메뉴 건너뛰기




Volumn 32, Issue 5, 2014, Pages 245-253

Lab-on-a-chip technologies for stem cell analysis

Author keywords

Biosensors; Lab on a chip; Microfluidics; Stem cells

Indexed keywords

BIOSENSORS; CELL CULTURE; EMBEDDED SYSTEMS; MICROFLUIDICS; STEM CELLS;

EID: 84899476903     PISSN: 01677799     EISSN: 18793096     Source Type: Journal    
DOI: 10.1016/j.tibtech.2014.03.004     Document Type: Review
Times cited : (98)

References (84)
  • 2
    • 0042131826 scopus 로고    scopus 로고
    • Adult stem cells for tissue repair - a new therapeutic concept?
    • Korbling M., Estrov Z. Adult stem cells for tissue repair - a new therapeutic concept?. N. Engl. J. Med. 2003, 349:570-582.
    • (2003) N. Engl. J. Med. , vol.349 , pp. 570-582
    • Korbling, M.1    Estrov, Z.2
  • 3
    • 33747117373 scopus 로고    scopus 로고
    • The origins and the future of microfluidics
    • Whitesides G.M. The origins and the future of microfluidics. Nature 2006, 442:368-373.
    • (2006) Nature , vol.442 , pp. 368-373
    • Whitesides, G.M.1
  • 4
    • 69949145696 scopus 로고    scopus 로고
    • Artificial stem cell niches
    • Lutolf M.P., Blau H.M. Artificial stem cell niches. Adv. Mat. 2009, 21:3255-3268.
    • (2009) Adv. Mat. , vol.21 , pp. 3255-3268
    • Lutolf, M.P.1    Blau, H.M.2
  • 5
    • 84873437242 scopus 로고    scopus 로고
    • Microfluidic systems: a new toolbox for pluripotent stem cells
    • Lesher-Perez S.C., et al. Microfluidic systems: a new toolbox for pluripotent stem cells. Biotechnol. J. 2013, 8:180-191.
    • (2013) Biotechnol. J. , vol.8 , pp. 180-191
    • Lesher-Perez, S.C.1
  • 6
    • 80155205233 scopus 로고    scopus 로고
    • Artificial niche microarrays for probing single stem cell fate in high throughput
    • Gobaa S., et al. Artificial niche microarrays for probing single stem cell fate in high throughput. Nat. Method 2011, 8:949-955.
    • (2011) Nat. Method , vol.8 , pp. 949-955
    • Gobaa, S.1
  • 7
    • 33747152561 scopus 로고    scopus 로고
    • Matrix elasticity directs stem cell lineage specification
    • Engler A.J., et al. Matrix elasticity directs stem cell lineage specification. Cell 2006, 126:677-689.
    • (2006) Cell , vol.126 , pp. 677-689
    • Engler, A.J.1
  • 8
    • 11344288033 scopus 로고    scopus 로고
    • Photopolymerization in microfluidic gradient generators: microscale control of substrate compliance to manipulate cell response
    • Zaari N., et al. Photopolymerization in microfluidic gradient generators: microscale control of substrate compliance to manipulate cell response. Adv. Mater. 2004, 16:2133-2137.
    • (2004) Adv. Mater. , vol.16 , pp. 2133-2137
    • Zaari, N.1
  • 9
    • 72149130003 scopus 로고    scopus 로고
    • Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells
    • Yim E.K.F., et al. Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells. Biomat 2010, 31:1299-1306.
    • (2010) Biomat , vol.31 , pp. 1299-1306
    • Yim, E.K.F.1
  • 10
    • 84884932303 scopus 로고    scopus 로고
    • Exploitation of s-layer anisotropy: pH-dependent nanolayer orientation for cellular micropatterning
    • Rothbauer M., et al. Exploitation of s-layer anisotropy: pH-dependent nanolayer orientation for cellular micropatterning. ACS Nano 2013, 7:8020-8030.
    • (2013) ACS Nano , vol.7 , pp. 8020-8030
    • Rothbauer, M.1
  • 11
    • 22044456755 scopus 로고    scopus 로고
    • Oxygen in the cultivation of stem cells
    • Csete M. Oxygen in the cultivation of stem cells. Ann. N. Y. Acad. Sci. 2005, 1049:1-8.
    • (2005) Ann. N. Y. Acad. Sci. , vol.1049 , pp. 1-8
    • Csete, M.1
  • 12
    • 84867486363 scopus 로고    scopus 로고
    • Microfluidic hydrogels for tissue engineering
    • Huang G.Y., et al. Microfluidic hydrogels for tissue engineering. Biofab 2011, 3:012001.
