-
1
-
-
84858012279
-
Scalable inference in latent variable models
-
Amr Ahmed, Mohamed Aly, Joseph Gonzalez, Shravan Narayanamurthy, and Alex Smola. Scalable inference in latent variable models. In International Conference on Web Search and Data Mining (WSDM), pages 123-132, 2012.
-
(2012)
International Conference on Web Search and Data Mining (WSDM)
, pp. 123-132
-
-
Ahmed, A.1
Aly, M.2
Gonzalez, J.3
Narayanamurthy, S.4
Smola, A.5
-
2
-
-
54249110594
-
Mixed mem- bership stochastic blockmodels
-
Edoardo M. Airoldi, David M. Blei, Stephen E. Fienberg, and Eric P. Xing. Mixed mem- bership stochastic blockmodels. Journal of Machine Learning Research (JMLR), 9:1981- 2014, 2008.
-
(2008)
Journal of Machine Learning Research (JMLR)
, vol.9
, pp. 1981-2014
-
-
Airoldi, E.M.1
Blei, D.M.2
Fienberg, S.E.3
Xing, E.P.4
-
3
-
-
27844439373
-
A framework for learning predictive structures from multiple tasks and unlabeled data
-
Rie K. Ando and Tong Zhang. A framework for learning predictive structures from multiple tasks and unlabeled data. Journal of Machine Learning Research (JMLR), (6):1817-1853, 2005.
-
(2005)
Journal of Machine Learning Research (JMLR)
, Issue.6
, pp. 1817-1853
-
-
Ando, R.K.1
Zhang, T.2
-
9
-
-
84867776237
-
Large-margin predictive latent subspace learning for multiview data analysis
-
Ning Chen, Jun Zhu, Fuchun Sun, and Eric P. Xing. Large-margin predictive latent subspace learning for multiview data analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence (TPAMI), 34(12):2365-2378, 2012.
-
(2012)
IEEE Trans. on Pattern Analysis and Machine Intelligence (TPAMI)
, vol.34
, Issue.12
, pp. 2365-2378
-
-
Chen, N.1
Zhu, J.2
Sun, F.3
Xing, E.P.4
-
10
-
-
84896062198
-
Generalized relational topic models with data augmentation
-
Ning Chen, Jun Zhu, Fei Xia, and Bo Zhang. Generalized relational topic models with data augmentation. In International Joint Conference on Artificial Intelligence (IJCAI), pages 1273-1279, 2013.
-
(2013)
International Joint Conference on Artificial Intelligence (IJCAI)
, pp. 1273-1279
-
-
Chen, N.1
Zhu, J.2
Xia, F.3
Zhang, B.4
-
11
-
-
0010442827
-
On the algorithmic implementation of multiclass kernel- based vector machines
-
Koby Crammer and Yoram Singer. On the algorithmic implementation of multiclass kernel- based vector machines. Journal of Machine Learning Research (JMLR), (2):265-292, 2001.
-
(2001)
Journal of Machine Learning Research (JMLR)
, vol.2
, pp. 265-292
-
-
Crammer, K.1
Singer, Y.2
-
12
-
-
0002629270
-
Maximum likelihood estimation from incomplete data via the em algorithm
-
Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin. Maximum likelihood estimation from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Ser. B, (39):1-38, 1977.
-
(1977)
Journal of the Royal Statistical Society, Ser. B
, vol.39
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
15
-
-
77956929686
-
Posterior regular- ization for structured latent variable models
-
Kuzman Ganchev, Joao Graca, Jennifer Gillenwater, and Ben Taskar. Posterior regular- ization for structured latent variable models. Journal of Machine Learning Research (JMLR), 11:2001-2049, 2010.
-
(2010)
Journal of Machine Learning Research (JMLR)
, vol.11
, pp. 2001-2049
-
-
Ganchev, K.1
Graca, J.2
Gillenwater, J.3
Taskar, B.4
-
16
-
-
71149105482
-
PAC- Bayesian learning of linear classifiers
-
Pascal Germain, Alexandre Lacasse, Francois Laviolette, and Mario Marchand. PAC- Bayesian learning of linear classifiers. In International Conference on Machine Learning (ICML), pages 353-360, 2009.
