-
1
-
-
84876414806
-
The gut microbiota-masters of host development and physiology
-
Sommer F, Backhed F (2013) The gut microbiota-masters of host development and physiology. Nat Rev Microbiol 11: 227-238.
-
(2013)
Nat Rev Microbiol
, vol.11
, pp. 227-238
-
-
Sommer, F.1
Backhed, F.2
-
2
-
-
84885747168
-
How microbiomes influence metazoan development: Insights from history and Drosophila modeling of gut-microbe interactions
-
Lee WJ, Brey PT (2013) How microbiomes influence metazoan development: insights from history and Drosophila modeling of gut-microbe interactions. Annu Rev Cell Dev Biol 29: 571-592.
-
(2013)
Annu Rev Cell Dev Biol
, vol.29
, pp. 571-592
-
-
Lee, W.J.1
Brey, P.T.2
-
4
-
-
84882709450
-
Gut homeostasis in a microbial world: Insights from Drosophila melanogaster
-
Buchon N, Broderick NA, Lemaitre B (2013) Gut homeostasis in a microbial world: insights from Drosophila melanogaster. Nat Rev Microbiol 11: 615-626.
-
(2013)
Nat Rev Microbiol
, vol.11
, pp. 615-626
-
-
Buchon, N.1
Broderick, N.A.2
Lemaitre, B.3
-
5
-
-
4444231429
-
Drosophila lifespan enhancement by exogenous bacteria
-
DOI 10.1073/pnas.0405207101
-
Brummel T, Ching A, Seroude L, Simon AF, Benzer S (2004) Drosophila lifespan enhancement by exogenous bacteria. Proc Natl Acad Sci U S A 101: 12974-12979. (Pubitemid 39167568)
-
(2004)
Proceedings of the National Academy of Sciences of the United States of America
, vol.101
, Issue.35
, pp. 12974-12979
-
-
Brummel, T.1
Ching, A.2
Seroude, L.3
Simon, A.F.4
Benzer, S.5
-
6
-
-
84892714390
-
PGRP-SC2 promotes gut immune homeostasis to limit commensal dysbiosis and extend lifespan
-
Guo L, Karpac J, Tran SL, Jasper H (2014) PGRP-SC2 Promotes Gut Immune Homeostasis to Limit Commensal Dysbiosis and Extend Lifespan. Cell 156: 109-122.
-
(2014)
Cell
, vol.156
, pp. 109-122
-
-
Guo, L.1
Karpac, J.2
Tran, S.L.3
Jasper, H.4
-
7
-
-
34547440528
-
Increased Internal and External Bacterial Load during Drosophila Aging without Life-Span Trade-Off
-
DOI 10.1016/j.cmet.2007.06.006, PII S1550413107001623
-
Ren C, Webster P, Finkel SE, Tower J (2007) Increased internal and external bacterial load during Drosophila aging without life-span trade-off. Cell Metab 6: 144-152. (Pubitemid 47163619)
-
(2007)
Cell Metabolism
, vol.6
, Issue.2
, pp. 144-152
-
-
Ren, C.1
Webster, P.2
Finkel, S.E.3
Tower, J.4
-
8
-
-
78650534387
-
Commensal bacteria play a role in mating preference of Drosophila melanogaster
-
Sharon G, Segal D, Ringo JM, Hefetz A, Zilber-Rosenberg I, et al. (2010) Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proc Natl Acad Sci U S A 107: 20051-20056.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 20051-20056
-
-
Sharon, G.1
Segal, D.2
Ringo, J.M.3
Hefetz, A.4
Zilber-Rosenberg, I.5
-
9
-
-
84891592625
-
Frequent replenishment sustains the beneficial microbiome of Drosophila melanogaster
-
Blum JE, Fischer CN, Miles J, Handelsman J (2013) Frequent replenishment sustains the beneficial microbiome of Drosophila melanogaster. MBio 4: e00860-00813.