    • (2011) Biofab , vol.3 , pp. 012001
    • Huang, G.Y.1
  • 13
    • 84876099601 scopus 로고    scopus 로고
    • Advances in microfluidic materials, functions, integration, and applications
    • Nge P.N., et al. Advances in microfluidic materials, functions, integration, and applications. Chem. Rev. 2013, 113:2550-2583.
    • (2013) Chem. Rev. , vol.113 , pp. 2550-2583
    • Nge, P.N.1
  • 14
    • 84884937482 scopus 로고    scopus 로고
    • New materials for microfluidics in biology
    • Ren K., et al. New materials for microfluidics in biology. Curr. Opin. Biotechnol. 2014, 25:78-85.
    • (2014) Curr. Opin. Biotechnol. , vol.25 , pp. 78-85
    • Ren, K.1
  • 15
    • 7944222137 scopus 로고    scopus 로고
    • Molded polyethylene glycol microstructures for capturing cells within microfluidic channels
    • Khademhosseini A., et al. Molded polyethylene glycol microstructures for capturing cells within microfluidic channels. Lab Chip 2004, 4:425-430.
    • (2004) Lab Chip , vol.4 , pp. 425-430
    • Khademhosseini, A.1
  • 16
    • 59349111076 scopus 로고    scopus 로고
    • Microfluidic control of cell pairing and fusion
    • Skelley A.M., et al. Microfluidic control of cell pairing and fusion. Nat. Method 2009, 6:147-152.
    • (2009) Nat. Method , vol.6 , pp. 147-152
    • Skelley, A.M.1
  • 17
    • 84864193005 scopus 로고    scopus 로고
    • Automated analysis of single stem cells in microfluidic traps
    • Kobel S.A., et al. Automated analysis of single stem cells in microfluidic traps. Lab Chip 2012, 12:2843-2849.
    • (2012) Lab Chip , vol.12 , pp. 2843-2849
    • Kobel, S.A.1
  • 18
    • 77956061536 scopus 로고    scopus 로고
    • Label-free cell separation and sorting in microfluidic systems
    • Gossett D.R., et al. Label-free cell separation and sorting in microfluidic systems. Anal. Bioanal. Chem. 2010, 397:3249-3267.
    • (2010) Anal. Bioanal. Chem. , vol.397 , pp. 3249-3267
    • Gossett, D.R.1
  • 19
    • 84865599598 scopus 로고    scopus 로고
    • Microfluidic: an innovative tool for efficient cell sorting
    • Autebert J., et al. Microfluidic: an innovative tool for efficient cell sorting. Methods 2012, 57:297-307.
    • (2012) Methods , vol.57 , pp. 297-307
    • Autebert, J.1
  • 20
    • 70549112925 scopus 로고    scopus 로고
    • Gravitational field-flow fractionation of human hemopoietic stem cells
    • Roda B., et al. Gravitational field-flow fractionation of human hemopoietic stem cells. J. Chromatogr. A 2009, 1216:9081-9087.
    • (2009) J. Chromatogr. A , vol.1216 , pp. 9081-9087
    • Roda, B.1
  • 21
    • 84869237943 scopus 로고    scopus 로고
    • Microfluidics separation reveals the stem-cell-like deformability of tumor-initiating cells
    • Zhang W., et al. Microfluidics separation reveals the stem-cell-like deformability of tumor-initiating cells. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:18707-18712.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 18707-18712
    • Zhang, W.1
  • 22
    • 43049111469 scopus 로고    scopus 로고
    • Unique dielectric properties distinguish stem cells and their differentiated progeny
    • Flanagan L.A., et al. Unique dielectric properties distinguish stem cells and their differentiated progeny. Stem Cells 2008, 26:656-665.
    • (2008) Stem Cells , vol.26 , pp. 656-665
    • Flanagan, L.A.1
  • 23
    • 80054031493 scopus 로고    scopus 로고
    • Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies
    • Wang X., et al. Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies. Lab Chip 2011, 11:3656-3662.
    • (2011) Lab Chip , vol.11 , pp. 3656-3662
    • Wang, X.1
  • 24
    • 84887534526 scopus 로고    scopus 로고
    • One-step microfluidic generation of pre-hatching embryo-like core-shell microcapsules for miniaturized 3D culture of pluripotent stem cells
    • Agarwal P., et al. One-step microfluidic generation of pre-hatching embryo-like core-shell microcapsules for miniaturized 3D culture of pluripotent stem cells. Lab Chip 2013, 13:4525-4533.
