-
1
-
-
79955494359
-
Coronary-artery bypass surgery in patients with left ventricular dysfunction
-
10.1056/NEJMoa1100356 1533-4406
-
Velazquez E J et al 2011 Coronary-artery bypass surgery in patients with left ventricular dysfunction New Engl. J. Med. 364 1607-16
-
(2011)
New Engl. J. Med.
, vol.364
, pp. 1607-1616
-
-
Velazquez, E.J.1
-
3
-
-
84877021610
-
Nanotopography-guided tissue engineering and regenerative medicine
-
10.1016/j.addr.2012.07.014 0169-409X
-
Kim H N et al 2013 Nanotopography-guided tissue engineering and regenerative medicine Adv. Drug Deliv. Rev. 65 536-58
-
(2013)
Adv. Drug Deliv. Rev.
, vol.65
, pp. 536-558
-
-
Kim, H.N.1
-
4
-
-
0037323469
-
Biomaterials in the development and future of vascular grafts
-
10.1067/mva.2003.88
-
Xue L and Greisler H P 2003 Biomaterials in the development and future of vascular grafts J. Vasc. Surg. 37 472-80
-
(2003)
J. Vasc. Surg.
, vol.37
, pp. 472-480
-
-
Xue, L.1
Greisler, H.P.2
-
6
-
-
79955414212
-
Bioactive stent surface coating that promotes endothelialization while preventing platelet adhesion
-
10.1021/bm101212k
-
Meyers S R, Kenan D J, Khoo X and Grinstaff M W 2011 Bioactive stent surface coating that promotes endothelialization while preventing platelet adhesion Biomacromolecules 12 533-9
-
(2011)
Biomacromolecules
, vol.12
, pp. 533-539
-
-
Meyers, S.R.1
Kenan, D.J.2
Khoo, X.3
Grinstaff, M.W.4
-
7
-
-
0142248316
-
Pore size, tissue ingrowth, and endothelialization of small-diameter microporous polyurethane vascular prostheses
-
10.1016/S0142-9612(03)00478-2 0142-9612
-
Zhang Z, Wang Z, Liu S and Kodama M 2004 Pore size, tissue ingrowth, and endothelialization of small-diameter microporous polyurethane vascular prostheses Biomaterials 25 177-87
-
(2004)
Biomaterials
, vol.25
, pp. 177-187
-
-
Zhang, Z.1
Wang, Z.2
Liu, S.3
Kodama, M.4
-
8
-
-
0034253760
-
Tissue engineering of vascular grafts
-
10.1016/S0945-053X(00)00080-9
-
Ratcliffe A 2000 Tissue engineering of vascular grafts Matrix Biol. 19 353-7
-
(2000)
Matrix Biol.
, vol.19
, pp. 353-357
-
-
Ratcliffe, A.1
-
9
-
-
84870252825
-
Enhanced endothelialization for developing artificial vascular networks with a natural vessel mimicking the luminal surface in scaffolds
-
10.1016/j.actbio.2012.08.042
-
Kang T Y, Hong J M, Kim B J, Cha H J and Cho D W 2013 Enhanced endothelialization for developing artificial vascular networks with a natural vessel mimicking the luminal surface in scaffolds Acta Biomater. 9 4716-25
-
(2013)
Acta Biomater.
, vol.9
, pp. 4716-4725
-
-
Kang, T.Y.1
Hong, J.M.2
Kim, B.J.3
Cha, H.J.4
Cho, D.W.5
-
10
-
-
84894216410
-
Toward a rational design of surface textures promoting endothelialization
-
10.1021/nl4047398
-
Potthoff E et al 2014 Toward a rational design of surface textures promoting endothelialization Nano Lett. 14 1069-79
-
(2014)
Nano Lett.
, vol.14
, pp. 1069-1079
-
-
Potthoff, E.1
-
11
-
-
43649085052
-
Nanotechnology in vascular tissue engineering: From nanoscaffolding towards rapid vessel biofabrication
-
10.1016/j.tibtech.2008.03.001
-
Mironov V, Kasyanov V and Markwald R R 2008 Nanotechnology in vascular tissue engineering: from nanoscaffolding towards rapid vessel biofabrication Trends Biotechnol. 26 338-44
-
(2008)
Trends Biotechnol.