-
(2013)
MBio
, vol.4
-
-
Blum, J.E.1
Fischer, C.N.2
Miles, J.3
Handelsman, J.4
-
10
-
-
84865108178
-
Peptidoglycan sensing by the receptor PGRP-LE in the Drosophila gut induces immune responses to infectious bacteria and tolerance to microbiota
-
Bosco-Drayon V, Poidevin M, Boneca IG, Narbonne-Reveau K, Royet J, et al. (2012) Peptidoglycan sensing by the receptor PGRP-LE in the Drosophila gut induces immune responses to infectious bacteria and tolerance to microbiota. Cell Host Microbe 12: 153-165.
-
(2012)
Cell Host Microbe
, vol.12
, pp. 153-165
-
-
Bosco-Drayon, V.1
Poidevin, M.2
Boneca, I.G.3
Narbonne-Reveau, K.4
Royet, J.5
-
11
-
-
48649085941
-
PIMS modulates immune tolerance by negatively regulating Drosophila innate immune signaling
-
Lhocine N, Ribeiro PS, Buchon N, Wepf A, Wilson R, et al. (2008) PIMS modulates immune tolerance by negatively regulating Drosophila innate immune signaling. Cell Host Microbe 4: 147-158.
-
(2008)
Cell Host Microbe
, vol.4
, pp. 147-158
-
-
Lhocine, N.1
Ribeiro, P.S.2
Buchon, N.3
Wepf, A.4
Wilson, R.5
-
12
-
-
82055177179
-
Negative regulation by amidase PGRPs shapes the Drosophila antibacterial response and protects the fly from innocuous infection
-
Paredes JC, Welchman DP, Poidevin M, Lemaitre B (2011) Negative regulation by amidase PGRPs shapes the Drosophila antibacterial response and protects the fly from innocuous infection. Immunity 35: 770-779.
-
(2011)
Immunity
, vol.35
, pp. 770-779
-
-
Paredes, J.C.1
Welchman, D.P.2
Poidevin, M.3
Lemaitre, B.4
-
13
-
-
70349617469
-
Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila
-
Buchon N, Broderick NA, Chakrabarti S, Lemaitre B (2009) Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila. Genes Dev 23: 2333-2344.
-
(2009)
Genes Dev
, vol.23
, pp. 2333-2344
-
-
Buchon, N.1
Broderick, N.A.2
Chakrabarti, S.3
Lemaitre, B.4
-
14
-
-
80555143077
-
Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling
-
Shin SC, Kim SH, You H, Kim B, Kim AC, et al. (2011) Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science 334: 670-674.
-
(2011)
Science
, vol.334
, pp. 670-674
-
-
Shin, S.C.1
Kim, S.H.2
You, H.3
Kim, B.4
Kim, A.C.5
-
15
-
-
84860643186
-
Impact of the resident microbiota on the nutritional phenotype of Drosophila melanogaster
-
Ridley EV, Wong AC, Westmiller S, Douglas AE (2012) Impact of the resident microbiota on the nutritional phenotype of Drosophila melanogaster. PLoS One 7: e36765.
-
(2012)
PLoS One
, vol.7
-
-
Ridley, E.V.1
Wong, A.C.2
Westmiller, S.3
Douglas, A.E.4
-
16
-
-
80052774197
-
Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR dependent nutrient sensing
-
Storelli G, Defaye A, Erkosar B, Hols P, Royet J, et al. (2011) Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR dependent nutrient sensing. Cell Metabolism 14: 403-414.
-
(2011)
Cell Metabolism
, vol.14
, pp. 403-414
-
-
Storelli, G.1
Defaye, A.2
Erkosar, B.3
Hols, P.4
Royet, J.5
-
17
-
-
84884675234
-
The inconstant gut microbiota of Drosophila species revealed by 16S rRNA gene analysis
-
Wong AC, Chaston JM, Douglas AE (2013) The inconstant gut microbiota of Drosophila species revealed by 16S rRNA gene analysis. ISME J 7: 1922-1932.
-
(2013)
ISME J
, vol.7
, pp. 1922-1932
-
-
Wong, A.C.1
Chaston, J.M.2
Douglas, A.E.3
-
18
-
-
38949153861
-
Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in Drosophila
-
Ryu JH, Kim SH, Lee HY, Bai JY, Nam YD, et al. (2008) Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in Drosophila. Science 319: 777-782.
