메뉴 건너뛰기




Volumn 11, Issue 9, 2013, Pages 615-626

Gut homeostasis in a microbial world: Insights from Drosophila melanogaster

Author keywords

[No Author keywords available]

Indexed keywords

ACETIC ACID; ADENOSINE PHOSPHATE; BACILLUS THURINGIENSIS TOXIN; CHITIN; CRYSTALLIN; DIAMINOPIMELIC ACID; PEPTIDOGLYCAN RECOGNITION PROTEIN; POLYPEPTIDE ANTIBIOTIC AGENT; RNA 16S;

EID: 84882709450     PISSN: 17401526     EISSN: 17401534     Source Type: Journal    
DOI: 10.1038/nrmicro3074     Document Type: Review
Times cited : (375)

References (116)
  • 1
    • 34047268684 scopus 로고    scopus 로고
    • The host defense of Drosophila melanogaster
    • Lemaitre, B. & Hoffmann, J. A. The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 25, 697-743 (2007).
    • (2007) Annu. Rev. Immunol. , vol.25 , pp. 697-743
    • Lemaitre, B.1    Hoffmann, J.A.2
  • 2
    • 84875239266 scopus 로고    scopus 로고
    • The complementary facets of epithelial host defenses in the genetic model organism Drosophila melanogaster: From resistance to resilience
    • Ferrandon, D. The complementary facets of epithelial host defenses in the genetic model organism Drosophila melanogaster: from resistance to resilience. Curr. Opin. Immunol. 25, 59-70 (2012).
    • (2012) Curr. Opin. Immunol. , vol.25 , pp. 59-70
    • Ferrandon, D.1
  • 3
    • 84857063242 scopus 로고    scopus 로고
    • Gut-microbiota interactions in non-mammals: What can we learn from Drosophila?
    • Charroux, B. & Royet, J. Gut-microbiota interactions in non-mammals: what can we learn from Drosophila? Semin. Immunol. 24, 17-24 (2012).
    • (2012) Semin. Immunol. , vol.24 , pp. 17-24
    • Charroux, B.1    Royet, J.2
  • 4
    • 78650893176 scopus 로고    scopus 로고
    • Drosophila melanogaster as a model for human intestinal infection and pathology
    • Apidianakis, Y. & Rahme, L. Drosophila melanogaster as a model for human intestinal infection and pathology. Dis. Model. Mech. 4, 21-30 (2011).
    • (2011) Dis. Model. Mech. , vol.4 , pp. 21-30
    • Apidianakis, Y.1    Rahme, L.2
  • 5
    • 0002129685 scopus 로고
    • The quantitative nutritional requirements of Drosophila melanogaster
    • Sang, J. H. The quantitative nutritional requirements of Drosophila melanogaster. J. Exp. Biol. 33, 45-72 (1956).
    • (1956) J. Exp. Biol. , vol.33 , pp. 45-72
    • Sang, J.H.1
  • 6
    • 84874764195 scopus 로고
    • The food of Drosophila melanogaster Meigen
    • Baumberger, J. P. The food of Drosophila melanogaster Meigen. Proc. Natl Acad. Sci. USA 3, 122-126 (1917).
    • (1917) Proc. Natl Acad. Sci. USA , vol.3 , pp. 122-126
    • Baumberger, J.P.1
  • 7
    • 84892482050 scopus 로고
    • The role of yeast in the nutrition of an insect (Drosophila)
    • Begon, M. The role of yeast in the nutrition of an insect (Drosophila). J. Biol. Chem. 30, 122-126 (1917).
    • (1917) J. Biol. Chem. , vol.30 , pp. 122-126
    • Begon, M.1
  • 8
    • 0002672904 scopus 로고
    • A comparison of Drosophila habitats according to the physiological attributes of the associated yeast communities
    • Starmer, W. T. A comparison of Drosophila habitats according to the physiological attributes of the associated yeast communities. Evolution 35, 38-52 (1981).
    • (1981) Evolution , vol.35 , pp. 38-52
    • Starmer, W.T.1
  • 9
    • 0000098470 scopus 로고
    • Effects of microbial floras on the distributions of five domestic Drosophila species across fruit resources
    • Oakeshott, J. G., Vacek, D. C. & Anderson, P. R. Effects of microbial floras on the distributions of five domestic Drosophila species across fruit resources. Oecologia 78, 533-541 (1989).
    • (1989) Oecologia , vol.78 , pp. 533-541
    • Oakeshott, J.G.1    Vacek, D.C.2    Anderson, P.R.3
  • 10
    • 0000738939 scopus 로고
    • Coadaptation of Drosophila and yeasts in their natural habitat
    • Starmer, W. T. & Fogleman, J. C. Coadaptation of Drosophila and yeasts in their natural habitat. J. Chem. Ecol. 12, 1037-1055 (1986).
    • (1986) J. Chem. Ecol. , vol.12 , pp. 1037-1055
    • Starmer, W.T.1    Fogleman, J.C.2
  • 11
    • 84874479799 scopus 로고    scopus 로고
    • Animals in a bacterial world, a new imperative for the life sciences
    • McFall-Ngai, M. et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl Acad. Sci. USA 110, 3229-3236 (2013).
    • (2013) Proc. Natl Acad. Sci. USA , vol.110 , pp. 3229-3236
    • McFall-Ngai, M.1
  • 12
    • 23844452699 scopus 로고    scopus 로고
    • Drosophila host defense after oral infection by an entomopathogenic Pseudomonas species
    • Vodovar, N. et al. Drosophila host defense after oral infection by an entomopathogenic Pseudomonas species. Proc. Natl Acad. Sci. USA 102, 11414-11419 (2005).
    • (2005) Proc. Natl Acad. Sci. USA , vol.102 , pp. 11414-11419
    • Vodovar, N.1
  • 13
    • 37349062689 scopus 로고    scopus 로고
    • A model of bacterial intestinal infections in Drosophila melanogaster
    • Nehme, N. T. et al. A model of bacterial intestinal infections in Drosophila melanogaster. PLoS Pathog. 3, e173 (2007).
    • (2007) PLoS Pathog. , vol.3
    • Nehme, N.T.1
  • 14
    • 84878614163 scopus 로고    scopus 로고
    • Morphological and molecular characterization of adult midgut compartmentalization in Drosophila
    • Buchon, N. et al. Morphological and molecular characterization of adult midgut compartmentalization in Drosophila. Cell Rep. 3, 1725-1738 (2013).
    • (2013) Cell Rep. , vol.3 , pp. 1725-1738
    • Buchon, N.1
  • 15
    • 0034724440 scopus 로고    scopus 로고
    • The phytopathogenic bacteria Erwinia carotovora infects Drosophila and activates an immune response
    • Basset, A. et al. The phytopathogenic bacteria Erwinia carotovora infects Drosophila and activates an immune response. Proc. Natl Acad. Sci. USA 97, 3376-3381 (2000).