    • (2013) Lab Chip , vol.13 , pp. 4525-4533
    • Agarwal, P.1
  • 25
    • 77951080101 scopus 로고    scopus 로고
    • High-performance single cell genetic analysis using microfluidic emulsion generator arrays
    • Zeng Y., et al. High-performance single cell genetic analysis using microfluidic emulsion generator arrays. Anal. Chem. 2010, 82:3183-3190.
    • (2010) Anal. Chem. , vol.82 , pp. 3183-3190
    • Zeng, Y.1
  • 26
    • 84887531869 scopus 로고    scopus 로고
    • Development of a multiplexed microfluidic platform for the automated cultivation of embryonic stem cells
    • Reichen M., et al. Development of a multiplexed microfluidic platform for the automated cultivation of embryonic stem cells. J. Lab. Autom. 2013, 18:519-529.
    • (2013) J. Lab. Autom. , vol.18 , pp. 519-529
    • Reichen, M.1
  • 27
    • 59649114748 scopus 로고    scopus 로고
    • An integrated microfluidic culture device for quantitative analysis of human embryonic stem cells
    • Kamei K.I., et al. An integrated microfluidic culture device for quantitative analysis of human embryonic stem cells. Lab Chip 2009, 9:555-563.
    • (2009) Lab Chip , vol.9 , pp. 555-563
    • Kamei, K.I.1
  • 28
    • 78650334218 scopus 로고    scopus 로고
    • Microenvironment array chip for cell culture environment screening
    • Hattori K., et al. Microenvironment array chip for cell culture environment screening. Lab Chip 2011, 11:212-214.
    • (2011) Lab Chip , vol.11 , pp. 212-214
    • Hattori, K.1
  • 29
    • 84882257654 scopus 로고    scopus 로고
    • A novel microfluidic platform with stable concentration gradient for on chip cell culture and screening assays
    • Xu B-Y., et al. A novel microfluidic platform with stable concentration gradient for on chip cell culture and screening assays. Lab Chip 2013, 13:3714-3720.
    • (2013) Lab Chip , vol.13 , pp. 3714-3720
    • Xu, B.-Y.1
  • 30
    • 84870880555 scopus 로고    scopus 로고
    • Diffusion- and convection-based activation of Wnt/β-catenin signaling in a gradient generating microfluidic chip
    • Kim C., et al. Diffusion- and convection-based activation of Wnt/β-catenin signaling in a gradient generating microfluidic chip. Lab Chip 2012, 12:5186-5194.
    • (2012) Lab Chip , vol.12 , pp. 5186-5194
    • Kim, C.1
  • 31
    • 78149385344 scopus 로고    scopus 로고
    • Microfluidic device generating stable concentration gradients for long term cell culture: application to Wnt3a regulation of β-catenin signaling
    • Cimetta E., et al. Microfluidic device generating stable concentration gradients for long term cell culture: application to Wnt3a regulation of β-catenin signaling. Lab Chip 2010, 10:3277-3283.
    • (2010) Lab Chip , vol.10 , pp. 3277-3283
    • Cimetta, E.1
  • 32
    • 84874049624 scopus 로고    scopus 로고
    • Microfluidic investigation of BDNF-enhanced neural stem cell chemotaxis in CXCL12 gradients
    • Xu H., Heilshorn S.C. Microfluidic investigation of BDNF-enhanced neural stem cell chemotaxis in CXCL12 gradients. Small 2013, 9:585-595.
    • (2013) Small , vol.9 , pp. 585-595
    • Xu, H.1    Heilshorn, S.C.2
  • 33
    • 79953285094 scopus 로고    scopus 로고
    • Stem cells in microfluidics
    • Wu H-W., et al. Stem cells in microfluidics. Biomicrofluidics 2011, 5:013401.
    • (2011) Biomicrofluidics , vol.5 , pp. 013401
    • Wu, H.-W.1
  • 34
    • 84892369456 scopus 로고    scopus 로고
    • Combined effects of flow-induced shear stress and micropatterned surface morphology on neuronal differentiation of human mesenchymal stem cells
    • Jeon K.J., et al. Combined effects of flow-induced shear stress and micropatterned surface morphology on neuronal differentiation of human mesenchymal stem cells. J. Biosci. Bioeng. 2014, 117:242-247.