-
(2008)
Science
, vol.319
, pp. 777-782
-
-
Ryu, J.H.1
Kim, S.H.2
Lee, H.Y.3
Bai, J.Y.4
Nam, Y.D.5
-
19
-
-
36048966491
-
FlyMine: An integrated database for drosophila and anopheles genomics
-
Lyne R, Smith R, Rutherford K, Wakeling M, Varley A, et al. (2007) FlyMine: an integrated database for Drosophila and Anopheles genomics. Genome Biol 8: R129.
-
(2007)
Genome Biol
, vol.8
-
-
Lyne, R.1
Smith, R.2
Rutherford, K.3
Wakeling, M.4
Varley, A.5
-
20
-
-
34249804498
-
Using FlyAtlas to identify better Drosophila melanogaster models of human disease
-
DOI 10.1038/ng2049, PII NG2049
-
Chintapalli VR, Wang J, Dow JA (2007) Using FlyAtlas to identify better Drosophila melanogaster models of human disease. Nat Genet 39: 715-720. (Pubitemid 46848596)
-
(2007)
Nature Genetics
, vol.39
, Issue.6
, pp. 715-720
-
-
Chintapalli, V.R.1
Wang, J.2
Dow, J.A.T.3
-
21
-
-
84878614163
-
Morphological and molecular characterization of adult midgut compartmentalization in Drosophila
-
Buchon N, Osman D, David FP, Fang HY, Boquete JP, et al. (2013) Morphological and molecular characterization of adult midgut compartmentalization in Drosophila. Cell Rep 3: 1725-1738.
-
(2013)
Cell Rep
, vol.3
, pp. 1725-1738
-
-
Buchon, N.1
Osman, D.2
David, F.P.3
Fang, H.Y.4
Boquete, J.P.5
-
22
-
-
84883398166
-
Physiological and stem cell compartmentalization within the Drosophila midgut
-
Marianes A, Spradling AC (2013) Physiological and stem cell compartmentalization within the Drosophila midgut. Elife 2: e00886.
-
(2013)
Elife
, vol.2
-
-
Marianes, A.1
Spradling, A.C.2
-
23
-
-
58549112996
-
Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists
-
Huang da W, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37: 1-13.
-
(2009)
Nucleic Acids Res
, vol.37
, pp. 1-13
-
-
Huang Da, W.1
Sherman, B.T.2
Lempicki, R.A.3
-
24
-
-
84855422546
-
Coordination of triacylglycerol and cholesterol homeostasis by DHR96 and the Drosophila LipA homolog magro
-
Sieber MH, Thummel CS (2012) Coordination of triacylglycerol and cholesterol homeostasis by DHR96 and the Drosophila LipA homolog magro. Cell Metab 15: 122-127.
-
(2012)
Cell Metab
, vol.15
, pp. 122-127
-
-
Sieber, M.H.1
Thummel, C.S.2
-
25
-
-
12944325779
-
An endoderm-specific GATA factor gene, dGATAe, is required for the terminal differentiation of the Drosophila endoderm
-
DOI 10.1016/j.ydbio.2004.11.021, PII S0012160604008164
-
Okumura T, Matsumoto A, Tanimura T, Murakami R (2005) An endodermspecific GATA factor gene, dGATAe, is required for the terminal differentiation of the Drosophila endoderm. Dev Biol 278: 576-586. (Pubitemid 40175050)
-
(2005)
Developmental Biology
, vol.278
, Issue.2
, pp. 576-586
-
-
Okumura, T.1
Matsumoto, A.2
Tanimura, T.3
Murakami, R.4
-
26
-
-
33750812185
-
GATAe-dependent and -independent expressions of genes in the differentiated endodermal midgut of Drosophila
-
DOI 10.1016/j.modgep.2006.07.001, PII S1567133X06001165
-
Okumura T, Tajiri R, Kojima T, Saigo K, Murakami R (2007) GATAedependent and-independent expressions of genes in the differentiated endodermal midgut of Drosophila. Gene Expr Patterns 7: 178-186. (Pubitemid 44712738)
-
(2007)
Gene Expression Patterns
, vol.7
, Issue.1-2
, pp. 178-186
-
-
Okumura, T.1
Tajiri, R.2
Kojima, T.3
Saigo, K.4
Murakami, R.5
-
28
-
-
77249172776
-
Nutritional control of gene expression in Drosophila larvae via TOR, Myc and a novel cis-regulatory element
-
Li L, Edgar BA, Grewal SS (2010) Nutritional control of gene expression in Drosophila larvae via TOR, Myc and a novel cis-regulatory element. BMC Cell Biol 11: 7.