, vol.26
, pp. 338-344
-
-
Mironov, V.1
Kasyanov, V.2
Markwald, R.R.3
-
12
-
-
2542461982
-
In vitro degradation of three-dimensional porous poly(D,L-lactide-co- glycolide) scaffolds for tissue engineering
-
10.1016/j.biomaterials.2004.01.038 0142-9612
-
Wu L and Ding J 2004 In vitro degradation of three-dimensional porous poly(D,L-lactide-co-glycolide) scaffolds for tissue engineering Biomaterials 25 5821-30
-
(2004)
Biomaterials
, vol.25
, pp. 5821-5830
-
-
Wu, L.1
Ding, J.2
-
13
-
-
19944428596
-
Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion
-
10.1002/cm.20041
-
Yeung T et al 2005 Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion Cell Motil. Cytoskeleton 60 24-34
-
(2005)
Cell Motil. Cytoskeleton
, vol.60
, pp. 24-34
-
-
Yeung, T.1
-
15
-
-
0014207493
-
Segmented polyurethane: A new elastomer for biomedical applications
-
10.1126/science.158.3807.1481
-
Boretos J W and Pierce W S 1967 Segmented polyurethane: a new elastomer for biomedical applications Science 158 1481-2
-
(1967)
Science
, vol.158
, pp. 1481-1482
-
-
Boretos, J.W.1
Pierce, W.S.2
-
16
-
-
77955116125
-
Five types of polyurethane vascular grafts in dogs: The importance of structural design and material selection
-
10.1163/092050609X12481751806295
-
Xie X, Eberhart A, Guidoin R, Marois Y, Douville Y and Zhang Z 2010 Five types of polyurethane vascular grafts in dogs: the importance of structural design and material selection J. Biomater. Sci. Polym. Edn 21 1239-64
-
(2010)
J. Biomater. Sci. Polym. Edn
, vol.21
, pp. 1239-1264
-
-
Xie, X.1
Eberhart, A.2
Guidoin, R.3
Marois, Y.4
Douville, Y.5
Zhang, Z.6
-
17
-
-
23644440286
-
Understanding the biodegradation of polyurethanes: From classical implants to tissue engineering materials
-
10.1016/j.biomaterials.2005.05.079 0142-9612
-
Santerre J P, Woodhouse K, Laroche G and Labow R S 2005 Understanding the biodegradation of polyurethanes: from classical implants to tissue engineering materials Biomaterials 26 7457-70
-
(2005)
Biomaterials
, vol.26
, pp. 7457-7470
-
-
Santerre, J.P.1
Woodhouse, K.2
Laroche, G.3
Labow, R.S.4
-
18
-
-
12444253950
-
Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition
-
10.1016/S0142-9612(03)00052-8 0142-9612
-
Vozzi G, Flaim C, Ahluwalia A and Bhatia S 2003 Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition Biomaterials 24 2533-40
-
(2003)
Biomaterials
, vol.24
, pp. 2533-2540
-
-
Vozzi, G.1
Flaim, C.2
Ahluwalia, A.3
Bhatia, S.4
-
19
-
-
33751306802
-
Tissue-engineered vascular grafts composed of marine collagen and PLGA fibers using pulsatile perfusion bioreactors
-
10.1016/j.biomaterials.2006.10.025 0142-9612
-
Jeong S I et al 2007 Tissue-engineered vascular grafts composed of marine collagen and PLGA fibers using pulsatile perfusion bioreactors Biomaterials 28 1115-22
-
(2007)
Biomaterials
, vol.28
, pp. 1115-1122
-
-
Jeong, S.I.1
-
20
-
-
0029130253
-
Degradation of poly(lactic-co-glycolic acid) microspheres: Effect of copolymer composition
-
10.1016/0142-9612(95)93575-X 0142-9612
-
Park T G 1995 Degradation of poly(lactic-co-glycolic acid) microspheres: effect of copolymer composition Biomaterials 16 1123-30
-
(1995)
Biomaterials
, vol.16
, pp. 1123-1130
-
-