    • (2000) Proc. Natl Acad. Sci. USA , vol.97 , pp. 3376-3381
    • Basset, A.1
  • 16
    • 70349617469 scopus 로고    scopus 로고
    • Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila
    • Buchon, N., Broderick, N. A., Chakrabarti, S. & Lemaitre, B. Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila. Genes Dev. 23, 2333-2344 (2009).
    • (2009) Genes Dev. , vol.23 , pp. 2333-2344
    • Buchon, N.1    Broderick, N.A.2    Chakrabarti, S.3    Lemaitre, B.4
  • 17
    • 38949153861 scopus 로고    scopus 로고
    • Innate immune homeostasis by the homeobox gene Caudal and commensal-gut mutualism in Drosophila
    • Ryu, J.-H. et al. Innate immune homeostasis by the homeobox gene Caudal and commensal-gut mutualism in Drosophila. Science 319, 777-782 (2008).
    • (2008) Science , vol.319 , pp. 777-782
    • Ryu, J.-H.1
  • 18
    • 34547440528 scopus 로고    scopus 로고
    • Increased internal and external bacterial load during Drosophila aging without life-span trade-off
    • Ren, C., Webster, P., Finkel, S. & Tower, J. Increased internal and external bacterial load during Drosophila aging without life-span trade-off. Cell Metab. 6, 144-152 (2007).
    • (2007) Cell Metab. , vol.6 , pp. 144-152
    • Ren, C.1    Webster, P.2    Finkel, S.3    Tower, J.4
  • 19
    • 34147172817 scopus 로고    scopus 로고
    • Native microbial colonization of Drosophila melanogaster and its use as a model of Enterococcus faecalis pathogenesis
    • Cox, C. R. & Gilmore, M. S. Native microbial colonization of Drosophila melanogaster and its use as a model of Enterococcus faecalis pathogenesis. Infect. Immun. 75, 1565-1576 (2007).
    • (2007) Infect. Immun. , vol.75 , pp. 1565-1576
    • Cox, C.R.1    Gilmore, M.S.2
  • 20
    • 34249897253 scopus 로고    scopus 로고
    • Geographical distribution and diversity of bacteria associated with natural populations of Drosophila melanogaster
    • Corby-Harris, V. et al. Geographical distribution and diversity of bacteria associated with natural populations of Drosophila melanogaster. Appl. Environ. Microbiol. 73, 3470-3479 (2007).
    • (2007) Appl. Environ. Microbiol. , vol.73 , pp. 3470-3479
    • Corby-Harris, V.1
  • 21
    • 80053435147 scopus 로고    scopus 로고
    • Bacterial communities of diverse Drosophila species: Ecological context of a host-microbe model system
    • Chandler, J., Lang, J., Bhatnagar, S. & Eisen, J. Bacterial communities of diverse Drosophila species: ecological context of a host-microbe model system. PLoS Genet. 7, e1002272 (2011).
    • (2011) PLoS Genet. , vol.7
    • Chandler, J.1    Lang, J.2    Bhatnagar, S.3    Eisen, J.4
  • 22
    • 79959841282 scopus 로고    scopus 로고
    • Low-diversity bacterial community in the gut of the fruitfly Drosophila melanogaster
    • Wong, C. N. A., Ng, P. & Douglas, A. E. Low-diversity bacterial community in the gut of the fruitfly Drosophila melanogaster. Environ. Microbiol. 13, 1889-1900 (2011).
    • (2011) Environ. Microbiol. , vol.13 , pp. 1889-1900
    • Wong, C.N.A.1    Ng, P.2    Douglas, A.E.3
  • 23
    • 84863870218 scopus 로고    scopus 로고
    • Gut-associated microbes of Drosophila melanogaster
    • Broderick, N. A. & Lemaitre, B. Gut-associated microbes of Drosophila melanogaster. Gut Microbes 3, 307-321 (2012).
    • (2012) Gut Microbes , vol.3 , pp. 307-321
    • Broderick, N.A.1    Lemaitre, B.2
  • 24
    • 0014598075 scopus 로고
    • The persistence of a microbial flora during postembryogenesis of Drosophila melanogaster
    • Bakula, M. The persistence of a microbial flora during postembryogenesis of Drosophila melanogaster. J. Invertebr. Pathol. 14, 365-374 (1969).
    • (1969) J. Invertebr. Pathol. , vol.14 , pp. 365-374
    • Bakula, M.1
  • 25
    • 80555143077 scopus 로고    scopus 로고
    • Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling
    • Shin, S. C. et al. Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science 334, 670-674 (2011).
    • (2011) Science , vol.334 , pp. 670-674
    • Shin, S.C.1
  • 26
    • 78650534387 scopus 로고    scopus 로고
    • Commensal bacteria play a role in mating preference of Drosophila melanogaster
    • Sharon, G. et al. Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proc. Natl Acad. Sci. USA 107, 20051-20056 (2010).
    • (2010) Proc. Natl Acad. Sci. USA , vol.107 , pp. 20051-20056
    • Sharon, G.1
  • 27
    • 79959661948 scopus 로고    scopus 로고
    • Pathogen and host factors are needed to provoke a systemic host response to gastrointestinal infection of Drosophila larvae by Candida albicans
    • Glittenberg, M. et al. Pathogen and host factors are needed to provoke a systemic host response to gastrointestinal infection of Drosophila larvae by Candida albicans. Dis. Model. Mech. 4, 515-525 (2011).
    • (2011) Dis. Model. Mech. , vol.4 , pp. 515-525
    • Glittenberg, M.1
  • 28
    • 84864459236 scopus 로고    scopus 로고
    • Drosophila regulate yeast density and increase yeast community similarity in a natural substrate
    • Stamps, J. A., Yang, L. H., Morales, V. M. & Boundy-Mills, K. L. Drosophila regulate yeast density and increase yeast community similarity in a natural substrate. PLoS ONE 7, e42238 (2012).
    • (2012) PLoS ONE , vol.7
    • Stamps, J.A.1    Yang, L.H.2    Morales, V.M.3    Boundy-Mills, K.L.4
  • 29
    • 15244353361 scopus 로고    scopus 로고
    • Clash of kingdoms or why Drosophila larvae positively respond to fungal competitors
    • Rohlfs, M. Clash of kingdoms or why Drosophila larvae positively respond to fungal competitors. Front. Zool. 2, 2 (2005).
    • (2005) Front. Zool. , vol.2 , pp. 2
    • Rohlfs, M.1
  • 30
    • 80052774197 scopus 로고    scopus 로고
    • Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing
    • Storelli, G. et al. Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab. 14, 403-414 (2011).
