메뉴 건너뛰기




Volumn 10, Issue 6, 2014, Pages 2602-2611

Covalent attachment of a three-dimensionally printed thermoplast to a gelatin hydrogel for mechanically enhanced cartilage constructs

Author keywords

3 D fiber deposition; Cartilage; Fiber reinforcement; Hydrogel; Polymer grafting

Indexed keywords

3D PRINTERS; BEARINGS (MACHINE PARTS); CARTILAGE; HYBRID MATERIALS; INTERFACES (MATERIALS); PHOTOPOLYMERIZATION; REINFORCED PLASTICS; REINFORCEMENT;

EID: 84899642034     PISSN: 17427061     EISSN: 18787568     Source Type: Journal    
DOI: 10.1016/j.actbio.2014.02.041     Document Type: Article
Times cited : (130)

References (67)
  • 1
    • 84861714640 scopus 로고    scopus 로고
    • Designing cell-compatible hydrogels for biomedical applications
    • Seliktar D. Designing cell-compatible hydrogels for biomedical applications. Science 2012;336:1124-8.
    • (2012) Science , vol.336 , pp. 1124-1128
    • Seliktar, D.1
  • 3
    • 77952134687 scopus 로고    scopus 로고
    • Cell encapsulation using biopolymer gels for regenerative medicine
    • Hunt NC, Grover LM. Cell encapsulation using biopolymer gels for regenerative medicine. Biotechnol Lett 2010;32:733-42.
    • (2010) Biotechnol Lett , vol.32 , pp. 733-742
    • Hunt, N.C.1    Grover, L.M.2
  • 4
    • 0042358985 scopus 로고    scopus 로고
    • Cell culture: Biology's new dimension
    • Abbott A. Cell culture: biology's new dimension. Nature 2003;424:870-2.
    • (2003) Nature , vol.424 , pp. 870-872
    • Abbott, A.1
  • 5
    • 79960088559 scopus 로고    scopus 로고
    • Enhanced MSC chondrogenesis following delivery of TGF-beta3 from alginate microspheres within hyaluronic acid hydrogels in vitro and in vivo
    • Bian L, Zhai DY, Tous E, Rai R, Mauck RL, Burdick JA. Enhanced MSC chondrogenesis following delivery of TGF-beta3 from alginate microspheres within hyaluronic acid hydrogels in vitro and in vivo. Biomaterials 2011;32:6425-34.
    • (2011) Biomaterials , vol.32 , pp. 6425-6434
    • Bian, L.1    Zhai, D.Y.2    Tous, E.3    Rai, R.4    Mauck, R.L.5    Burdick, J.A.6
  • 6
    • 82855161330 scopus 로고    scopus 로고
    • Enhancement of mesenchymal stem cell angiogenic capacity and stemness by a biomimetic hydrogel scaffold
    • Rustad KC, Wong VW, Sorkin M, Glotzbach JP, Major MR, Rajadas J, et al. Enhancement of mesenchymal stem cell angiogenic capacity and stemness by a biomimetic hydrogel scaffold. Biomaterials 2012;33:80-90.
    • (2012) Biomaterials , vol.33 , pp. 80-90
    • Rustad, K.C.1    Wong, V.W.2    Sorkin, M.3    Glotzbach, J.P.4    Major, M.R.5    Rajadas, J.6
  • 8
    • 77951604536 scopus 로고    scopus 로고
    • On-demand threedimensional freeform fabrication of multi-layered hydrogel scaffold with fluidic channels
    • Lee W, Lee V, Polio S, Keegan P, Lee J-H, Fischer K, et al. On-demand threedimensional freeform fabrication of multi-layered hydrogel scaffold with fluidic channels. Biotechnol Bioeng 2010;105:1178-86.