Park, T.G.1
-
21
-
-
18244366662
-
Tissue engineering - Current challenges and expanding opportunities
-
10.1126/science.1069210
-
Griffith L G and Naughton G 2002 Tissue engineering - current challenges and expanding opportunities Science 295 1009-14
-
(2002)
Science
, vol.295
, pp. 1009-1014
-
-
Griffith, L.G.1
Naughton, G.2
-
22
-
-
41849089153
-
The effects of matrix stiffness and RhoA on the phenotypic plasticity of smooth muscle cells in a 3D biosynthetic hydrogel system
-
10.1016/j.biomaterials.2008.02.005 0142-9612
-
Peyton S R, Kim P D, Ghajar C M, Seliktar D and Putnam A J 2008 The effects of matrix stiffness and RhoA on the phenotypic plasticity of smooth muscle cells in a 3D biosynthetic hydrogel system Biomaterials 29 2597-607
-
(2008)
Biomaterials
, vol.29
, pp. 2597-2607
-
-
Peyton, S.R.1
Kim, P.D.2
Ghajar, C.M.3
Seliktar, D.4
Putnam, A.J.5
-
24
-
-
33745001030
-
The use of poly(ethylene glycol) hydrogels to investigate the impact of ECM chemistry and mechanics on smooth muscle cells
-
10.1016/j.biomaterials.2006.05.012 0142-9612
-
Peyton S R, Raub C B, Keschrumrus V P and Putnam A J 2006 The use of poly(ethylene glycol) hydrogels to investigate the impact of ECM chemistry and mechanics on smooth muscle cells Biomaterials 27 4881-93
-
(2006)
Biomaterials
, vol.27
, pp. 4881-4893
-
-
Peyton, S.R.1
Raub, C.B.2
Keschrumrus, V.P.3
Putnam, A.J.4
-
25
-
-
79959546065
-
Synthesis and characterization of tunable poly(ethylene glycol): Gelatin methacrylate composite hydrogels
-
10.1089/ten.tea.2010.0666 1076-3279 A
-
Hutson C B et al Synthesis and characterization of tunable poly(ethylene glycol): gelatin methacrylate composite hydrogels Tissue Eng. A 17 1713-23
-
Tissue Eng.
, vol.17
, pp. 1713-1723
-
-
Hutson, C.B.1
-
26
-
-
27944466697
-
Exploring and engineering the cell surface interface
-
10.1126/science.1106587
-
Stevens M M and George J H 2005 Exploring and engineering the cell surface interface Science 310 1135-8
-
(2005)
Science
, vol.310
, pp. 1135-1138
-
-
Stevens, M.M.1
George, J.H.2
-
27
-
-
84858994768
-
Quantitative analysis of the combined effect of substrate rigidity and topographic guidance on cell morphology
-
10.1109/TNB.2011.2165728
-
Park J, Kim H N, Kim D H, Levchenko A and Suh K Y 2012 Quantitative analysis of the combined effect of substrate rigidity and topographic guidance on cell morphology IEEE Trans. Nanobiosci. 11 28-36
-
(2012)
IEEE Trans. Nanobiosci.
, vol.11
, pp. 28-36
-
-
Park, J.1
Kim, H.N.2
Kim, D.H.3
Levchenko, A.4
Suh, K.Y.5
-
28
-
-
67651149786
-
Microengineered platforms for cell mechanobiology
-
10.1146/annurev-bioeng-061008-124915
-
Kim D H, Wong P K, Park J, Levchenko A and Sun Y 2009 Microengineered platforms for cell mechanobiology Annu. Rev. Biomed. Eng. 11 203-33
-
(2009)
Annu. Rev. Biomed. Eng.
, vol.11
, pp. 203-233
-
-
Kim, D.H.1
Wong, P.K.2
Park, J.3
Levchenko, A.4
Sun, Y.5
-
29
-
-
84870930489
-
Nanopatterned cardiac cell patches promote stem cell niche formation and myocardial regeneration
-
10.1039/c2ib20067h 1093-4391
-
Kim D H et al 2012 Nanopatterned cardiac cell patches promote stem cell niche formation and myocardial regeneration Integr. Biol. 4 1019-33
-
(2012)
Integr. Biol.