    • (2011) Cell Metab. , vol.14 , pp. 403-414
    • Storelli, G.1
  • 31
    • 84860643186 scopus 로고    scopus 로고
    • Impact of the resident microbiota on the nutritional phenotype of Drosophila melanogaster
    • Ridley, E. V., Wong, A. C.-N., Westmiller, S. & Douglas, A. E. Impact of the resident microbiota on the nutritional phenotype of Drosophila melanogaster. PLoS ONE 7, e36765 (2012).
    • (2012) PLoS ONE , vol.7
    • Ridley, E.V.1    Wong, A.C.-N.2    Westmiller, S.3    Douglas, A.E.4
  • 32
    • 58049218983 scopus 로고    scopus 로고
    • Tissue damage-induced intestinal stem cell division in Drosophila
    • Amcheslavsky, A., Jiang, J. & Ip, Y. T. Tissue damage-induced intestinal stem cell division in Drosophila. Cell Stem Cell 4, 49-61 (2009).
    • (2009) Cell Stem Cell , vol.4 , pp. 49-61
    • Amcheslavsky, A.1    Jiang, J.2    Ip, Y.T.3
  • 33
    • 80155123827 scopus 로고    scopus 로고
    • Altered modes of stem cell division drive adaptive intestinal growth
    • O'Brien, L. E., Soliman, S. S., Li, X. & Bilder, D. Altered modes of stem cell division drive adaptive intestinal growth. Cell 147, 603-614 (2011).
    • (2011) Cell , vol.147 , pp. 603-614
    • O'Brien, L.E.1    Soliman, S.S.2    Li, X.3    Bilder, D.4
  • 34
    • 81755187019 scopus 로고    scopus 로고
    • Nonautonomous regulation of Drosophila midgut stem cell proliferation by the insulin-signaling pathway
    • Choi, N.-H., Lucchetta, E. & Ohlstein, B. Nonautonomous regulation of Drosophila midgut stem cell proliferation by the insulin-signaling pathway. Proc. Natl Acad. Sci. USA 108, 18702-18707 (2011).
    • (2011) Proc. Natl Acad. Sci. USA , vol.108 , pp. 18702-18707
    • Choi, N.-H.1    Lucchetta, E.2    Ohlstein, B.3
  • 35
    • 0030891189 scopus 로고    scopus 로고
    • Peritrophic matrix structure and function
    • Lehane, M. J. Peritrophic matrix structure and function. Annu. Rev. Entomol. 42, 525-550 (1997).
    • (1997) Annu. Rev. Entomol. , vol.42 , pp. 525-550
    • Lehane, M.J.1
  • 36
    • 60549096559 scopus 로고    scopus 로고
    • New insights into peritrophic matrix synthesis, architecture, and function
    • Hegedus, D., Erlandson, M., Gillott, C. & Toprak, U. New insights into peritrophic matrix synthesis, architecture, and function. Annu. Rev. Entomol. 54, 285-302 (2009).
    • (2009) Annu. Rev. Entomol. , vol.54 , pp. 285-302
    • Hegedus, D.1    Erlandson, M.2    Gillott, C.3    Toprak, U.4
  • 37
    • 79955497890 scopus 로고    scopus 로고
    • Always one step ahead: How pathogenic bacteria use the type III secretion system to manipulate the intestinal mucosal immune system
    • Vossenkämper, A., Macdonald, T. T. & Marchès, O. Always one step ahead: how pathogenic bacteria use the type III secretion system to manipulate the intestinal mucosal immune system. J. Inflamm. (Lond.) 8, 11 (2011).
    • (2011) J. Inflamm. (Lond.) , vol.8 , pp. 11
    • Vossenkämper, A.1    MacDonald, T.T.2    Marchès, O.3
  • 38
    • 80053166581 scopus 로고    scopus 로고
    • Genetic evidence for a protective role of the peritrophic matrix against intestinal bacterial infection in Drosophila melanogaster
    • Kuraishi, T., Binggeli, O., Opota, O., Buchon, N. & Lemaitre, B. Genetic evidence for a protective role of the peritrophic matrix against intestinal bacterial infection in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 108, 15966-15971 (2011).
    • (2011) Proc. Natl Acad. Sci. USA , vol.108 , pp. 15966-15971
    • Kuraishi, T.1    Binggeli, O.2    Opota, O.3    Buchon, N.4    Lemaitre, B.5
  • 39
    • 52449095232 scopus 로고    scopus 로고
    • A potential role for Drosophila mucins in development and physiology
    • Syed, Z. A., Härd, T., Uv, A. & van Dijk-Härd, I. F. A potential role for Drosophila mucins in development and physiology. PLoS ONE 3, e3041 (2008).
    • (2008) PLoS ONE , vol.3
    • Syed, Z.A.1    Härd, T.2    Uv, A.3    Van Dijk-Härd, I.F.4
  • 40
    • 60649091298 scopus 로고    scopus 로고
    • Drosophila intestinal response to bacterial infection: Activation of host defense and stem cell proliferation
    • Buchon, N., Broderick, N. A., Poidevin, M., Pradervand, S. & Lemaitre, B. Drosophila intestinal response to bacterial infection: activation of host defense and stem cell proliferation. Cell Host Microbe 5, 200-211 (2009).
    • (2009) Cell Host Microbe , vol.5 , pp. 200-211
    • Buchon, N.1    Broderick, N.A.2    Poidevin, M.3    Pradervand, S.4    Lemaitre, B.5
  • 41
    • 84874260184 scopus 로고    scopus 로고
    • Big bang gene modulates gut immune tolerance in Drosophila
    • Bonnay, F. et al. big bang gene modulates gut immune tolerance in Drosophila. Proc. Natl Acad. Sci. USA 110, 2957-2962 (2013).
    • (2013) Proc. Natl Acad. Sci. USA , vol.110 , pp. 2957-2962
    • Bonnay, F.1
  • 42
    • 35848929056 scopus 로고    scopus 로고
    • Roles for Drosophila melanogaster myosin IB in maintenance of enterocyte brush-border structure and resistance to the bacterial pathogen Pseudomonas entomophila
    • Hegan, P. S., Mermall, V., Tilney, L. G. & Mooseker, M. S. Roles for Drosophila melanogaster myosin IB in maintenance of enterocyte brush-border structure and resistance to the bacterial pathogen Pseudomonas entomophila. Mol. Biol. Cell 18, 4625-4636 (2007).
    • (2007) Mol. Biol. Cell , vol.18 , pp. 4625-4636
    • Hegan, P.S.1    Mermall, V.2    Tilney, L.G.3    Mooseker, M.S.4
  • 43
    • 0033638404 scopus 로고    scopus 로고
    • Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia
    • Tzou, P. et al. Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity 13, 737-748 (2000).
    • (2000) Immunity , vol.13 , pp. 737-748
    • Tzou, P.1
  • 44
    • 33747586778 scopus 로고    scopus 로고
    • An essential complementary role of NF-κB pathway to microbicidal oxidants in Drosophila gut immunity
    • Ryu, J.-H. et al. An essential complementary role of NF-κB pathway to microbicidal oxidants in Drosophila gut immunity. EMBO J. 25, 3693-3701 (2006).