    • (2010) Biotechnol Bioeng , vol.105 , pp. 1178-1186
    • Lee, W.1    Lee, V.2    Polio, S.3    Keegan, P.4    Lee, J.-H.5    Fischer, K.6
  • 10
    • 84873156275 scopus 로고    scopus 로고
    • Engineering osteochondral constructs through spatial regulation of endochondral ossification
    • Sheehy EJ, Vinardell T, Buckley CT, Kelly DJ. Engineering osteochondral constructs through spatial regulation of endochondral ossification. Acta Biomater 2013;9:5484-92.
    • (2013) Acta Biomater , vol.9 , pp. 5484-5492
    • Sheehy, E.J.1    Vinardell, T.2    Buckley, C.T.3    Kelly, D.J.4
  • 11
  • 12
    • 0030246883 scopus 로고    scopus 로고
    • Mechanical properties of hydrogels and their experimental determination
    • Anseth KS, Bowman CN, Brannon-Peppas L. Mechanical properties of hydrogels and their experimental determination. Biomaterials 1996;17:1647-57.
    • (1996) Biomaterials , vol.17 , pp. 1647-1657
    • Anseth, K.S.1    Bowman, C.N.2    Brannon-Peppas, L.3
  • 14
    • 84878147219 scopus 로고    scopus 로고
    • Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs
    • Schuurman W, Levett PA, Pot MW, van Weeren PR, Dhert WJA, Hutmacher DW, et al. Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs. Macromol Biosci 2013;13:551-61.
    • (2013) Macromol Biosci , vol.13 , pp. 551-561
    • Schuurman, W.1    Levett, P.A.2    Pot, M.W.3    Van Weeren, P.R.4    Dhert, W.J.A.5    Hutmacher, D.W.6
  • 15
    • 0037122788 scopus 로고    scopus 로고
    • Novel crosslinking methods to design hydrogels
    • Hennink WE, van Nostrum CF. Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev 2002;54:13-36.
    • (2002) Adv Drug Deliv Rev , vol.54 , pp. 13-36
    • Hennink, W.E.1    Van Nostrum, C.F.2
  • 17
    • 77954494231 scopus 로고    scopus 로고
    • Bioprinting endothelial cells with alginate for 3D tissue constructs
    • Khalil S, Sun W. Bioprinting endothelial cells with alginate for 3D tissue constructs. J Biomech Eng 2009;131:111002.
    • (2009) J Biomech Eng , vol.131 , pp. 111002
    • Khalil, S.1    Sun, W.2
  • 18
    • 84856566414 scopus 로고    scopus 로고
    • The mechanical properties and cytotoxicity of cell-laden double-network hydrogels based on photocrosslinkable gelatin and gellan gum biomacromolecules
    • Shin H, Olsen BD, Khademhosseini A. The mechanical properties and cytotoxicity of cell-laden double-network hydrogels based on photocrosslinkable gelatin and gellan gum biomacromolecules. Biomaterials 2012;33:3143-52.
    • (2012) Biomaterials , vol.33 , pp. 3143-3152
    • Shin, H.1    Olsen, B.D.2    Khademhosseini, A.3
  • 19
    • 68949092104 scopus 로고    scopus 로고
    • Photopatterned collagen-hyaluronic acid interpenetrating polymer network hydrogels
    • Suri S, Schmidt CE. Photopatterned collagen-hyaluronic acid interpenetrating polymer network hydrogels. Acta Biomater 2009;5:2385-97.
    • (2009) Acta Biomater , vol.5 , pp. 2385-2397
    • Suri, S.1    Schmidt, C.E.2
  • 20
    • 34547850223 scopus 로고    scopus 로고
    • Biomimetic strain hardening in interpenetrating polymer network hydrogels
    • Myung D, Koh WU, Ko JM, Hu Y, Carrasco M, Noolandi J, et al. Biomimetic strain hardening in interpenetrating polymer network hydrogels. Polymer 2007;48:5376-87.