, vol.4
, pp. 1019-1033
-
-
Kim, D.H.1
-
30
-
-
68549133138
-
Mechanosensitivity of fibroblast cell shape and movement to anisotropic substratum topography gradients
-
10.1016/j.biomaterials.2009.06.042 0142-9612
-
Kim D H, Han K, Gupta K, Kwon K W, Suh K Y and Levchenko A 2009 Mechanosensitivity of fibroblast cell shape and movement to anisotropic substratum topography gradients Biomaterials 30 5433-44
-
(2009)
Biomaterials
, vol.30
, pp. 5433-5444
-
-
Kim, D.H.1
Han, K.2
Gupta, K.3
Kwon, K.W.4
Suh, K.Y.5
Levchenko, A.6
-
31
-
-
33745445953
-
Guided three-dimensional growth of functional cardiomyocytes on polyethylene glycol nanostructures
-
10.1021/la060283u
-
Kim D H et al 2006 Guided three-dimensional growth of functional cardiomyocytes on polyethylene glycol nanostructures Langmuir 22 5419-26
-
(2006)
Langmuir
, vol.22
, pp. 5419-5426
-
-
Kim, D.H.1
-
32
-
-
67049158833
-
Time-lapse observation of cell alignment on nanogrooved patterns
-
10.1098/rsif.2008.0428.focus 1742-5689
-
Fujita S, Ohshima M and Iwata H 2009 Time-lapse observation of cell alignment on nanogrooved patterns J. R. Soc. Interface 6 S269-77
-
(2009)
J. R. Soc. Interface
, vol.6
-
-
Fujita, S.1
Ohshima, M.2
Iwata, H.3
-
33
-
-
25444449794
-
Fabrication of nanostructures of polyethylene glycol for applications to protein adsorption and cell adhesion
-
10.1088/0957-4484/16/10/072 0957-4484 072
-
Kim P et al 2005 Fabrication of nanostructures of polyethylene glycol for applications to protein adsorption and cell adhesion Nanotechnology 16 2420-6
-
(2005)
Nanotechnology
, vol.16
, Issue.10
, pp. 2420-2426
-
-
Kim, P.1
-
34
-
-
76249107098
-
Nanoscale cues regulate the structure and function of macroscopic cardiac tissue constructs
-
10.1073/pnas.0906504107 0027-8424
-
Kim D H et al 2009 Nanoscale cues regulate the structure and function of macroscopic cardiac tissue constructs Proc. Natl Acad. Sci. USA 107 565-70
-
(2009)
Proc. Natl Acad. Sci. USA
, vol.107
, pp. 565-570
-
-
Kim, D.H.1
-
35
-
-
0142195982
-
A simple soft lithographic route to fabrication of poly(ethylene glycol) microstructures for protein and cell patterning
-
10.1016/S0142-9612(03)00543-X 0142-9612
-
Suh K Y, Seong J, Khademhosseini A, Laibinis P E and Langer R 2004 A simple soft lithographic route to fabrication of poly(ethylene glycol) microstructures for protein and cell patterning Biomaterials 25 557-63
-
(2004)
Biomaterials
, vol.25
, pp. 557-563
-
-
Suh, K.Y.1
Seong, J.2
Khademhosseini, A.3
Laibinis, P.E.4
Langer, R.5
-
36
-
-
3042819011
-
A soft lithographic approach to fabricate patterned microfluidic channels
-
10.1021/ac035415s
-
Khademhosseini A et al 2004 A soft lithographic approach to fabricate patterned microfluidic channels Anal. Chem. 76 3675-81
-
(2004)
Anal. Chem.
