메뉴 건너뛰기




Volumn , Issue , 2010, Pages 941-948

Knowledge mining with genetic programming methods For variable selection in flavor design

Author keywords

Ensemble modeling; Genetic programming; Sensory science; Symbolic regression; Variable selection

Indexed keywords

DATA SETS; ENSEMBLE MODELING; KNOWLEDGE MINING; MULTIPLE MODELS; REPEATED MEASURES; SENSORY SCIENCE; SYMBOLIC REGRESSION; VARIABLE SELECTION;

EID: 77955895438     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1830483.1830651     Document Type: Conference Paper
Times cited : (12)

References (15)
  • 1
    • 77955868668 scopus 로고    scopus 로고
    • Evolved Analytics LLC. DataModeler Release 1.0
    • Evolved Analytics LLC. DataModeler Release 1.0. Evolved Analytics LLC, 2010.
    • (2010) Evolved Analytics LLC
  • 5
    • 67650658941 scopus 로고    scopus 로고
    • Large-scale, time-constrained symbolic regression
    • R. L. Riolo, T. Soule, and B. Worzel, editors, Genetic Programming Theory and Practice IV, chapter 16, Springer, Ann Arbor, May
    • M. F. Korns. Large-scale, time-constrained symbolic regression. In R. L. Riolo, T. Soule, and B. Worzel, editors, Genetic Programming Theory and Practice IV, volume 5 of Genetic and Evolutionary Computation, chapter 16, pages 299-314. Springer, Ann Arbor, May 2006.
    • (2006) Genetic and Evolutionary Computation , vol.5 , pp. 299-314
    • Korns, M.F.1
  • 7
    • 58349115958 scopus 로고    scopus 로고
    • Discriminant feature selection by genetic programming: Towards a domain independent multi-class object detection system
    • J. Landry, L. D. Kosta, andT. Bernier. Discriminant feature selection by genetic programming: Towards a domain independent multi-class object detection system. Journal of Systemics, Cybernetics and Informatics., 3(1), 2006.
    • (2006) Journal of Systemics, Cybernetics and Informatics. , vol.3 , pp. 1
    • Landry, J.1    Kosta, L.D.2    Bernier, T.3
  • 8
    • 38349093997 scopus 로고    scopus 로고
    • Feature construction and dimension reduction using genetic programming
    • Australian Conference on Artificial Intelligence, Springer
    • K. Neshatian, M. Zhang, andM. Johnston. Feature construction and dimension reduction using genetic programming. In Australian Conference on Artificial Intelligence, volume LNCS 4830, pages 160-170. Springer, 2007.
    • (2007) LNCS , vol.4830 , pp. 160-170
    • Neshatian, K.1    Zhang, M.2    Johnston, M.3
  • 9
    • 84958154920 scopus 로고    scopus 로고
    • Genetic programming for feature detection and image segmentation
    • T. C. Fogarty, editor, Springer-Verlag, University of Sussex, UK, 1-2
    • R. Poli. Genetic programming for feature detection and image segmentation. In T. C. Fogarty, editor, Evolutionary Computing, number 1143, pages 110-125. Springer-Verlag, University of Sussex, UK, 1-2 1996.
    • (1996) Evolutionary Computing , Issue.1143 , pp. 110-125
    • Poli, R.1
  • 11
    • 0041405574 scopus 로고    scopus 로고
    • The evolutionary pre-processor: Automatic feature extraction for supervised classification using genetic programming
    • Stanford University, CA, USA, July Morgan Kaufmann
    • J. R. Sherrah, R. E. Bogner, andA. Bouzerdoum. The evolutionary pre-processor: Automatic feature extraction for supervised classification using genetic programming. In Genetic Programming 1997: Proceedings of the Second Annual Conference, pages 304-312, Stanford University, CA, USA, July 1997. Morgan Kaufmann.
    • (1997) Genetic Programming 1997: Proceedings of the Second Annual Conference , pp. 304-312
    • Sherrah, J.R.1    Bogner, R.E.2    Bouzerdoum, A.3
  • 12
    • 34547376690 scopus 로고    scopus 로고
    • Variable selection in industrial datasets using pareto genetic programming
    • T. Yu, R. L. Riolo, and B. Worzel, editors, Genetic Programming Theory and Practice III, chapter 6, Springer, Ann Arbor, 12-14 May
    • G. Smits, A. Kordon, K. Vladislavleva, E. Jordaan, andM. Kotanchek. Variable selection in industrial datasets using pareto genetic programming. In T. Yu, R. L. Riolo, and B. Worzel, editors, Genetic Programming Theory and Practice III, volume 9 of Genetic Programming, chapter 6, pages 79-92. Springer, Ann Arbor, 12-14 May 2005.
    • (2005) Genetic Programming , vol.9 , pp. 79-92
    • Smits, G.1    Kordon, A.2    Vladislavleva, K.3    Jordaan, E.4    Kotanchek, M.5
  • 13
    • 27144516097 scopus 로고    scopus 로고
    • Pareto-front exploitation in symbolic regression
    • U.-M. O'Reilly, T. Yu, R. L. Riolo, and B. Worzel, editors, chapter 17. Springer, Ann Arbor, 13-15 May
    • G. Smits andM. Kotanchek. Pareto-front exploitation in symbolic regression. In U.-M. O'Reilly, T. Yu, R. L. Riolo, and B. Worzel, editors, Genetic Programming Theory and Practice II, chapter 17. Springer, Ann Arbor, 13-15 May 2004.
    • (2004) Genetic Programming Theory and Practice II
    • Smits, G.1    Kotanchek, M.2
  • 15
    • 34247214462 scopus 로고    scopus 로고
    • Chinnaiyan. Feature selection and molecular classification of cancer using genetic programming
    • Apr.
    • J. Yu, J. Yu, A. A. Almal, S. M. Dhanasekaran, D. Ghosh, W. P. Worzel, andA. M. Chinnaiyan. Feature selection and molecular classification of cancer using genetic programming. Neoplasia, 9(4):292-303, Apr. 2007.
    • (2007) Neoplasia , vol.9 , Issue.4 , pp. 292-303
    • Yu, J.1    Yu, J.2    Almal, A.A.3    Dhanasekaran, S.M.4    Ghosh, D.5    Worzel, W.P.6    Chinnaiyan, A.M.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.