    • (2006) EMBO J. , vol.25 , pp. 3693-3701
    • Ryu, J.-H.1
  • 45
    • 33745712561 scopus 로고    scopus 로고
    • Prevalence of local immune response against oral infection in a Drosophila/Pseudomonas infection model
    • Liehl, P., Blight, M., Vodovar, N., Boccard, F. & Lemaitre, B. Prevalence of local immune response against oral infection in a Drosophila/Pseudomonas infection model. PLoS Pathog. 2, e56 (2006).
    • (2006) PLoS Pathog. , vol.2
    • Liehl, P.1    Blight, M.2    Vodovar, N.3    Boccard, F.4    Lemaitre, B.5
  • 46
    • 84865108178 scopus 로고    scopus 로고
    • Peptidoglycan sensing by the receptor PGRP-LE in the Drosophila gut induces immune responses to infectious bacteria and tolerance to microbiota
    • Bosco-Drayon, V. et al. Peptidoglycan sensing by the receptor PGRP-LE in the Drosophila gut induces immune responses to infectious bacteria and tolerance to microbiota. Cell Host Microbe 12, 153-165 (2012).
    • (2012) Cell Host Microbe , vol.12 , pp. 153-165
    • Bosco-Drayon, V.1
  • 47
    • 84864807751 scopus 로고    scopus 로고
    • Tissue-and ligand-specific sensing of Gram-negative infection in Drosophila by PGRP-LC isoforms and PGRP-LE
    • Neyen, C., Poidevin, M., Roussel, A. & Lemaitre, B. Tissue-and ligand-specific sensing of Gram-negative infection in Drosophila by PGRP-LC isoforms and PGRP-LE. J. Immunol. 189, 1886-1897 (2012).
    • (2012) J. Immunol. , vol.189 , pp. 1886-1897
    • Neyen, C.1    Poidevin, M.2    Roussel, A.3    Lemaitre, B.4
  • 48
    • 0037108754 scopus 로고    scopus 로고
    • Overexpression of a pattern-recognition receptor, peptidoglycan- recognition protein-LE, activates imd/relish-mediated antibacterial defense and the prophenoloxidase cascade in Drosophila larvae
    • Takehana, A. et al. Overexpression of a pattern-recognition receptor, peptidoglycan-recognition protein-LE, activates imd/relish-mediated antibacterial defense and the prophenoloxidase cascade in Drosophila larvae. Proc. Natl Acad. Sci. USA 99, 13705-13710 (2002).
    • (2002) Proc. Natl Acad. Sci. USA , vol.99 , pp. 13705-13710
    • Takehana, A.1
  • 49
    • 0038664357 scopus 로고    scopus 로고
    • The Drosophila immune system detects bacteria through specific peptidoglycan recognition
    • Leulier, F. et al. The Drosophila immune system detects bacteria through specific peptidoglycan recognition. Nature Immunol. 4, 478-484 (2003).
    • (2003) Nature Immunol. , vol.4 , pp. 478-484
    • Leulier, F.1
  • 50
    • 2442456719 scopus 로고    scopus 로고
    • Monomeric and polymeric gram-negative peptidoglycan but not purified LPS stimulate the Drosophila IMD pathway
    • Kaneko, T. et al. Monomeric and polymeric gram-negative peptidoglycan but not purified LPS stimulate the Drosophila IMD pathway. Immunity 20, 637-649 (2004).
    • (2004) Immunity , vol.20 , pp. 637-649
    • Kaneko, T.1
  • 51
    • 33645994799 scopus 로고    scopus 로고
    • The Drosophila amidase PGRP-LB modulates the immune response to bacterial infection
    • Zaidmanremy, A. et al. The Drosophila amidase PGRP-LB modulates the immune response to bacterial infection. Immunity 24, 463-473 (2006).
    • (2006) Immunity , vol.24 , pp. 463-473
    • Zaidmanremy, A.1
  • 52
    • 48649085941 scopus 로고    scopus 로고
    • PIMS modulates immune tolerance by negatively regulating Drosophila innate immune signaling
    • Lhocine, N. et al. PIMS modulates immune tolerance by negatively regulating Drosophila innate immune signaling. Cell Host Microbe 4, 147-158 (2008).
    • (2008) Cell Host Microbe , vol.4 , pp. 147-158
    • Lhocine, N.1
  • 54
    • 78650397479 scopus 로고    scopus 로고
    • Drosophila EGFR pathway coordinates stem cell proliferation and gut remodeling following infection
    • Buchon, N., Broderick, N. A., Kuraishi, T. & Lemaitre, B. Drosophila EGFR pathway coordinates stem cell proliferation and gut remodeling following infection. BMC Biol. 8, 152 (2010).
    • (2010) BMC Biol. , vol.8 , pp. 152
    • Buchon, N.1    Broderick, N.A.2    Kuraishi, T.3    Lemaitre, B.4
  • 55
    • 33750091050 scopus 로고    scopus 로고
    • PGRP-SB1: An N-acetylmuramoyl l-alanine amidase with antibacterial activity
    • Mellroth, P. & Steiner, H. PGRP-SB1: an N-acetylmuramoyl l-alanine amidase with antibacterial activity. Biochem. Biophys. Res. Commun. 350, 994-999 (2006).
    • (2006) Biochem. Biophys. Res. Commun. , vol.350 , pp. 994-999
    • Mellroth, P.1    Steiner, H.2
  • 56
    • 33645770760 scopus 로고    scopus 로고
    • Downregulation of the Drosophila immune response by peptidoglycan- recognition proteins SC1 and SC2
    • Bischoff, V. et al. Downregulation of the Drosophila immune response by peptidoglycan-recognition proteins SC1 and SC2. PLoS Pathog. 2, e14 (2006).
    • (2006) PLoS Pathog. , vol.2
    • Bischoff, V.1
  • 57
    • 79951969793 scopus 로고    scopus 로고
    • Drosophila immunity: Analysis of PGRP-SB1 expression, enzymatic activity and function
    • Zaidmanremy, A. et al. Drosophila immunity: analysis of PGRP-SB1 expression, enzymatic activity and function. PLoS ONE 6, e17231 (2011).
    • (2011) PLoS ONE , vol.6
    • Zaidmanremy, A.1
  • 58
    • 82055177179 scopus 로고    scopus 로고
    • Negative regulation by amidase PGRPs shapes the Drosophila antibacterial response and protects the fly from innocuous infection
    • Paredes, J. C., Welchman, D. P., Poidevin, M. & Lemaitre, B. Negative regulation by amidase PGRPs shapes the Drosophila antibacterial response and protects the fly from innocuous infection. Immunity 35, 770-779 (2011).