, vol.76
, pp. 3675-3681
-
-
Khademhosseini, A.1
-
37
-
-
77957961195
-
Fabrication of complex patterns with a wide range of feature sizes from a single line prepattern by successive application of capillary force lithography
-
10.1021/la100414c
-
Lee S K, Jung J M, Lee J S and Jung H T Fabrication of complex patterns with a wide range of feature sizes from a single line prepattern by successive application of capillary force lithography Langmuir 26 14359-63
-
Langmuir
, vol.26
, pp. 14359-14363
-
-
Lee, S.K.1
Jung, J.M.2
Lee, J.S.3
Jung, H.T.4
-
38
-
-
77953659861
-
UV-assisted capillary force lithography for engineering biomimetic multiscale hierarchical structures: From lotus leaf to gecko foot hairs
-
10.1039/b9nr00106a
-
Jeong H E, Kwak R, Khademhosseini A and Suh K Y 2009 UV-assisted capillary force lithography for engineering biomimetic multiscale hierarchical structures: from lotus leaf to gecko foot hairs Nanoscale 1 331-8
-
(2009)
Nanoscale
, vol.1
, pp. 331-338
-
-
Jeong, H.E.1
Kwak, R.2
Khademhosseini, A.3
Suh, K.Y.4
-
39
-
-
77953025978
-
Cell-laden microengineered gelatin methacrylate hydrogels
-
10.1016/j.biomaterials.2010.03.064 0142-9612
-
Nichol J W, Koshy S T, Bae H, Hwang C M, Yamanlar S and Khademhosseini A Cell-laden microengineered gelatin methacrylate hydrogels Biomaterials 31 5536-44
-
Biomaterials
, vol.31
, pp. 5536-5544
-
-
Nichol, J.W.1
Koshy, S.T.2
Bae, H.3
Hwang, C.M.4
Yamanlar, S.5
Khademhosseini, A.6
-
40
-
-
0034158545
-
Structural and rheological properties of methacrylamide modified gelatin hydrogels
-
10.1021/bm990017d
-
Van den Bulcke A I, Bogdanov B, De Rooze N, Schacht E H, Cornelissen M and Berghmans H 2000 Structural and rheological properties of methacrylamide modified gelatin hydrogels Biomacromolecules 1 31-38
-
(2000)
Biomacromolecules
, vol.1
, pp. 31-38
-
-
Van Den Bulcke, A.I.1
Bogdanov, B.2
De Rooze, N.3
Schacht, E.H.4
Cornelissen, M.5
Berghmans, H.6
-
41
-
-
33646020666
-
Contact mechanics and tip shape in AFM-based nanomechanical measurements
-
10.1016/j.ultramic.2005.12.006 0304-3991
-
Kopycinska-Muller M, Geiss R H and Hurley D C 2006 Contact mechanics and tip shape in AFM-based nanomechanical measurements Ultramicroscopy 106 466-74
-
(2006)
Ultramicroscopy
, vol.106
, pp. 466-474
-
-
Kopycinska-Muller, M.1
Geiss, R.H.2
Hurley, D.C.3
-
42
-
-
33244484721
-
Effect of contact deformations on the adhesion of particles
-
10.1016/0021-9797(75)90018-1
-
Derjaguin B V, Muller V M and Toporov Y P 1975 Effect of contact deformations on the adhesion of particles J. Colloid Interface Sci. 53 314-26
-
(1975)
J. Colloid Interface Sci.
, vol.53
, pp. 314-326
-
-
Derjaguin, B.V.1
Muller, V.M.2
Toporov, Y.P.3
-
43
-
-
72649106327
-
Photocrosslinking of gelatin macromers to synthesize porous hydrogels that promote valvular interstitial cell function
-
10.1089/ten.tea.2008.0545 1076-3279 A
-
Benton J A, DeForest C A, Vivekanandan V and Anseth K S 2009 Photocrosslinking of gelatin macromers to synthesize porous hydrogels that promote valvular interstitial cell function Tissue Eng. A 15 3221-30
-
(2009)
Tissue Eng.
, vol.15
, pp. 3221-3230
-
-
Benton, J.A.1
Deforest, C.A.2
Vivekanandan, V.3
Anseth, K.S.4
-
44
-
-
21244491489
-
Directional persistence of EGF-induced cell migration is associated with stabilization of lamellipodial protrusions
-
10.1529/biophysj.104.047365
-
Harms B D, Bassi G M, Horwitz A R and Lauffenburger D A 2005 Directional persistence of EGF-induced cell migration is associated with stabilization of lamellipodial protrusions Biophys. J. 88 1479-88
-
(2005)
Biophys. J.