    • (2007) Polymer , vol.48 , pp. 5376-5387
    • Myung, D.1    Koh, W.U.2    Ko, J.M.3    Hu, Y.4    Carrasco, M.5    Noolandi, J.6
  • 22
    • 84884285231 scopus 로고    scopus 로고
    • Interpenetrating polymer networks polysaccharide hydrogels for drug delivery and tissue engineering
    • Matricardi P, Di Meo C, Coviello T, Hennink WE, Alhaique F. Interpenetrating polymer networks polysaccharide hydrogels for drug delivery and tissue engineering. Adv Drug Deliv Rev 2013;65:1172-87.
    • (2013) Adv Drug Deliv Rev , vol.65 , pp. 1172-1187
    • Matricardi, P.1    Di Meo, C.2    Coviello, T.3    Hennink, W.E.4    Alhaique, F.5
  • 23
    • 84862200079 scopus 로고    scopus 로고
    • Fiber reinforced calcium phosphate cements - On the way to degradable load bearing bone substitutes?
    • Krüger R, Groll J. Fiber reinforced calcium phosphate cements - on the way to degradable load bearing bone substitutes? Biomaterials 2012;33:5887-900.
    • (2012) Biomaterials , vol.33 , pp. 5887-5900
    • Krüger, R.1    Groll, J.2
  • 25
    • 84859104727 scopus 로고    scopus 로고
    • Facilitating the mineralization of oligo(poly(ethylene glycol) fumarate) hydrogel by incorporation of hydroxyapatite nanoparticles
    • Reza Nejadnik M, Mikos AG, Jansen JA, Leeuwenburgh SCG. Facilitating the mineralization of oligo(poly(ethylene glycol) fumarate) hydrogel by incorporation of hydroxyapatite nanoparticles. J Biomed Mater Res A 2012;100:1316-23.
    • (2012) J Biomed Mater Res A , vol.100 , pp. 1316-1323
    • Reza Nejadnik, M.1    Mikos, A.G.2    Jansen, J.A.3    Leeuwenburgh, S.C.G.4
  • 26
    • 84856202952 scopus 로고    scopus 로고
    • Carbon nanotube reinforced hybrid microgels as scaffold materials for cell encapsulation
    • Ryon Shin S, Bae H, Min Cha J, Young Mun J, Chen Y-C, Tekin H, et al. Carbon nanotube reinforced hybrid microgels as scaffold materials for cell encapsulation. ACS nano 2012;6:362-72.
    • (2012) ACS Nano , vol.6 , pp. 362-372
    • Ryon Shin, S.1    Bae, H.2    Min Cha, J.3    Young Mun, J.4    Chen, Y.-C.5    Tekin, H.6
  • 28
    • 84857395764 scopus 로고    scopus 로고
    • Mechanical properties and in vitro behavior of nanofiber-hydrogel composites for tissue engineering applications
    • Kai D, Prabhakaran MP, Stahl B, Eblenkamp M, Wintermantel E, Ramakrishna S. Mechanical properties and in vitro behavior of nanofiber-hydrogel composites for tissue engineering applications. Nanotechnology 2012;23:95705.
    • (2012) Nanotechnology , vol.23 , pp. 95705
    • Kai, D.1    Prabhakaran, M.P.2    Stahl, B.3    Eblenkamp, M.4    Wintermantel, E.5    Ramakrishna, S.6
  • 29
    • 77958082518 scopus 로고    scopus 로고
    • Mechanical evaluation of poly(vinyl alcohol)-based fibrous composites as biomaterials for meniscal tissue replacement
    • Holloway JL, Lowman AM, Palmese GR. Mechanical evaluation of poly(vinyl alcohol)-based fibrous composites as biomaterials for meniscal tissue replacement. Acta Biomater 2010;6:4716-24.