    • (2014) J. Biosci. Bioeng. , vol.117 , pp. 242-247
    • Jeon, K.J.1
  • 36
    • 84863194091 scopus 로고    scopus 로고
    • Covalently immobilized biomolecule gradient on hydrogel surface using a gradient generating microfluidic device for a quantitative mesenchymal stem cell study
    • Liu Z., et al. Covalently immobilized biomolecule gradient on hydrogel surface using a gradient generating microfluidic device for a quantitative mesenchymal stem cell study. Biomicrofluidics 2012, 6:024111.
    • (2012) Biomicrofluidics , vol.6 , pp. 024111
    • Liu, Z.1
  • 37
    • 34249808808 scopus 로고    scopus 로고
    • A chip-based platform for the in vitro generation of tissues in three-dimensional organization
    • Gottwald E., et al. A chip-based platform for the in vitro generation of tissues in three-dimensional organization. Lab Chip 2007, 7:777-785.
    • (2007) Lab Chip , vol.7 , pp. 777-785
    • Gottwald, E.1
  • 38
    • 33644517215 scopus 로고    scopus 로고
    • In vitro generated extracellular matrix and fluid shear stress synergistically enhance 3D osteoblastic differentiation
    • Datta N., et al. In vitro generated extracellular matrix and fluid shear stress synergistically enhance 3D osteoblastic differentiation. PNAS 2006, 103:2488-2493.
    • (2006) PNAS , vol.103 , pp. 2488-2493
    • Datta, N.1
  • 39
    • 84895434725 scopus 로고    scopus 로고
    • Microfluidic generation of gradient hydrogels to modulate hematopoietic stem cell culture environment
    • Mahadik B.P., Wheeler T.D. Microfluidic generation of gradient hydrogels to modulate hematopoietic stem cell culture environment. Adv. Healthcare Mater. 2013, 3:449-458.
    • (2013) Adv. Healthcare Mater. , vol.3 , pp. 449-458
    • Mahadik, B.P.1    Wheeler, T.D.2
  • 40
    • 33847356130 scopus 로고    scopus 로고
    • A novel 3D mammalian cell perfusion-culture system in microfluidic channels
    • Toh Y.C., et al. A novel 3D mammalian cell perfusion-culture system in microfluidic channels. Lab Chip 2007, 7:302-309.
    • (2007) Lab Chip , vol.7 , pp. 302-309
    • Toh, Y.C.1
  • 41
    • 77952638341 scopus 로고    scopus 로고
    • Extensive adipogenic and osteogenic differentiation of patterned human mesenchymal stem cells in a microfluidic device
    • Tenstad E., et al. Extensive adipogenic and osteogenic differentiation of patterned human mesenchymal stem cells in a microfluidic device. Lab Chip 2010, 10:1401-1409.
    • (2010) Lab Chip , vol.10 , pp. 1401-1409
    • Tenstad, E.1
  • 42
    • 84861551923 scopus 로고    scopus 로고
    • Laser direct-write of single microbeads into spatially-ordered patterns
    • Phamduy T.B., et al. Laser direct-write of single microbeads into spatially-ordered patterns. Biofabrication 2012, 4:025006.
    • (2012) Biofabrication , vol.4 , pp. 025006
    • Phamduy, T.B.1
  • 43
    • 84887964471 scopus 로고    scopus 로고
    • Mechanically induced osteogenic lineage commitment of stem cells
    • Chen J.C., Jacobs C.R. Mechanically induced osteogenic lineage commitment of stem cells. Stem Cell Res. Ther. 2013, 4:107.
    • (2013) Stem Cell Res. Ther. , vol.4 , pp. 107
    • Chen, J.C.1    Jacobs, C.R.2
  • 44
    • 69549133679 scopus 로고    scopus 로고
    • Simultaneous generation of chemical concentration and mechanical shear stress gradients using microfluidic osmotic flow comparable to interstitial flow
    • Park J.Y., et al. Simultaneous generation of chemical concentration and mechanical shear stress gradients using microfluidic osmotic flow comparable to interstitial flow. Lab Chip 2009, 9:2194-2202.
    • (2009) Lab Chip , vol.9 , pp. 2194-2202
    • Park, J.Y.1
  • 45
    • 0037710189 scopus 로고    scopus 로고
    • Cyclic strain enhances matrix mineralization by adult human mesenchymal stem cells via the extracellular signal-regulated kinase (ERK1/2) signaling pathway
    • Simmons C.A., et al. Cyclic strain enhances matrix mineralization by adult human mesenchymal stem cells via the extracellular signal-regulated kinase (ERK1/2) signaling pathway. J. Biomech. 2003, 36:1087-1096.