    • (2011) Immunity , vol.35 , pp. 770-779
    • Paredes, J.C.1    Welchman, D.P.2    Poidevin, M.3    Lemaitre, B.4
  • 59
    • 43049171620 scopus 로고    scopus 로고
    • Pirk is a negative regulator of the Drosophila Imd pathway
    • Kleino, A. et al. Pirk is a negative regulator of the Drosophila Imd pathway. J. Immunol. 180, 5413-5422 (2008).
    • (2008) J. Immunol. , vol.180 , pp. 5413-5422
    • Kleino, A.1
  • 60
    • 50849094860 scopus 로고    scopus 로고
    • Rudra interrupts receptor signaling complexes to negatively regulate the IMD pathway
    • Aggarwal, K. et al. Rudra interrupts receptor signaling complexes to negatively regulate the IMD pathway. PLoS Pathog. 4, e1000120 (2008).
    • (2008) PLoS Pathog. , vol.4
    • Aggarwal, K.1
  • 61
    • 43049157518 scopus 로고    scopus 로고
    • The Drosophila peptidoglycan recognition protein PGRP-LF blocks PGRP-LC and IMD/JNK pathway activation
    • Maillet, F., Bischoff, V., Vignal, C., Hoffmann, J. & Royet, J. The Drosophila peptidoglycan recognition protein PGRP-LF blocks PGRP-LC and IMD/JNK pathway activation. Cell Host Microbe 3, 293-303 (2008).
    • (2008) Cell Host Microbe , vol.3 , pp. 293-303
    • Maillet, F.1    Bischoff, V.2    Vignal, C.3    Hoffmann, J.4    Royet, J.5
  • 62
    • 79953317939 scopus 로고    scopus 로고
    • The Drosophila peptidoglycan-recognition protein LF interacts with peptidoglycan-recognition protein LC to downregulate the Imd pathway
    • Basbous, N. et al. The Drosophila peptidoglycan-recognition protein LF interacts with peptidoglycan-recognition protein LC to downregulate the Imd pathway. EMBO Rep. 12, 327-333 (2011).
    • (2011) EMBO Rep. , vol.12 , pp. 327-333
    • Basbous, N.1
  • 63
    • 79952760131 scopus 로고    scopus 로고
    • Negative regulation of immune responses on the fly
    • Lee, K.-Z. & Ferrandon, D. Negative regulation of immune responses on the fly. EMBO J. 30, 988-990 (2011).
    • (2011) EMBO J. , vol.30 , pp. 988-990
    • Lee, K.-Z.1    Ferrandon, D.2
  • 64
    • 43249114465 scopus 로고    scopus 로고
    • Positive and negative regulation of the Drosophila immune response
    • Aggarwal, K. & Silverman, N. Positive and negative regulation of the Drosophila immune response. BMB Rep. 41, 267-277 (2008).
    • (2008) BMB Rep. , vol.41 , pp. 267-277
    • Aggarwal, K.1    Silverman, N.2
  • 65
    • 27644498442 scopus 로고    scopus 로고
    • A direct role for dual oxidase in Drosophila gut immunity
    • Ha, E.-M., Oh, C.-T., Bae, Y. S. & Lee, W.-J. A direct role for dual oxidase in Drosophila gut immunity. Science 310, 847-850 (2005).
    • (2005) Science , vol.310 , pp. 847-850
    • Ha, E.-M.1    Oh, C.-T.2    Bae, Y.S.3    Lee, W.-J.4
  • 66
    • 77954623743 scopus 로고    scopus 로고
    • Dual oxidase in mucosal immunity and host-microbe homeostasis
    • Bae, Y. S., Choi, M. K. & Lee, W.-J. Dual oxidase in mucosal immunity and host-microbe homeostasis. Trends Immunol. 31, 278-287 (2010).
    • (2010) Trends Immunol. , vol.31 , pp. 278-287
    • Bae, Y.S.1    Choi, M.K.2    Lee, W.-J.3
  • 67
    • 77950234253 scopus 로고    scopus 로고
    • A peroxidase/dual oxidase system modulates midgut epithelial immunity in Anopheles gambiae
    • Kumar, S., Molina-Cruz, A., Gupta, L., Rodrigues, J. & Barillas-Mury, C. A peroxidase/dual oxidase system modulates midgut epithelial immunity in Anopheles gambiae. Science 327, 1644-1648 (2010).
    • (2010) Science , vol.327 , pp. 1644-1648
    • Kumar, S.1    Molina-Cruz, A.2    Gupta, L.3    Rodrigues, J.4    Barillas-Mury, C.5
  • 68
  • 69
    • 84855266350 scopus 로고    scopus 로고
    • Flotillin-2, and Src42A are required to activate or delimit the spread of the transcriptional response to epidermal wounds in Drosophila
    • Juarez, M. T., Patterson, R. A., Sandoval-Guillen, E. & McGinnis, W. Duox, Flotillin-2, and Src42A are required to activate or delimit the spread of the transcriptional response to epidermal wounds in Drosophila. PLoS Genet. 7, e1002424 (2011).
    • (2011) PLoS Genet. , vol.7
    • Juarez, M.T.1    Patterson, R.A.2    Sandoval-Guillen, E.3    Duox, M.W.4
  • 70
    • 84875229002 scopus 로고    scopus 로고
    • Calcium flashes orchestrate the wound inflammatory response through DUOX activation and hydrogen peroxide release
    • Razzell, W., Evans, I. R., Martin, P. & Wood, W. Calcium flashes orchestrate the wound inflammatory response through DUOX activation and hydrogen peroxide release. Curr. Biol. 23, 424-429 (2013).
    • (2013) Curr. Biol. , vol.23 , pp. 424-429
    • Razzell, W.1    Evans, I.R.2    Martin, P.3    Wood, W.4
  • 71
    • 61749104447 scopus 로고    scopus 로고
    • 2+ pathway in Drosophila gut immunity
    • 2+ pathway in Drosophila gut immunity. Dev. Cell 16, 386-397 (2009).
    • (2009) Dev. Cell , vol.16 , pp. 386-397
    • Ha, E.-M.1
  • 72
    • 69049088645 scopus 로고    scopus 로고
    • Coordination of multiple dual oxidase-regulatory pathways in responses to commensal and infectious microbes in Drosophila gut
    • Ha, E.-M. et al. Coordination of multiple dual oxidase-regulatory pathways in responses to commensal and infectious microbes in Drosophila gut. Nature Immunol. 10, 949-957 (2009).
    • (2009) Nature Immunol. , vol.10 , pp. 949-957
    • Ha, E.-M.1
  • 73
    • 78650541344 scopus 로고    scopus 로고
    • Participation of the p38 pathway in Drosophila host defense against pathogenic bacteria and fungi
    • Chen, J. et al. Participation of the p38 pathway in Drosophila host defense against pathogenic bacteria and fungi. Proc. Natl Acad. Sci. USA 170, 20774-20779 (2010).