-
(2010)
BMC Cell Biol
, vol.11
, pp. 7
-
-
Li, L.1
Edgar, B.A.2
Grewal, S.S.3
-
29
-
-
0037112907
-
Nutrient control of gene expression in Drosophila: Microarray analysis of starvation and sugar-dependent response
-
DOI 10.1093/emboj/cdf600
-
Zinke I, Schutz CS, Katzenberger JD, Bauer M, Pankratz MJ (2002) Nutrient control of gene expression in Drosophila: microarray analysis of starvation and sugar-dependent response. EMBO J 21: 6162-6173. (Pubitemid 35415333)
-
(2002)
EMBO Journal
, vol.21
, Issue.22
, pp. 6162-6173
-
-
Zinke, I.1
Schutz, C.S.2
Katzenberger, J.D.3
Bauer, M.4
Pankratz, M.J.5
-
30
-
-
84875239266
-
The complementary facets of epithelial host defenses in the genetic model organism Drosophila melanogaster: From resistance to resilience
-
Ferrandon D (2013) The complementary facets of epithelial host defenses in the genetic model organism Drosophila melanogaster: from resistance to resilience. Curr Opin Immunol 25: 59-70.
-
(2013)
Curr Opin Immunol
, vol.25
, pp. 59-70
-
-
Ferrandon, D.1
-
31
-
-
60649091298
-
Drosophila intestinal response to bacterial infection: Activation of host defense and stem cell proliferation
-
Buchon N, Broderick NA, Poidevin M, Pradervand S, Lemaitre B (2009) Drosophila intestinal response to bacterial infection: activation of host defense and stem cell proliferation. Cell Host Microbe 5: 200-211.
-
(2009)
Cell Host Microbe
, vol.5
, pp. 200-211
-
-
Buchon, N.1
Broderick, N.A.2
Poidevin, M.3
Pradervand, S.4
Lemaitre, B.5
-
32
-
-
84862189464
-
Ubiquitylation of the initiator caspase DREDD is required for innate immune signalling
-
Meinander A, Runchel C, Tenev T, Chen L, Kim CH, et al. (2012) Ubiquitylation of the initiator caspase DREDD is required for innate immune signalling. EMBO J 31: 2770-2783.
-
(2012)
EMBO J
, vol.31
, pp. 2770-2783
-
-
Meinander, A.1
Runchel, C.2
Tenev, T.3
Chen, L.4
Kim, C.H.5
-
33
-
-
84868678588
-
Activating transcription factor 3 regulates immune and metabolic homeostasis
-
Rynes J, Donohoe CD, Frommolt P, Brodesser S, Jindra M, et al. (2012) Activating transcription factor 3 regulates immune and metabolic homeostasis. Mol Cell Biol 32: 3949-3962.
-
(2012)
Mol Cell Biol
, vol.32
, pp. 3949-3962
-
-
Rynes, J.1
Donohoe, C.D.2
Frommolt, P.3
Brodesser, S.4
Jindra, M.5
-
34
-
-
0034305744
-
The Drosophila caspase Dredd is required to resist gram-negative bacterial infection
-
Leulier F, Rodriguez A, Khush RS, Abrams JM, Lemaitre B (2000) The Drosophila caspase Dredd is required to resist gram-negative bacterial infection. EMBO Rep 1: 353-358.
-
Basset A, Khush R, Braun A, Gardan L, Boccard F, et al. (2000) The phytopathogenic bacteria, Erwinia carotovora, infects Drosophila and activates an immune response. Proc Natl Acad Sci USA.
-
(2000)
The phytopathogenic bacteria, Erwinia carotovora, infects Drosophila and activates an immune response
, vol.1
, pp. 353-358
-
-
Leulier, F.1
Rodriguez, A.2
Khush, R.S.3
Abrams, J.M.4
Lemaitre, B.5
Basset, A.6
Khush, R.7
Braun, A.8
Gardan, L.9
Boccard, F.10
|