    • (2003) J. Biomech. , vol.36 , pp. 1087-1096
    • Simmons, C.A.1
  • 46
    • 38349136762 scopus 로고    scopus 로고
    • Regulatory effects of mechanical strain on the chondrogenic differentiation of MSCs in a collagen-GAG scaffold: experimental and computational analysis
    • McMahon L.A., et al. Regulatory effects of mechanical strain on the chondrogenic differentiation of MSCs in a collagen-GAG scaffold: experimental and computational analysis. Ann. Biomed. Eng. 2008, 36:185-194.
    • (2008) Ann. Biomed. Eng. , vol.36 , pp. 185-194
    • McMahon, L.A.1
  • 47
    • 8744233676 scopus 로고    scopus 로고
    • Differential effects of equiaxial and uniaxial strain on mesenchymal stem cells
    • Park J.S., et al. Differential effects of equiaxial and uniaxial strain on mesenchymal stem cells. Biotechnol. Bioeng. 2004, 88:359-368.
    • (2004) Biotechnol. Bioeng. , vol.88 , pp. 359-368
    • Park, J.S.1
  • 48
    • 84885065040 scopus 로고    scopus 로고
    • Effects of mechanical and chemical stimuli on differentiation of human adipose-derived stem cells into endothelial cells
    • Shojaei S., et al. Effects of mechanical and chemical stimuli on differentiation of human adipose-derived stem cells into endothelial cells. Int. J. Artif. Organs 2013, 36:663-673.
    • (2013) Int. J. Artif. Organs , vol.36 , pp. 663-673
    • Shojaei, S.1
  • 49
    • 77954038080 scopus 로고    scopus 로고
    • Reconstituting organ-level lung functions on a chip
    • Huh D., et al. Reconstituting organ-level lung functions on a chip. Science 2010, 328:1662-1668.
    • (2010) Science , vol.328 , pp. 1662-1668
    • Huh, D.1
  • 50
    • 79958807585 scopus 로고    scopus 로고
    • Mechanical stimulation of bovine embryos in a microfluidic culture platform
    • Bae C.Y., et al. Mechanical stimulation of bovine embryos in a microfluidic culture platform. BioChip J. 2011, 5:106-113.
    • (2011) BioChip J. , vol.5 , pp. 106-113
    • Bae, C.Y.1
  • 51
    • 84865270577 scopus 로고    scopus 로고
    • A microfluidic flow-stretch chip for investigating blood vessel biomechanics
    • Zheng W., et al. A microfluidic flow-stretch chip for investigating blood vessel biomechanics. Lab Chip 2012, 12:3441-3450.
    • (2012) Lab Chip , vol.12 , pp. 3441-3450
    • Zheng, W.1
  • 52
    • 84864699124 scopus 로고    scopus 로고
    • Atomic force microscopy reveals important differences in axonal resistance to injury
    • Magdesian M.H., et al. Atomic force microscopy reveals important differences in axonal resistance to injury. Biophys. J. 2012, 103:405-414.
    • (2012) Biophys. J. , vol.103 , pp. 405-414
    • Magdesian, M.H.1
  • 53
    • 80052525621 scopus 로고    scopus 로고
    • Mechanical stimulation of epithelial cells using polypyrrole microactuators
    • Svennersten K., et al. Mechanical stimulation of epithelial cells using polypyrrole microactuators. Lab Chip 2011, 11:3287-3293.
    • (2011) Lab Chip , vol.11 , pp. 3287-3293
    • Svennersten, K.1
  • 54
    • 84883467395 scopus 로고    scopus 로고
    • Capillary-valve-based platform towards cell-on-chip mechanotransduction assays
    • Hausherr T.C., et al. Capillary-valve-based platform towards cell-on-chip mechanotransduction assays. Sens. Actuat. B 2013, 188:1019-1025.
    • (2013) Sens. Actuat. B , vol.188 , pp. 1019-1025
    • Hausherr, T.C.1
  • 55
    • 34249788381 scopus 로고    scopus 로고
    • Micromechanical control of cell-cell interactions
    • Hui E.E., Bhatia S.N. Micromechanical control of cell-cell interactions. PNAS 2007, 104:5722-5726.