    • (2010) Proc. Natl Acad. Sci. USA , vol.170 , pp. 20774-20779
    • Chen, J.1
  • 74
    • 84877723813 scopus 로고    scopus 로고
    • Bacterial-derived uracil as a modulator of mucosal immunity and gut-microbe homeostasis in Drosophila
    • Lee, K.-A. et al. Bacterial-derived uracil as a modulator of mucosal immunity and gut-microbe homeostasis in Drosophila. Cell 153, 797-811 (2013).
    • (2013) Cell , vol.153 , pp. 797-811
    • Lee, K.-A.1
  • 75
    • 84871703799 scopus 로고    scopus 로고
    • Autocrine and paracrine unpaired signalling regulate intestinal stem cell maintenance and division
    • Osman, D. et al. Autocrine and paracrine unpaired signalling regulate intestinal stem cell maintenance and division. J. Cell Sci. 125, 5944-5949 (2012).
    • (2012) J. Cell Sci. , vol.125 , pp. 5944-5949
    • Osman, D.1
  • 76
    • 0030583613 scopus 로고    scopus 로고
    • Determination of the disulfide array of the first inducible antifungal peptide from insects: Drosomycin from Drosophila melanogaster
    • Michaut, L. et al. Determination of the disulfide array of the first inducible antifungal peptide from insects: drosomycin from Drosophila melanogaster. FEBS Lett. 395, 6-10 (1996).
    • (1996) FEBS Lett. , vol.395 , pp. 6-10
    • Michaut, L.1
  • 77
    • 70349206320 scopus 로고    scopus 로고
    • An essential component of antifungal defence in Drosophila
    • Zhang, Z.-T. & Zhu, S.-Y. Drosomycin, an essential component of antifungal defence in Drosophila. Insect Mol. Biol. 18, 549-556 (2009).
    • (2009) Insect Mol. Biol. , vol.18 , pp. 549-556
    • Zhang, Z.-T.1    Zhu, S.Y.2
  • 78
    • 84856478562 scopus 로고    scopus 로고
    • The Drosophila larva as a tool to study gut-associated macrophages: PI3K regulates a discrete hemocyte population at the proventriculus
    • Zaidmanremy, A., Regan, J. C., Brandão, A. S. & Jacinto, A. The Drosophila larva as a tool to study gut-associated macrophages: PI3K regulates a discrete hemocyte population at the proventriculus. Dev. Comp. Immunol. 36, 638-647 (2012).
    • (2012) Dev. Comp. Immunol. , vol.36 , pp. 638-647
    • Zaidmanremy, A.1    Regan, J.C.2    Brandão, A.S.3    Jacinto, A.4
  • 79
    • 67650831470 scopus 로고    scopus 로고
    • Genome-wide RNAi screen identifies genes involved in intestinal pathogenic bacterial infection
    • Cronin, S. J. F. et al. Genome-wide RNAi screen identifies genes involved in intestinal pathogenic bacterial infection. Science 325, 340-343 (2009).
    • (2009) Science , vol.325 , pp. 340-343
    • Cronin, S.J.F.1
  • 80
    • 67549133157 scopus 로고    scopus 로고
    • Cytokine/Jak/Stat signaling mediates regeneration and homeostasis in the Drosophila midgut
    • Jiang, H. et al. Cytokine/Jak/Stat signaling mediates regeneration and homeostasis in the Drosophila midgut. Cell 137, 1343-1355 (2009).
    • (2009) Cell , vol.137 , pp. 1343-1355
    • Jiang, H.1
  • 81
    • 67650388208 scopus 로고    scopus 로고
    • Pathogenic stimulation of intestinal stem cell response in Drosophila
    • Chatterjee, M. & Ip, Y. T. Pathogenic stimulation of intestinal stem cell response in Drosophila. J. Cell. Physiol. 220, 664-671 (2009).
    • (2009) J. Cell. Physiol. , vol.220 , pp. 664-671
    • Chatterjee, M.1    Ip, Y.T.2
  • 82
    • 84954358205 scopus 로고    scopus 로고
    • Two ways to survive infection: What resistance and tolerance can teach us about treating infectious diseases
    • Schneider, D. S. & Ayres, J. S. Two ways to survive infection: what resistance and tolerance can teach us about treating infectious diseases. Nature Rev. Immunol. 8, 889-895 (2008).
    • (2008) Nature Rev. Immunol. , vol.8 , pp. 889-895
    • Schneider, D.S.1    Ayres, J.S.2
  • 83
    • 73949145172 scopus 로고    scopus 로고
    • Synergy between bacterial infection and genetic predisposition in intestinal dysplasia
    • Apidianakis, Y., Pitsouli, C., Perrimon, N. & Rahme, L. Synergy between bacterial infection and genetic predisposition in intestinal dysplasia. Proc. Natl Acad. Sci. USA 106, 20883-20888 (2009).
    • (2009) Proc. Natl Acad. Sci. USA , vol.106 , pp. 20883-20888
    • Apidianakis, Y.1    Pitsouli, C.2    Perrimon, N.3    Rahme, L.4
  • 84
    • 78650977190 scopus 로고    scopus 로고
    • EGFR/Ras/MAPK signaling mediates adult midgut epithelial homeostasis and regeneration in Drosophila
    • Jiang, H., Grenley, M. O., Bravo, M.-J., Blumhagen, R. Z. & Edgar, B. A. EGFR/Ras/MAPK signaling mediates adult midgut epithelial homeostasis and regeneration in Drosophila. Cell Stem Cell 8, 84-95 (2011).
    • (2011) Cell Stem Cell , vol.8 , pp. 84-95
    • Jiang, H.1    Grenley, M.O.2    Bravo, M.-J.3    Blumhagen, R.Z.4    Edgar, B.A.5
  • 85
    • 84871691823 scopus 로고    scopus 로고
    • The UPD3 cytokine couples environmental challenge and intestinal stem cell division through modulation of JAK/STAT signaling in the stem cell microenvironment
    • Zhou, F., Rasmussen, A., Lee, S. & Agaisse, H. The UPD3 cytokine couples environmental challenge and intestinal stem cell division through modulation of JAK/STAT signaling in the stem cell microenvironment. Dev. Biol. 373, 383-393 (2012).
    • (2012) Dev. Biol. , vol.373 , pp. 383-393
    • Zhou, F.1    Rasmussen, A.2    Lee, S.3    Agaisse, H.4
  • 86
    • 84867103410 scopus 로고    scopus 로고
    • Inducible progenitor-derived Wingless regulates adult midgut regeneration in Drosophila
    • Cordero, J. B., Stefanatos, R. K., Scopelliti, A., Vidal, M. & Sansom, O. J. Inducible progenitor-derived Wingless regulates adult midgut regeneration in Drosophila. EMBO J. 31, 3901-3917 (2012).