-
(2009)
International Conference on Machine Learning (ICML)
, pp. 353-360
-
-
Germain, P.1
Lacasse, A.2
Laviolette, F.3
Marchand, M.4
-
18
-
-
84873662740
-
The data augmentation algorithm: Theory and methodology
-
(S. Brooks, A. Gelman, G. Jones and X.-L. Meng, eds.). Chapman & Hall/CRC Press, Boca Raton, FL.
-
James P. Hobert. The Data Augmentation Algorithm: Theory and Methodology. In Hand- book of Markov Chain Monte Carlo (S. Brooks, A. Gelman, G. Jones and X.-L. Meng, eds.). Chapman & Hall/CRC Press, Boca Raton, FL., 2011.
-
(2011)
Handbook of Markov Chain Monte Carlo
-
-
Hobert, J.P.1
-
19
-
-
84867151416
-
Bayesian auxiliary variable models for binary and multinomial regression
-
Chris C. Holmes and Leonhard Held. Bayesian auxiliary variable models for binary and multinomial regression. Bayesian Analysis, 1(1):145-168, 2006.
-
(2006)
Bayesian Analysis
, vol.1
, Issue.1
, pp. 145-168
-
-
Holmes, C.C.1
Held, L.2
-
22
-
-
84877739470
-
Monte Carlo methods for maximum margin supervised topic models
-
Qixia Jiang, Jun Zhu, Maosong Sun, and Eric P. Xing. Monte Carlo methods for maximum margin supervised topic models. In Advances in Neural Information Processing Systems (NIPS), pages 1601-1609, 2012.
-
(2012)
Advances in Neural Information Processing Systems (NIPS)
, pp. 1601-1609
-
-
Jiang, Q.1
Zhu, J.2
Sun, M.3
Xing, E.P.4
-
25
-
-
0037399538
-
PAC-Bayesian stochastic model selection
-
David McAllester. PAC-Bayesian stochastic model selection. Machine Learning, 51:5-21, 2003.
-
(2003)
Machine Learning
, vol.51
, pp. 5-21
-
-
McAllester, D.1
-
27
-
-
84952221231
-
Generating random variates using transformations with multiple roots
-
John R. Michael, William R. Schucany, and Roy W. Haas. Generating random variates using transformations with multiple roots. The American Statistician, 30(2):88-90, 1976.
-
(1976)
The American Statistician
, vol.30
, Issue.2
, pp. 88-90
-
-
Michael, J.R.1
Schucany, W.R.2
Haas, R.W.3
-
28
-
-
84899875815
-
Max- margin min-entropy models
-
Kevin Miller, M. Pawan Kumar, Ben Packer, Danny Goodman, and Daphne Koller. Max- margin min-entropy models. In Artificial Intelligence and Statistics (AISTATS), pages 779-787, 2012.
-
(2012)
Artificial Intelligence and Statistics (AISTATS)
, pp. 779-787
-
-
Miller, K.1
Kumar, M.P.2
Packer, B.3
Goodman, D.4
Koller, D.5
-
29
-
-
0004160362
-
Markov chain Monte Carlo methods based on 'slicing' the density function
-
Department of Statistics, University of Toronto
-
Radford M. Neal. Markov chain Monte Carlo methods based on 'slicing' the density function. Technical Report No. 9722, Department of Statistics, University of Toronto, 1997.
-
(1997)
Technical Report No. 9722
-
-
Neal, R.M.1
-
30
-
-
70349433731
-
Distributed algo- rithms for topic models
-
David Newman, Arthur Asuncion, Padhraic Smyth, and Max Welling. Distributed algo- rithms for topic models. Journal of Machine Learning Research (JMLR), (10):1801-1828, 2009.
-
(2009)
Journal of Machine Learning Research (JMLR)
, vol.10
, pp. 1801-1828
-
-
Newman, D.1
Asuncion, A.2
Smyth, P.3
Welling, M.4
-
31
-
-
79957844365
-
Data augmentation for support vector machines
-
Nicholas G. Polson and Steven L. Scott. Data augmentation for support vector machines. Bayesian Analysis, 6(1):1-24, 2011.