    • (2007) PNAS , vol.104 , pp. 5722-5726
    • Hui, E.E.1    Bhatia, S.N.2
  • 56
    • 84857502547 scopus 로고    scopus 로고
    • Adult neural progenitor cells reactivate superbursting in mature neural networks
    • Stephens C.L., et al. Adult neural progenitor cells reactivate superbursting in mature neural networks. Exp. Neurol. 2012, 234:20-30.
    • (2012) Exp. Neurol. , vol.234 , pp. 20-30
    • Stephens, C.L.1
  • 57
    • 84862924084 scopus 로고    scopus 로고
    • Laser-patterned stem-cell bridges in a cardiac muscle model for on-chip electrical conductivity analyses
    • Ma Z., et al. Laser-patterned stem-cell bridges in a cardiac muscle model for on-chip electrical conductivity analyses. Lab Chip 2012, 12:566-573.
    • (2012) Lab Chip , vol.12 , pp. 566-573
    • Ma, Z.1
  • 58
    • 84858296196 scopus 로고    scopus 로고
    • Electric impedance sensing in cell-substrates for rapid and selective multipotential differentiation capacity monitoring of human mesenchymal stem cells
    • Reitinger S., et al. Electric impedance sensing in cell-substrates for rapid and selective multipotential differentiation capacity monitoring of human mesenchymal stem cells. Biosens. Bioelectron. 2012, 34:63-69.
    • (2012) Biosens. Bioelectron. , vol.34 , pp. 63-69
    • Reitinger, S.1
  • 59
    • 33748804979 scopus 로고    scopus 로고
    • Surface plasmon resonance imaging measurements of antibody arrays for the multiplexed detection of low molecular weight protein biomarkers
    • Lee H.J., et al. Surface plasmon resonance imaging measurements of antibody arrays for the multiplexed detection of low molecular weight protein biomarkers. Anal. Chem. 2006, 78:6504-6510.
    • (2006) Anal. Chem. , vol.78 , pp. 6504-6510
    • Lee, H.J.1
  • 60
    • 84861661500 scopus 로고    scopus 로고
    • Magnetoresistive-based real-time cell phagocytosis monitoring
    • Soshi A., et al. Magnetoresistive-based real-time cell phagocytosis monitoring. Biosens. Bioelectron. 2012, 36:116-122.
    • (2012) Biosens. Bioelectron. , vol.36 , pp. 116-122
    • Soshi, A.1
  • 61
    • 34548126885 scopus 로고    scopus 로고
    • Stem cell differentiation base on acoustic wave sensor
    • Shih C.J., et al. Stem cell differentiation base on acoustic wave sensor. Proc. IEEE NEMS '07 2007, 626-629.
    • (2007) Proc. IEEE NEMS '07 , pp. 626-629
    • Shih, C.J.1
  • 62
    • 79960822715 scopus 로고    scopus 로고
    • Development of a surface plasmon resonance biosensor for Real-Time detection of osteogenic differentiation in live mesenchymal stem cells
    • Kuo Y.C., et al. Development of a surface plasmon resonance biosensor for Real-Time detection of osteogenic differentiation in live mesenchymal stem cells. PLoS ONE 2011, 6:e22382.
    • (2011) PLoS ONE , vol.6
    • Kuo, Y.C.1
  • 63
    • 84881654337 scopus 로고    scopus 로고
    • Genomagnetic assay for electrochemical detection of osteogenic differentiation in mesenchymal stem cells
    • Erdem A., et al. Genomagnetic assay for electrochemical detection of osteogenic differentiation in mesenchymal stem cells. Analyst 2013, 138:5424-5430.
    • (2013) Analyst , vol.138 , pp. 5424-5430
    • Erdem, A.1
  • 64
    • 79955633316 scopus 로고    scopus 로고
    • Real-time label-free monitoring of adipose-derived stem cell differentiation with electric cell-substrate impedance sensing
    • Bagnaninchi P.O., Drummond N. Real-time label-free monitoring of adipose-derived stem cell differentiation with electric cell-substrate impedance sensing. PNASci 2011, 108:6462-6467.
    • (2011) PNASci , vol.108 , pp. 6462-6467
    • Bagnaninchi, P.O.1    Drummond, N.2
  • 65
    • 77953912427 scopus 로고    scopus 로고
    • Detection of the osteogenic differentiation of mesenchymal stem cells in 2D and 3D cultures by electrochemical impedance spectroscopy
    • Hildebrandt C., et al. Detection of the osteogenic differentiation of mesenchymal stem cells in 2D and 3D cultures by electrochemical impedance spectroscopy. J. Biotechnol. 2010, 148:83-90.