    • (2012) EMBO J. , vol.31 , pp. 3901-3917
    • Cordero, J.B.1    Stefanatos, R.K.2    Scopelliti, A.3    Vidal, M.4    Sansom, O.J.5
  • 87
    • 79955133184 scopus 로고    scopus 로고
    • EGF signaling regulates the proliferation of intestinal stem cells in Drosophila
    • Biteau, B. & Jasper, H. EGF signaling regulates the proliferation of intestinal stem cells in Drosophila. Development 138, 1045-1055 (2011).
    • (2011) Development , vol.138 , pp. 1045-1055
    • Biteau, B.1    Jasper, H.2
  • 88
    • 78650471357 scopus 로고    scopus 로고
    • Hippo signaling regulates Drosophila intestine stem cell proliferation through multiple pathways
    • Ren, F. et al. Hippo signaling regulates Drosophila intestine stem cell proliferation through multiple pathways. Proc. Natl Acad. Sci. USA 107, 21064-21069 (2010).
    • (2010) Proc. Natl Acad. Sci. USA , vol.107 , pp. 21064-21069
    • Ren, F.1
  • 89
    • 78650202455 scopus 로고    scopus 로고
    • The Hippo tumor suppressor pathway regulates intestinal stem cell regeneration
    • Karpowicz, P., Perez, J. & Perrimon, N. The Hippo tumor suppressor pathway regulates intestinal stem cell regeneration. Development 137, 4135-4145 (2010).
    • (2010) Development , vol.137 , pp. 4135-4145
    • Karpowicz, P.1    Perez, J.2    Perrimon, N.3
  • 90
    • 78650187792 scopus 로고    scopus 로고
    • The Hippo pathway regulates intestinal stem cell proliferation during Drosophila adult midgut regeneration
    • Shaw, R. L. et al. The Hippo pathway regulates intestinal stem cell proliferation during Drosophila adult midgut regeneration. Development 137, 4147-4158 (2010).
    • (2010) Development , vol.137 , pp. 4147-4158
    • Shaw, R.L.1
  • 91
    • 77956507262 scopus 로고    scopus 로고
    • Warts and Yorkie mediate intestinal regeneration by influencing stem cell proliferation
    • Staley, B. K. & Irvine, K. D. Warts and Yorkie mediate intestinal regeneration by influencing stem cell proliferation. Curr. Biol. 20, 1580-1587 (2010).
    • (2010) Curr. Biol. , vol.20 , pp. 1580-1587
    • Staley, B.K.1    Irvine, K.D.2
  • 92
    • 43449097534 scopus 로고    scopus 로고
    • Age-related changes in Drosophila midgut are associated with PVF2, a PDGF/VEGF-like growth factor
    • Choi, N.-H., Kim, J.-G., Yang, D.-J., Kim, Y.-S. & Yoo, M.-A. Age-related changes in Drosophila midgut are associated with PVF2, a PDGF/VEGF-like growth factor. Aging Cell 7, 318-334 (2008).
    • (2008) Aging Cell , vol.7 , pp. 318-334
    • Choi, N.-H.1    Kim, J.-G.2    Yang, D.-J.3    Kim, Y.-S.4    Yoo, M.-A.5
  • 93
    • 52949093944 scopus 로고    scopus 로고
    • JNK activity in somatic stem cells causes loss of tissue homeostasis in the aging Drosophila gut
    • Biteau, B., Hochmuth, C. E. & Jasper, H. JNK activity in somatic stem cells causes loss of tissue homeostasis in the aging Drosophila gut. Cell Stem Cell 3, 442-455 (2008).
    • (2008) Cell Stem Cell , vol.3 , pp. 442-455
    • Biteau, B.1    Hochmuth, C.E.2    Jasper, H.3
  • 94
    • 84871830937 scopus 로고    scopus 로고
    • Intestinal barrier dysfunction links metabolic and inflammatory markers of aging to death in Drosophila
    • Rera, M., Clark, R. I. & Walker, D. W. Intestinal barrier dysfunction links metabolic and inflammatory markers of aging to death in Drosophila. Proc. Natl Acad. Sci. USA 109, 21528-21533 (2012).
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. 21528-21533
    • Rera, M.1    Clark, R.I.2    Walker, D.W.3
  • 95
    • 84858702154 scopus 로고    scopus 로고
    • Taxonomic characterisation of Pseudomonas strain L48 and formal proposal of Pseudomonas entomophila sp. nov
    • Mulet, M., Gomila, M., Lemaitre, B., Lalucat, J. & García-Valdés, E. Taxonomic characterisation of Pseudomonas strain L48 and formal proposal of Pseudomonas entomophila sp. nov. Syst. Appl. Microbiol. 35, 145-149 (2012).
    • (2012) Syst. Appl. Microbiol. , vol.35 , pp. 145-149
    • Mulet, M.1    Gomila, M.2    Lemaitre, B.3    Lalucat, J.4    García-Valdés, E.5
  • 96
    • 84865188660 scopus 로고    scopus 로고
    • Infection-induced host translational blockage inhibits immune responses and epithelial renewal in the Drosophila gut
    • Chakrabarti, S., Liehl, P., Buchon, N. & Lemaitre, B. Infection-induced host translational blockage inhibits immune responses and epithelial renewal in the Drosophila gut. Cell Host Microbe 12, 60-70 (2012).
    • (2012) Cell Host Microbe , vol.12 , pp. 60-70
    • Chakrabarti, S.1    Liehl, P.2    Buchon, N.3    Lemaitre, B.4
  • 98
    • 79959273057 scopus 로고    scopus 로고
    • Pore-forming toxins induce multiple cellular responses promoting survival
    • Gonzalez, M. R. et al. Pore-forming toxins induce multiple cellular responses promoting survival. Cell. Microbiol. 13, 1026-1043 (2011).
    • (2011) Cell. Microbiol. , vol.13 , pp. 1026-1043
    • Gonzalez, M.R.1
  • 99
    • 80053147690 scopus 로고    scopus 로고
    • Monalysin, a novel ß-pore-forming toxin from the Drosophila pathogen Pseudomonas entomophila, contributes to host intestinal damage and lethality
    • Opota, O. et al. Monalysin, a novel ß-pore-forming toxin from the Drosophila pathogen Pseudomonas entomophila, contributes to host intestinal damage and lethality. PLoS Pathog. 7, e1002259 (2011).
    • (2011) PLoS Pathog. , vol.7
    • Opota, O.1
  • 100
    • 26844466658 scopus 로고    scopus 로고
    • Eater, a transmembrane protein mediating phagocytosis of bacterial pathogens in Drosophila
    • Kocks, C. et al. Eater, a transmembrane protein mediating phagocytosis of bacterial pathogens in Drosophila. Cell 123, 335-346 (2005).