, vol.88
, pp. 1479-1488
-
-
Harms, B.D.1
Bassi, G.M.2
Horwitz, A.R.3
Lauffenburger, D.A.4
-
45
-
-
0035860303
-
Capillary force lithography
-
10.1002/1521-4095 (200109) 13:18<1386::AID-ADMA1386>3.0. CO;2-X
-
Suh K Y, Kim Y S and Lee H H 2001 Capillary force lithography Adv. Mater. 13 1386-9
-
(2001)
Adv. Mater.
, vol.13
, pp. 1386-1389
-
-
Suh, K.Y.1
Kim, Y.S.2
Lee, H.H.3
-
46
-
-
79953027119
-
Finite element analysis of the effects of focal adhesion mechanical properties and substrate stiffness on cell migration
-
10.1016/j.jbiomech.2011.02.004 0021-9290
-
Wong H C and Tang W C 2011 Finite element analysis of the effects of focal adhesion mechanical properties and substrate stiffness on cell migration J. Biomech. 44 1046-50
-
(2011)
J. Biomech.
, vol.44
, pp. 1046-1050
-
-
Wong, H.C.1
Tang, W.C.2
-
47
-
-
42249093297
-
The role of matrix stiffness in regulating cell behavior
-
10.1002/hep.22193
-
Wells R G 2008 The role of matrix stiffness in regulating cell behavior Hepatology 47 1394-400
-
(2008)
Hepatology
, vol.47
, pp. 1394-1400
-
-
Wells, R.G.1
-
48
-
-
0347319161
-
Substrate compliance versus ligand density in cell on gel responses
-
10.1016/S0006-3495(04)74140-5
-
Engler A, Bacakova L, Newman C, Hategan A, Griffin M and Discher D 2004 Substrate compliance versus ligand density in cell on gel responses Biophys. J. 86 617-28
-
(2004)
Biophys. J.
, vol.86
, pp. 617-628
-
-
Engler, A.1
Bacakova, L.2
Newman, C.3
Hategan, A.4
Griffin, M.5
Discher, D.6
-
49
-
-
15444368220
-
Cell type-specific response to growth on soft materials
-
10.1152/japplphysiol.01121.2004
-
Georges P C and Janmey P A 2005 Cell type-specific response to growth on soft materials J. Appl. Physiol. 98 1547-53
-
(2005)
J. Appl. Physiol.
, vol.98
, pp. 1547-1553
-
-
Georges, P.C.1
Janmey, P.A.2
-
50
-
-
4544264684
-
Myotubes differentiate optimally on substrates with tissue-like stiffness: Pathological implications for soft or stiff microenvironments
-
10.1083/jcb.200405004
-
Engler A J, Griffin M A, Sen S, Bonnemann C G, Sweeney H L and Discher D E 2004 Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments J. Cell Biol. 166 877-87
-
(2004)
J. Cell Biol.
, vol.166
, pp. 877-887
-
-
Engler, A.J.1
Griffin, M.A.2
Sen, S.3
Bonnemann, C.G.4
Sweeney, H.L.5
Discher, D.E.6
-
51
-
-
27944497333
-
Tissue cells feel and respond to the stiffness of their substrate
-
10.1126/science.1116995
-
Discher D E, Janmey P and Wang Y L 2005 Tissue cells feel and respond to the stiffness of their substrate Science 310 1139-43
-
(2005)
Science
, vol.310
, pp. 1139-1143
-
-
Discher, D.E.1
Janmey, P.2
Wang, Y.L.3
-
53
-
-
74249089196
-
Synthetic materials in the study of cell response to substrate rigidity
-
10.1007/s10439-009-9811-1
-
Nemir S and West J L 2010 Synthetic materials in the study of cell response to substrate rigidity Ann. Biomed. Eng. 38 2-20
-
(2010)
Ann. Biomed. Eng.