    • (2010) Acta Biomater , vol.6 , pp. 4716-4724
    • Holloway, J.L.1    Lowman, A.M.2    Palmese, G.R.3
  • 30
    • 84890563787 scopus 로고    scopus 로고
    • Composite three-dimensional woven scaffolds with interpenetrating network hydrogels to create functional synthetic articular cartilage
    • Liao I-C, Moutos FT, Estes BT, Zhao X, Guilak F. Composite three-dimensional woven scaffolds with interpenetrating network hydrogels to create functional synthetic articular cartilage. Adv Funct Mater 2013;23:5833-9.
    • (2013) Adv Funct Mater , vol.23 , pp. 5833-5839
    • Liao, I.-C.1    Moutos, F.T.2    Estes, B.T.3    Zhao, X.4    Guilak, F.5
  • 31
    • 84879073596 scopus 로고    scopus 로고
    • A cell-laden nanofiber/ hydrogel composite structure with tough-soft mechanical property
    • Jang J, Oh H, Lee J, Song T-H, Hun Jeong Y, Cho D-W. A cell-laden nanofiber/ hydrogel composite structure with tough-soft mechanical property. Appl Phys Lett 2013;102:211914.
    • (2013) Appl Phys Lett , vol.102 , pp. 211914
    • Jang, J.1    Oh, H.2    Lee, J.3    Song, T.-H.4    Hun Jeong, Y.5    Cho, D.-W.6
  • 32
    • 0035814241 scopus 로고    scopus 로고
    • Threedimensional cartilage formation by bone marrow-derived cells seeded in polylactide/alginate amalgam
    • Caterson EJ, Nesti LJ, Li WJ, Danielson KG, Albert TJ, Vaccaro AR, et al. Threedimensional cartilage formation by bone marrow-derived cells seeded in polylactide/alginate amalgam. J Biomed Mater Res 2001;57:394-403.
    • (2001) J Biomed Mater Res , vol.57 , pp. 394-403
    • Caterson, E.J.1    Nesti, L.J.2    Li, W.J.3    Danielson, K.G.4    Albert, T.J.5    Vaccaro, A.R.6
  • 33
    • 21844451604 scopus 로고    scopus 로고
    • In vivo response of polylactic acid-alginate scaffolds and bone marrow-derived cells for cartilage tissue engineering
    • Wayne JS, McDowell CL, Shields KJ, Tuan RS. In vivo response of polylactic acid-alginate scaffolds and bone marrow-derived cells for cartilage tissue engineering. Tissue eng 2005;11:953-63.
    • (2005) Tissue Eng , vol.11 , pp. 953-963
    • Wayne, J.S.1    McDowell, C.L.2    Shields, K.J.3    Tuan, R.S.4
  • 34
    • 0036145104 scopus 로고    scopus 로고
    • A biodegradable composite scaffold for cell transplantation
    • Ameer GA, Mahmood TA, Langer R. A biodegradable composite scaffold for cell transplantation. J Orthop Res 2002;20:16-9.
    • (2002) J Orthop Res , vol.20 , pp. 16-19
    • Ameer, G.A.1    Mahmood, T.A.2    Langer, R.3
  • 35
    • 84865021298 scopus 로고    scopus 로고
    • Composite system of PLCL scaffold and heparin-based hydrogel for regeneration of partial-thickness cartilage defects
    • Kim M, Hong B, Lee J, Kim SE, Kang SS, Kim YH, et al. Composite system of PLCL scaffold and heparin-based hydrogel for regeneration of partial-thickness cartilage defects. Biomacromolecules 2012;13:2287-98.
    • (2012) Biomacromolecules , vol.13 , pp. 2287-2298
    • Kim, M.1    Hong, B.2    Lee, J.3    Kim, S.E.4    Kang, S.S.5    Kim, Y.H.6
  • 36
    • 79953076136 scopus 로고    scopus 로고
    • Biomimetics of the extracellular matrix: An integrated three-dimensional fiber-hydrogel composite for cartilage tissue engineering
    • Coburn J, Gibson M, Bandalini PA, Laird C, Mao HQ, Moroni L, et al. Biomimetics of the extracellular matrix: an integrated three-dimensional fiber-hydrogel composite for cartilage tissue engineering. Smart Struct Syst 2011;7:213-22.