    • (2010) J. Biotechnol. , vol.148 , pp. 83-90
    • Hildebrandt, C.1
  • 66
    • 84875874021 scopus 로고    scopus 로고
    • From cellular cultures to cellular spheroids: is impedance spectroscopy a viable tool for monitoring multicellular spheroid (MCS) drug models?
    • Alexander F.A. From cellular cultures to cellular spheroids: is impedance spectroscopy a viable tool for monitoring multicellular spheroid (MCS) drug models?. IEEE Rev. Biomed. Eng. 2013, 6:63-76.
    • (2013) IEEE Rev. Biomed. Eng. , vol.6 , pp. 63-76
    • Alexander, F.A.1
  • 67
    • 80053596591 scopus 로고    scopus 로고
    • Biophysical characteristics reveal neural stem cell differentiation potential
    • Labeed F.H., et al. Biophysical characteristics reveal neural stem cell differentiation potential. PLoS ONE 2011, 6:e25458.
    • (2011) PLoS ONE , vol.6
    • Labeed, F.H.1
  • 68
    • 84868632844 scopus 로고    scopus 로고
    • Impedance spectroscopy with field-effect transistor arrays for the analysis of anti-cancer drug action on individual cells
    • Susloparova A., et al. Impedance spectroscopy with field-effect transistor arrays for the analysis of anti-cancer drug action on individual cells. Biosens. Bioelectron. 2013, 40:50-56.
    • (2013) Biosens. Bioelectron. , vol.40 , pp. 50-56
    • Susloparova, A.1
  • 69
    • 84874087773 scopus 로고    scopus 로고
    • Organic ultra-thin film transistors with a liquid gate for extracellular stimulation and recording of electric activity of stem cell-derived neuronal networks
    • Cramer T., et al. Organic ultra-thin film transistors with a liquid gate for extracellular stimulation and recording of electric activity of stem cell-derived neuronal networks. Phys. Chem. Chem. Phys. 2013, 15:3897-3905.
    • (2013) Phys. Chem. Chem. Phys. , vol.15 , pp. 3897-3905
    • Cramer, T.1
  • 70
    • 84886086932 scopus 로고    scopus 로고
    • Carbon nanotube multi-electrode array chips for noninvasive real-time measurement of dopamine, action potentials, and postsynaptic potentials
    • Suzuki I., et al. Carbon nanotube multi-electrode array chips for noninvasive real-time measurement of dopamine, action potentials, and postsynaptic potentials. Biosens. Bioelectron. 2013, 49:270-275.
    • (2013) Biosens. Bioelectron. , vol.49 , pp. 270-275
    • Suzuki, I.1
  • 71
    • 79959787621 scopus 로고    scopus 로고
    • Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells
    • Nayak T.R., et al. Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano 2011, 5:4670-4678.
    • (2011) ACS Nano , vol.5 , pp. 4670-4678
    • Nayak, T.R.1
  • 72
    • 79959228013 scopus 로고    scopus 로고
    • High-throughput combinatorial cell co-culture using microfluidics
    • Tumarkin E., et al. High-throughput combinatorial cell co-culture using microfluidics. Integr. Biol. 2011, 3:653-662.
    • (2011) Integr. Biol. , vol.3 , pp. 653-662
    • Tumarkin, E.1
  • 73
    • 77649211191 scopus 로고    scopus 로고
    • Microfluidic hydrodynamic cellular patterning for systematic formation of co-culture spheroids
    • Torisawa Y-s., et al. Microfluidic hydrodynamic cellular patterning for systematic formation of co-culture spheroids. Integr. Biol. 2009, 1:649-654.
    • (2009) Integr. Biol. , vol.1 , pp. 649-654
    • Torisawa, Y.-S.1
  • 74
    • 84881164304 scopus 로고    scopus 로고
    • Enhancement of renal epithelial cell functions through microfluidic-based coculture with adipose-derived stem cells
    • Huang H-C., et al. Enhancement of renal epithelial cell functions through microfluidic-based coculture with adipose-derived stem cells. Tissue Eng. A 2013, 19:2024-2034.
    • (2013) Tissue Eng. A , vol.19 , pp. 2024-2034
    • Huang, H.-C.1
  • 75
    • 84882746521 scopus 로고    scopus 로고
    • Microfluidic isolation of highly pure embryonic stem cells using feeder-separated co-culture system
    • Chen Q., et al. Microfluidic isolation of highly pure embryonic stem cells using feeder-separated co-culture system. Sci. Rep. 2013, 3:2433.