, vol.38
, pp. 2-20
-
-
Nemir, S.1
West, J.L.2
-
54
-
-
33746325163
-
Fabrication and characterization of electrospun polybutadiene fibers crosslinked by UV irradiation
-
10.1002/app.23764
-
Choi S S, Hong J P, Seo Y S, Chung S M and Nah C 2006 Fabrication and characterization of electrospun polybutadiene fibers crosslinked by UV irradiation J. Appl. Polym. Sci. 101 2333-7
-
(2006)
J. Appl. Polym. Sci.
, vol.101
, pp. 2333-2337
-
-
Choi, S.S.1
Hong, J.P.2
Seo, Y.S.3
Chung, S.M.4
Nah, C.5
-
55
-
-
10044257751
-
In situ photo-cross-linking of cinnamate functionalized poly(methyl methacrylate-co-2-hydroxyethyl acrylate) fibers during electrospinning
-
10.1021/ma048844g
-
Gupta P, Trenor S R, Long T E and Wilkes G L 2004 In situ photo-cross-linking of cinnamate functionalized poly(methyl methacrylate-co-2- hydroxyethyl acrylate) fibers during electrospinning Macromolecules 37 9211-8
-
(2004)
Macromolecules
, vol.37
, pp. 9211-9218
-
-
Gupta, P.1
Trenor, S.R.2
Long, T.E.3
Wilkes, G.L.4
-
56
-
-
34250380895
-
3D polymer scaffolds for tissue engineering
-
10.2217/17435889.1.3.281
-
Seunarine K, Gadegaard N, Tormen M, Meredith D O, Riehle M O and Wilkinson C D 2006 3D polymer scaffolds for tissue engineering Nanomedicine 1 281-96
-
(2006)
Nanomedicine
, vol.1
, pp. 281-296
-
-
Seunarine, K.1
Gadegaard, N.2
Tormen, M.3
Meredith, D.O.4
Riehle, M.O.5
Wilkinson, C.D.6
-
57
-
-
84890547293
-
Surface modification of implanted cardiovascular metal stents: From anti-thrombosis and anti-restenosis to endothelialization
-
10.1002/jbm.a.34714 1097-4636 A
-
Zhang K, Liu T, Li J A, Chen J Y, Wang J and Huang N 2013 Surface modification of implanted cardiovascular metal stents: from anti-thrombosis and anti-restenosis to endothelialization J. Biomed. Mater. Res. A 102 588-609
-
(2013)
J. Biomed. Mater. Res.
, vol.102
, pp. 588-609
-
-
Zhang, K.1
Liu, T.2
Li, J.A.3
Chen, J.Y.4
Wang, J.5
Huang, N.6
-
58
-
-
0037116569
-
Coronary in-stent restenosis: Current status and future strategies
-
10.1016/S0735-1097(01)01742-9
-
Lowe H C, Oesterle S N and Khachigian L M 2002 Coronary in-stent restenosis: current status and future strategies J. Am. College Cardiol. 39 183-93
-
(2002)
J. Am. College Cardiol.
, vol.39
, pp. 183-193
-
-
Lowe, H.C.1
Oesterle, S.N.2
Khachigian, L.M.3
-
59
-
-
12444320975
-
Fabrication of endothelial progenitor cell (EPC)-seeded intravascular stent devices and in vitro endothelialization on hybrid vascular tissue
-
10.1016/S0142-9612(03)00042-5 0142-9612
-
Shirota T, Yasui H, Shimokawa H and Matsuda T 2003 Fabrication of endothelial progenitor cell (EPC)-seeded intravascular stent devices and in vitro endothelialization on hybrid vascular tissue Biomaterials 24 2295-302
-
(2003)
Biomaterials
, vol.24
, pp. 2295-2302
-
-
Shirota, T.1
Yasui, H.2
Shimokawa, H.3
Matsuda, T.4
-
60
-
-
73649122403
-
Gelatin hydrogel prepared by photo-initiated polymerization and loaded with TGF-beta1 for cartilage tissue engineering
-
10.1002/mabi.200900275
-
Hu X, Ma L, Wang C and Gao C 2009 Gelatin hydrogel prepared by photo-initiated polymerization and loaded with TGF-beta1 for cartilage tissue engineering Macromol. Biosci. 9 1194-201
-
(2009)
Macromol. Biosci.
, vol.9
, pp. 1194-1201
-
-
Hu, X.1
Ma, L.2
Wang, C.3
Gao, C.4
|