    • (2011) Smart Struct Syst , vol.7 , pp. 213-222
    • Coburn, J.1    Gibson, M.2    Bandalini, P.A.3    Laird, C.4    Mao, H.Q.5    Moroni, L.6
  • 39
    • 84875523139 scopus 로고    scopus 로고
    • State of the art composites comprising electrospun fibres coupled with hydrogels: A review
    • Bosworth LA, Turner L-A, Cartmell SH. State of the art composites comprising electrospun fibres coupled with hydrogels: a review. Nanomedicine 2013;9:322-35.
    • (2013) Nanomedicine , vol.9 , pp. 322-335
    • Bosworth, L.A.1    Turner, L.-A.2    Cartmell, S.H.3
  • 40
    • 84870316597 scopus 로고    scopus 로고
    • Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications
    • Xu T, Binder KW, Albanna MZ, Dice D, Zhao W, Yoo JJ, et al. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication 2012;5:015001.
    • (2012) Biofabrication , vol.5 , pp. 015001
    • Xu, T.1    Binder, K.W.2    Albanna, M.Z.3    Dice, D.4    Zhao, W.5    Yoo, J.J.6
  • 42
    • 84872312153 scopus 로고    scopus 로고
    • Cell(MC3T3-E1)-printed poly(-caprolactone)/ alginate hybrid scaffolds for tissue regeneration
    • Lee H, Ahn S, Bonassar LJ, Kim G. Cell(MC3T3-E1)-printed poly(-caprolactone)/ alginate hybrid scaffolds for tissue regeneration. Macromol Rapid Commun 2013;34:142-9.
    • (2013) Macromol Rapid Commun , vol.34 , pp. 142-149
    • Lee, H.1    Ahn, S.2    Bonassar, L.J.3    Kim, G.4
  • 43
    • 84864459017 scopus 로고    scopus 로고
    • Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system
    • Shim JH, Lee JS, Kim JY, Cho D-W. Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system. J Micromech Microeng 2012;22:085014.
    • (2012) J Micromech Microeng , vol.22 , pp. 085014
    • Shim, J.H.1    Lee, J.S.2    Kim, J.Y.3    Cho, D.-W.4
  • 45
    • 84946497789 scopus 로고    scopus 로고
    • An additive manufacturingbased PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering
    • Kundu J, Shim J-H, Jang J, Kim S-W, Cho D-W. An additive manufacturingbased PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering. J Tissue Eng Regen Med 2013. http://dx.doi.org/10.1002/ term.682.
    • (2013) J Tissue Eng Regen Med
    • Kundu, J.1    Shim, J.-H.2    Jang, J.3    Kim, S.-W.4    Cho, D.-W.5
  • 46
    • 84862652414 scopus 로고    scopus 로고
    • Advances in bioactive hydrogels to probe and direct cell fate
    • DeForest CA, Anseth KS. Advances in bioactive hydrogels to probe and direct cell fate. Annu Rev Chem Biomol Eng 2012;3:421-44.
    • (2012) Annu Rev Chem Biomol Eng , vol.3 , pp. 421-444
    • Deforest, C.A.1    Anseth, K.S.2
  • 47
    • 67649444793 scopus 로고    scopus 로고
    • Cell-scaffold mechanical interplay within engineered tissue
    • Dado D, Levenberg S. Cell-scaffold mechanical interplay within engineered tissue. Semin Cell Dev Biol 2009;20:656-64.
    • (2009) Semin Cell Dev Biol , vol.20 , pp. 656-664
    • Dado, D.1    Levenberg, S.2
  • 48
    • 52449088115 scopus 로고    scopus 로고
    • Composite scaffolds for cartilage tissue engineering
    • Moutos FT, Guilak F. Composite scaffolds for cartilage tissue engineering. Biorheology 2008;45:501-12.