    • (2013) Sci. Rep. , vol.3 , pp. 2433
    • Chen, Q.1
  • 76
    • 84887534526 scopus 로고    scopus 로고
    • One-step microfluidic generation of pre-hatching embryo-like core-shell microcapsules for miniaturized 3D culture of pluripotent stem cells
    • Agarwal P., et al. One-step microfluidic generation of pre-hatching embryo-like core-shell microcapsules for miniaturized 3D culture of pluripotent stem cells. Lab Chip 2013, 3:4525-4533.
    • (2013) Lab Chip , vol.3 , pp. 4525-4533
    • Agarwal, P.1
  • 77
    • 79960824262 scopus 로고    scopus 로고
    • Directed stem cell differentiation by fluid mechanical forces
    • Adamo L., García-Cardeña G. Directed stem cell differentiation by fluid mechanical forces. Antiox Redox Signal. 2011, 15:1463-1473.
    • (2011) Antiox Redox Signal. , vol.15 , pp. 1463-1473
    • Adamo, L.1    García-Cardeña, G.2
  • 78
    • 46249118114 scopus 로고    scopus 로고
    • The response of human embryonic stem cell-derived endothelial cells to shear stress
    • Metallo C.M., et al. The response of human embryonic stem cell-derived endothelial cells to shear stress. Biotechnol. Bioeng. 2008, 100:830-837.
    • (2008) Biotechnol. Bioeng. , vol.100 , pp. 830-837
    • Metallo, C.M.1
  • 79
    • 64549142058 scopus 로고    scopus 로고
    • Can shear stress direct stem cell fate?
    • Stolberg S., McCloskey K.E. Can shear stress direct stem cell fate?. Biotechnol. Prog. 2009, 25:10-19.
    • (2009) Biotechnol. Prog. , vol.25 , pp. 10-19
    • Stolberg, S.1    McCloskey, K.E.2
  • 80
    • 66749170191 scopus 로고    scopus 로고
    • Response of mesenchymal stem cells to shear stress in tissue-engineered vascular grafts
    • Jian-de Dong Y-q.G., et al. Response of mesenchymal stem cells to shear stress in tissue-engineered vascular grafts. Acta Pharmacol. Sin. 2009, 30:530-536.
    • (2009) Acta Pharmacol. Sin. , vol.30 , pp. 530-536
    • Jian-de Dong, Y.-Q.1
  • 81
    • 33846928754 scopus 로고    scopus 로고
    • Effects of shear stress on 3-D human mesenchymal stem cell construct development in a perfusion bioreactor system: experiments and hydrodynamic modeling
    • Zhao F., et al. Effects of shear stress on 3-D human mesenchymal stem cell construct development in a perfusion bioreactor system: experiments and hydrodynamic modeling. Biotechnol. Bioeng. 2007, 96:584-595.
    • (2007) Biotechnol. Bioeng. , vol.96 , pp. 584-595
    • Zhao, F.1
  • 82
    • 42049100497 scopus 로고    scopus 로고
    • Effect of intermittent shear stress on mechanotransductive signaling and osteoblastic differentiation of bone marrow stromal cells
    • Kreke M.R., et al. Effect of intermittent shear stress on mechanotransductive signaling and osteoblastic differentiation of bone marrow stromal cells. Tissue Eng. A 2008, 14:529-537.
    • (2008) Tissue Eng. A , vol.14 , pp. 529-537
    • Kreke, M.R.1
  • 83
    • 79954601102 scopus 로고    scopus 로고
    • Fluid shear stress primes mouse embryonic stem cells for differentiation in a self-renewing environment via heparan sulfate proteoglycans transduction
    • Toh Y-C., Voldman J. Fluid shear stress primes mouse embryonic stem cells for differentiation in a self-renewing environment via heparan sulfate proteoglycans transduction. FASEB J. 2011, 25:1208-1217.
    • (2011) FASEB J. , vol.25 , pp. 1208-1217
    • Toh, Y.-C.1    Voldman, J.2
  • 84
    • 82555164550 scopus 로고    scopus 로고
    • Multifrequency impedance measurement technique for wireless characterization of microbiological cell cultures
    • Wissenwasser J., et al. Multifrequency impedance measurement technique for wireless characterization of microbiological cell cultures. Rev. Sci. Instrum. 2011, 82:115110.
    • (2011) Rev. Sci. Instrum. , vol.82 , pp. 115110
    • Wissenwasser, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.