-
(2011)
Bayesian Analysis
, vol.6
, Issue.1
, pp. 1-24
-
-
Polson, N.G.1
Scott, S.L.2
-
33
-
-
80052119994
-
An architecture for parallel topic models
-
Alex Smola and Shravan Narayanamurthy. An architecture for parallel topic models. Very Large Data Base (VLDB), 3(1-2):703-710, 2010.
-
(2010)
Very Large Data Base (VLDB)
, vol.3
, Issue.1-2
, pp. 703-710
-
-
Smola, A.1
Narayanamurthy, S.2
-
34
-
-
4043137356
-
A tutorial on support vector regression
-
DOI 10.1023/B:STCO.0000035301.49549.88
-
Alex Smola and Bernhard Scholkopf. A tutorial on support vector regression. Statistics and Computing, 14(3):199-222, 2003. (Pubitemid 39063488)
-
(2004)
Statistics and Computing
, vol.14
, Issue.3
, pp. 199-222
-
-
Smola, A.J.1
Scholkopf, B.2
-
35
-
-
33747349191
-
Nonuniversal critical dynamics in Monte Carlo simulations
-
Robert H. Swendsen and Jian-Sheng Wang. Nonuniversal critical dynamics in Monte Carlo simulations. Physical Review Letters, (58):86-88, 1987.
-
(1987)
Physical Review Letters
, vol.58
, pp. 86-88
-
-
Swendsen, R.H.1
Wang, J.-S.2
-
42
-
-
84877783948
-
Bayesian nonparametric maximum margin matrix factorization for collaborative prediction
-
Minjie Xu, Jun Zhu, and Bo Zhang. Bayesian nonparametric maximum margin matrix factorization for collaborative prediction. In Advances in Neural Information Processing Systems (NIPS), pages 64-72, 2012.
-
(2012)
Advances in Neural Information Processing Systems (NIPS)
, pp. 64-72
-
-
Xu, M.1
Zhu, J.2
Zhang, B.3
-
44
-
-
80053144865
-
Hybrid generative/discriminative learning for automatic image annotation
-
Shuanghong Yang, Jiang Bian, and Hongyuan Zha. Hybrid generative/discriminative learning for automatic image annotation. In Uncertainty in Artificial Intelligence (UAI), pages 683-690, 2010.
-
Uncertainty in Artificial Intelligence (UAI)
, vol.2010
, pp. 683-690
-
-
Yang, S.1
Bian, J.2
Zha, H.3
-
46
-
-
84867115033
-
Max-margin nonparametric latent feature models for link prediction
-
Jun Zhu. Max-margin nonparametric latent feature models for link prediction. In International Conference on Machine Learning (ICML), pages 719-726, 2012.
-
International Conference on Machine Learning (ICML)
, vol.2012
, pp. 719-726
-
-
Zhu, J.1
-
50
-
-
84897459309
-
Gibbs max-margin topic models with fast inference algorithms
-
Jun Zhu, Ning Chen, Hugh Perkins, and Bo Zhang. Gibbs max-margin topic models with fast inference algorithms. In International Conference on Machine Learning (ICML), pages 124-132, 2013a.
-
(2013)
International Conference on Machine Learning (ICML)
, pp. 124-132
-
-
Zhu, J.1
Chen, N.2
Perkins, H.3
Zhang, B.4
-
51
-
-
84979594919
-
Scalable inference in max-margin topic models
-
Jun Zhu, Xun Zheng, Li Zhou, and Bo Zhang. Scalable inference in max-margin topic mod- els. In ACM SIGKDD Conference on Knowledge Discovery and Data Mining (SIGKDD), pages 964-972, 2013b.
-
(2013)
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (SIGKDD)
, pp. 964-972
-
-
Zhu, J.1
Zheng, X.2
Zhou, L.3
Zhang, B.4
-
52
-
-
84902818267
-
Bayesian inference with posterior regularization and applications to infinite latent SVMs
-
Technical Report, arXiv:1210.1766v3
-
Jun Zhu, Ning Chen, and Eric P. Xing. Bayesian inference with posterior regularization and applications to infinite latent SVMs. Journal of Machine Learning Research (JMLR, in press) (Technical Report, arXiv:1210.1766v3), 2014.
-
(2014)
Journal of Machine Learning Research (JMLR in Press)
-
-
Zhu, J.1
Chen, N.2
Xing, E.P.3
|