    • (2008) Biorheology , vol.45 , pp. 501-512
    • Moutos, F.T.1    Guilak, F.2
  • 49
    • 70449462871 scopus 로고    scopus 로고
    • Synthesis and characterization of hydroxyl-functionalized caprolactone copolymers and their effect on adhesion, proliferation, and differentiation of human mesenchymal stem cells
    • Seyednejad H, Vermonden T, Fedorovich NE, van Eijk R, van Steenbergen MJ, Dhert WJ, et al. Synthesis and characterization of hydroxyl-functionalized caprolactone copolymers and their effect on adhesion, proliferation, and differentiation of human mesenchymal stem cells. Biomacromolecules 2009;10:3048-54.
    • (2009) Biomacromolecules , vol.10 , pp. 3048-3054
    • Seyednejad, H.1    Vermonden, T.2    Fedorovich, N.E.3    Van Eijk, R.4    Van Steenbergen, M.J.5    Dhert, W.J.6
  • 50
    • 79953891357 scopus 로고    scopus 로고
    • Preparation and characterization of a three-dimensional printed scaffold based on a functionalized polyester for bone tissue engineering applications
    • Seyednejad H, Gawlitta D, Dhert WJA, van Nostrum CF, Vermonden T, Hennink WE. Preparation and characterization of a three-dimensional printed scaffold based on a functionalized polyester for bone tissue engineering applications. Acta Biomater 2011;7:1999-2006.
    • (2011) Acta Biomater , vol.7 , pp. 1999-2006
    • Seyednejad, H.1    Gawlitta, D.2    Dhert, W.J.A.3    Van Nostrum, C.F.4    Vermonden, T.5    Hennink, W.E.6
  • 51
    • 84858862640 scopus 로고    scopus 로고
    • In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(epsilon-caprolactone)
    • Seyednejad H, Gawlitta D, Kuiper RV, de Bruin A, van Nostrum CF, Vermonden T, et al. In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(epsilon-caprolactone). Biomaterials 2012;33:4309-18.
    • (2012) Biomaterials , vol.33 , pp. 4309-4318
    • Seyednejad, H.1    Gawlitta, D.2    Kuiper, R.V.3    De Bruin, A.4    Van Nostrum, C.F.5    Vermonden, T.6
  • 52
    • 0034672872 scopus 로고    scopus 로고
    • Scaffolds in tissue engineering bone and cartilage
    • Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials 2000;21:2529-43.
    • (2000) Biomaterials , vol.21 , pp. 2529-2543
    • Hutmacher, D.W.1
  • 53
    • 84869040933 scopus 로고    scopus 로고
    • Coaxially electrospun scaffolds based on hydroxyl-functionalized poly(e-caprolactone) and loaded with VEGF for tissue engineering applications
    • Seyednejad H, Ji W, Yang F, van Nostrum CF, Vermonden T, van den Beucken JJJP, et al. Coaxially electrospun scaffolds based on hydroxyl-functionalized poly(e-caprolactone) and loaded with VEGF for tissue engineering applications. Biomacromolecules 2012;13:3650-60.
    • (2012) Biomacromolecules , vol.13 , pp. 3650-3660
    • Seyednejad, H.1    Ji, W.2    Yang, F.3    Van Nostrum, C.F.4    Vermonden, T.5    Van Den Beucken, J.J.J.P.6
  • 54
    • 83255186805 scopus 로고    scopus 로고
    • An electrospun degradable scaffold based on a novel hydrophilic polyester for tissue-engineering applications
    • Seyednejad H, Ji W, Schuurman W, Dhert WJA, Malda J, Yang F, et al. An electrospun degradable scaffold based on a novel hydrophilic polyester for tissue-engineering applications. Macromol Biosci 2011;11:1684-92.
