • Poster papers of the
    • Wang, Y., and Witten, I. H., Induction of model trees for predicting continuous classes. Poster papers of the 9th European Conference on Machine Learning, 1997.
    • (1997) 9th European Conference on Machine Learning
    • Wang, Y.1    Witten, I.H.2
  • 51
    • 38349077304 scopus 로고    scopus 로고
    • Classifying mental tasks based on features of higher-order statistics from EEG signals in brain-computer interface
    • Zhou, S. M., Gan, J. Q., and Sepulveda, F., Classifying mental tasks based on features of higher-order statistics from EEG signals in brain-computer interface. Inf Sci 178(6):1629-1640, 2008.
    • (2008) Inf Sci , vol.178 , Issue.6 , pp. 1629-1640
    • Zhou, S.M.1    Gan, J.Q.2    Sepulveda, F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.