메뉴 건너뛰기




Volumn 15, Issue , 2014, Pages 1073-1110

Gibbs max-margin topic models with data augmentation

Author keywords

Gibbs classifiers; Max margin learning; Regularized Bayesian inference; Supervised topic models; Support vector machines

Indexed keywords

BAYESIAN NETWORKS; INFERENCE ENGINES; SEMANTICS;

EID: 84899824631     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (77)

References (52)
  • 3
    • 27844439373 scopus 로고    scopus 로고
    • A framework for learning predictive structures from multiple tasks and unlabeled data
    • Rie K. Ando and Tong Zhang. A framework for learning predictive structures from multiple tasks and unlabeled data. Journal of Machine Learning Research (JMLR), (6):1817-1853, 2005.
    • (2005) Journal of Machine Learning Research (JMLR) , Issue.6 , pp. 1817-1853
    • Ando, R.K.1    Zhang, T.2
  • 11
    • 0010442827 scopus 로고    scopus 로고
    • On the algorithmic implementation of multiclass kernel- based vector machines
    • Koby Crammer and Yoram Singer. On the algorithmic implementation of multiclass kernel- based vector machines. Journal of Machine Learning Research (JMLR), (2):265-292, 2001.
    • (2001) Journal of Machine Learning Research (JMLR) , vol.2 , pp. 265-292
    • Crammer, K.1    Singer, Y.2
  • 18
    • 84873662740 scopus 로고    scopus 로고
    • The data augmentation algorithm: Theory and methodology
    • (S. Brooks, A. Gelman, G. Jones and X.-L. Meng, eds.). Chapman & Hall/CRC Press, Boca Raton, FL.
    • James P. Hobert. The Data Augmentation Algorithm: Theory and Methodology. In Hand- book of Markov Chain Monte Carlo (S. Brooks, A. Gelman, G. Jones and X.-L. Meng, eds.). Chapman & Hall/CRC Press, Boca Raton, FL., 2011.
    • (2011) Handbook of Markov Chain Monte Carlo
    • Hobert, J.P.1
  • 19
    • 84867151416 scopus 로고    scopus 로고
    • Bayesian auxiliary variable models for binary and multinomial regression
    • Chris C. Holmes and Leonhard Held. Bayesian auxiliary variable models for binary and multinomial regression. Bayesian Analysis, 1(1):145-168, 2006.
    • (2006) Bayesian Analysis , vol.1 , Issue.1 , pp. 145-168
    • Holmes, C.C.1    Held, L.2
  • 25
    • 0037399538 scopus 로고    scopus 로고
    • PAC-Bayesian stochastic model selection
    • David McAllester. PAC-Bayesian stochastic model selection. Machine Learning, 51:5-21, 2003.
    • (2003) Machine Learning , vol.51 , pp. 5-21
    • McAllester, D.1
  • 27
    • 84952221231 scopus 로고
    • Generating random variates using transformations with multiple roots
    • John R. Michael, William R. Schucany, and Roy W. Haas. Generating random variates using transformations with multiple roots. The American Statistician, 30(2):88-90, 1976.
    • (1976) The American Statistician , vol.30 , Issue.2 , pp. 88-90
    • Michael, J.R.1    Schucany, W.R.2    Haas, R.W.3
  • 29
    • 0004160362 scopus 로고    scopus 로고
    • Markov chain Monte Carlo methods based on 'slicing' the density function
    • Department of Statistics, University of Toronto
    • Radford M. Neal. Markov chain Monte Carlo methods based on 'slicing' the density function. Technical Report No. 9722, Department of Statistics, University of Toronto, 1997.
    • (1997) Technical Report No. 9722
    • Neal, R.M.1
  • 31
    • 79957844365 scopus 로고    scopus 로고
    • Data augmentation for support vector machines
    • Nicholas G. Polson and Steven L. Scott. Data augmentation for support vector machines. Bayesian Analysis, 6(1):1-24, 2011.
    • (2011) Bayesian Analysis , vol.6 , Issue.1 , pp. 1-24
    • Polson, N.G.1    Scott, S.L.2
  • 33
    • 80052119994 scopus 로고    scopus 로고
    • An architecture for parallel topic models
    • Alex Smola and Shravan Narayanamurthy. An architecture for parallel topic models. Very Large Data Base (VLDB), 3(1-2):703-710, 2010.
    • (2010) Very Large Data Base (VLDB) , vol.3 , Issue.1-2 , pp. 703-710
    • Smola, A.1    Narayanamurthy, S.2
  • 34
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • DOI 10.1023/B:STCO.0000035301.49549.88
    • Alex Smola and Bernhard Scholkopf. A tutorial on support vector regression. Statistics and Computing, 14(3):199-222, 2003. (Pubitemid 39063488)
    • (2004) Statistics and Computing , vol.14 , Issue.3 , pp. 199-222
    • Smola, A.J.1    Scholkopf, B.2
  • 35
    • 33747349191 scopus 로고
    • Nonuniversal critical dynamics in Monte Carlo simulations
    • Robert H. Swendsen and Jian-Sheng Wang. Nonuniversal critical dynamics in Monte Carlo simulations. Physical Review Letters, (58):86-88, 1987.
    • (1987) Physical Review Letters , vol.58 , pp. 86-88
    • Swendsen, R.H.1    Wang, J.-S.2
  • 42
    • 84877783948 scopus 로고    scopus 로고
    • Bayesian nonparametric maximum margin matrix factorization for collaborative prediction
    • Minjie Xu, Jun Zhu, and Bo Zhang. Bayesian nonparametric maximum margin matrix factorization for collaborative prediction. In Advances in Neural Information Processing Systems (NIPS), pages 64-72, 2012.
    • (2012) Advances in Neural Information Processing Systems (NIPS) , pp. 64-72
    • Xu, M.1    Zhu, J.2    Zhang, B.3
  • 44
    • 80053144865 scopus 로고    scopus 로고
    • Hybrid generative/discriminative learning for automatic image annotation
    • Shuanghong Yang, Jiang Bian, and Hongyuan Zha. Hybrid generative/discriminative learning for automatic image annotation. In Uncertainty in Artificial Intelligence (UAI), pages 683-690, 2010.
    • Uncertainty in Artificial Intelligence (UAI) , vol.2010 , pp. 683-690
    • Yang, S.1    Bian, J.2    Zha, H.3
  • 46
    • 84867115033 scopus 로고    scopus 로고
    • Max-margin nonparametric latent feature models for link prediction
    • Jun Zhu. Max-margin nonparametric latent feature models for link prediction. In International Conference on Machine Learning (ICML), pages 719-726, 2012.
    • International Conference on Machine Learning (ICML) , vol.2012 , pp. 719-726
    • Zhu, J.1
  • 52
    • 84902818267 scopus 로고    scopus 로고
    • Bayesian inference with posterior regularization and applications to infinite latent SVMs
    • Technical Report, arXiv:1210.1766v3
    • Jun Zhu, Ning Chen, and Eric P. Xing. Bayesian inference with posterior regularization and applications to infinite latent SVMs. Journal of Machine Learning Research (JMLR, in press) (Technical Report, arXiv:1210.1766v3), 2014.
    • (2014) Journal of Machine Learning Research (JMLR in Press)
    • Zhu, J.1    Chen, N.2    Xing, E.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.