    • (2011) Macromol Biosci , vol.11 , pp. 1684-1692
    • Seyednejad, H.1    Ji, W.2    Schuurman, W.3    Dhert, W.J.A.4    Malda, J.5    Yang, F.6
  • 55
    • 77955570516 scopus 로고    scopus 로고
    • Photopolymerized thermosensitive poly(HPMAlactate)-PEG-based hydrogels: Effect of network design on mechanical properties, degradation, and release behavior
    • Censi R, Vermonden T, Deschout H, Braeckmans K, di Martino P, De Smedt SC, et al. Photopolymerized thermosensitive poly(HPMAlactate)-PEG-based hydrogels: effect of network design on mechanical properties, degradation, and release behavior. Biomacromolecules 2010;11:2143-51.
    • (2010) Biomacromolecules , vol.11 , pp. 2143-2151
    • Censi, R.1    Vermonden, T.2    Deschout, H.3    Braeckmans, K.4    Di Martino, P.5    De Smedt, S.C.6
  • 61
    • 10044245042 scopus 로고    scopus 로고
    • A comparison of the structure, thermal properties, and biodegradability of polycaprolactone/chitosan and acrylic acid grafted polycaprolactone/chitosan
    • Wu C-S. A comparison of the structure, thermal properties, and biodegradability of polycaprolactone/chitosan and acrylic acid grafted polycaprolactone/chitosan. Polymer 2005;46:147-55.
    • (2005) Polymer , vol.46 , pp. 147-155
    • Wu, C.-S.1
  • 62
    • 77955275024 scopus 로고    scopus 로고
    • Loading of the knee joint during activities of daily living measured in vivo in five subjects
    • Kutzner I, Heinlein B, Graichen F, Bender A, Rohlmann A, Halder A, et al. Loading of the knee joint during activities of daily living measured in vivo in five subjects. J Biomech 2010;43:2164-73.
    • (2010) J Biomech , vol.43 , pp. 2164-2173
    • Kutzner, I.1    Heinlein, B.2    Graichen, F.3    Bender, A.4    Rohlmann, A.5    Halder, A.6
  • 63
    • 0030923403 scopus 로고    scopus 로고
    • Instructional course lectures, the American academy of orthopaedic surgeons - Articular cartilage Part I. Tissue design and chondrocyte-matrix interactions
    • Buckwalter JA, Mankin HJ. Instructional Course Lectures, The American Academy of Orthopaedic Surgeons - Articular cartilage. Part I. Tissue design and chondrocyte-matrix interactions. J Bone Joint Surg Am 1997;79- A:600-14.
    • (1997) J Bone Joint Surg Am , vol.79 A , pp. 600-614
    • Buckwalter, J.A.1    Mankin, H.J.2
  • 64
    • 84888637406 scopus 로고    scopus 로고
    • A biomimetic extracellular matrix for cartilage tissue engineering centered on photocurable gelatin, hyaluronic acid and chondroitin sulfate
    • Levett P, Melchels F, Schrobback K, Hutmacher D, Malda J, Klein T. A biomimetic extracellular matrix for cartilage tissue engineering centered on photocurable gelatin, hyaluronic acid and chondroitin sulfate. Acta Biomater 2014;10:214-23.
    • (2014) Acta Biomater , vol.10 , pp. 214-223
    • Levett, P.1    Melchels, F.2    Schrobback, K.3    Hutmacher, D.4    Malda, J.5    Klein, T.6
  • 65
    • 84876011658 scopus 로고    scopus 로고
    • Mechanistic studies on the degradation and protein release characteristics of poly(lacticco- glycolic-co-hydroxymethylglycolic acid) nanospheres
    • Samadi N, van Nostrum CF, Vermonden T, Amidi M, Hennink WE. Mechanistic studies on the degradation and protein release characteristics of poly(lacticco- glycolic-co-hydroxymethylglycolic acid) nanospheres. Biomacromolecules 2013;14:1044-53.
    • (2013) Biomacromolecules , vol.14 , pp. 1044-1053
    • Samadi, N.1    Van Nostrum, C.F.2    Vermonden, T.3    Amidi, M.4    Hennink, W.E.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.