    • (2005) Cell , vol.123 , pp. 335-346
    • Kocks, C.1
  • 101
    • 79960673375 scopus 로고    scopus 로고
    • Recognition of pathogenic microbes by the Drosophila phagocytic pattern recognition receptor eater
    • Chung, Y.-S. A. & Kocks, C. Recognition of pathogenic microbes by the Drosophila phagocytic pattern recognition receptor eater. J. Biol. Chem. 286, 26524-26532 (2011).
    • (2011) J. Biol. Chem. , vol.286 , pp. 26524-26532
    • Chung, Y.-S.A.1    Kocks, C.2
  • 102
    • 80054797857 scopus 로고    scopus 로고
    • Pseudomonas aeruginosa RhlR is required to neutralize the cellular immune response in a Drosophila melanogaster oral infection model
    • Limmer, S. et al. Pseudomonas aeruginosa RhlR is required to neutralize the cellular immune response in a Drosophila melanogaster oral infection model. Proc. Natl Acad. Sci. USA 108, 17378-17383 (2011).
    • (2011) Proc. Natl Acad. Sci. USA , vol.108 , pp. 17378-17383
    • Limmer, S.1
  • 103
    • 59849086113 scopus 로고    scopus 로고
    • Genetic analysis of Drosophila melanogaster susceptibility to intestinal Vibrio cholerae infection
    • Berkey, C. D., Blow, N. & Watnick, P. I. Genetic analysis of Drosophila melanogaster susceptibility to intestinal Vibrio cholerae infection. Cell. Microbiol. 11, 461-474 (2009).
    • (2009) Cell. Microbiol. , vol.11 , pp. 461-474
    • Berkey, C.D.1    Blow, N.2    Watnick, P.I.3
  • 104
    • 83755207241 scopus 로고    scopus 로고
    • Spatially selective colonization of the arthropod intestine through activation of Vibrio cholerae biofilm formation
    • Purdy, A. E. & Watnick, P. I. Spatially selective colonization of the arthropod intestine through activation of Vibrio cholerae biofilm formation. Proc. Natl Acad. Sci. USA 108, 19737-19742 (2011).
    • (2011) Proc. Natl Acad. Sci. USA , vol.108 , pp. 19737-19742
    • Purdy, A.E.1    Watnick, P.I.2
  • 106
    • 84870943029 scopus 로고    scopus 로고
    • A conserved dedicated olfactory circuit for detecting harmful microbes in Drosophila
    • Stensmyr, M. C. et al. A conserved dedicated olfactory circuit for detecting harmful microbes in Drosophila. Cell 151, 1345-1357 (2012).
    • (2012) Cell , vol.151 , pp. 1345-1357
    • Stensmyr, M.C.1
  • 107
    • 72649094825 scopus 로고    scopus 로고
    • Tissue-specific activities of an immune signaling module regulate physiological responses to pathogenic and nutritional bacteria in C. elegans
    • Shivers, R. P., Kooistra, T., Chu, S. W., Pagano, D. J. & Kim, D. Tissue-specific activities of an immune signaling module regulate physiological responses to pathogenic and nutritional bacteria in C. elegans. Cell Host Microbe 6, 321-330 (2009).
    • (2009) Cell Host Microbe , vol.6 , pp. 321-330
    • Shivers, R.P.1    Kooistra, T.2    Chu, S.W.3    Pagano, D.J.4    Kim, D.5
  • 108
    • 64049085020 scopus 로고    scopus 로고
    • Insecticidal activity of Bacillus thuringiensis crystal proteins
    • van Frankenhuyzen, K. Insecticidal activity of Bacillus thuringiensis crystal proteins. J. Invertebr. Pathol. 101, 1-16 (2009).
    • (2009) J. Invertebr. Pathol. , vol.101 , pp. 1-16
    • Van Frankenhuyzen, K.1
  • 109
    • 84874211596 scopus 로고    scopus 로고
    • Intestinal antimicrobial peptides during homeostasis, infection, and disease
    • Muniz, L. R., Knosp, C. & Yeretssian, G. Intestinal antimicrobial peptides during homeostasis, infection, and disease. Front. Immunol. 3, 310 (2012).
    • (2012) Front. Immunol. , vol.3 , pp. 310
    • Muniz, L.R.1    Knosp, C.2    Yeretssian, G.3
  • 110
    • 76749105131 scopus 로고    scopus 로고
    • Salmonella regulation of intestinal stem cells through the Wnt/β-catenin pathway
    • Liu, X., Lu, R., Wu, S. & Sun, J. Salmonella regulation of intestinal stem cells through the Wnt/β-catenin pathway. FEBS Lett. 584, 911-916 (2010).
    • (2010) FEBS Lett. , vol.584 , pp. 911-916
    • Liu, X.1    Lu, R.2    Wu, S.3    Sun, J.4
  • 111
    • 75649093343 scopus 로고    scopus 로고
    • Toll-like receptor signalling in the intestinal epithelium: How bacterial recognition shapes intestinal function
    • Abreu, M. T. Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nature Rev. Immunol. 10, 131-144 (2010).
    • (2010) Nature Rev. Immunol. , vol.10 , pp. 131-144
    • Abreu, M.T.1
  • 113
    • 31444452338 scopus 로고    scopus 로고
    • Evidence that stem cells reside in the adult Drosophila midgut epithelium
    • Micchelli, C. A. & Perrimon, N. Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature 439, 475-479 (2006).
    • (2006) Nature , vol.439 , pp. 475-479
    • Micchelli, C.A.1    Perrimon, N.2
  • 114
    • 31444444485 scopus 로고    scopus 로고
    • The adult Drosophila posterior midgut is maintained by pluripotent stem cells
    • Ohlstein, B. & Spradling, A. The adult Drosophila posterior midgut is maintained by pluripotent stem cells. Nature 439, 470-474 (2006).
    • (2006) Nature , vol.439 , pp. 470-474
    • Ohlstein, B.1    Spradling, A.2
  • 115
    • 33847168133 scopus 로고    scopus 로고
    • Multipotent Drosophila intestinal stem cells specify daughter cell fates by differential Notch signaling
    • Ohlstein, B. & Spradling, A. Multipotent Drosophila intestinal stem cells specify daughter cell fates by differential Notch signaling. Science 315, 988-992 (2007).
    • (2007) Science , vol.315 , pp. 988-992
    • Ohlstein, B.1    Spradling, A.2
  • 116
    • 0034307582 scopus 로고    scopus 로고
    • Genes that fight infection: What the Drosophila genome says about animal immunity
    • Khush, R. S. & Lemaitre, B. Genes that fight infection: what the Drosophila genome says about animal immunity. Trends Genet. 16, 442-449 (2000).
    • (2000) Trends Genet. , vol.16 , pp. 442-449
    • Khush, R.S.1    Lemaitre, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.