-
2
-
-
0042131826
-
Adult stem cells for tissue repair - a new therapeutic concept?
-
Korbling M., Estrov Z. Adult stem cells for tissue repair - a new therapeutic concept?. N. Engl. J. Med. 2003, 349:570-582.
-
(2003)
N. Engl. J. Med.
, vol.349
, pp. 570-582
-
-
Korbling, M.1
Estrov, Z.2
-
3
-
-
33747117373
-
The origins and the future of microfluidics
-
Whitesides G.M. The origins and the future of microfluidics. Nature 2006, 442:368-373.
-
(2006)
Nature
, vol.442
, pp. 368-373
-
-
Whitesides, G.M.1
-
4
-
-
69949145696
-
Artificial stem cell niches
-
Lutolf M.P., Blau H.M. Artificial stem cell niches. Adv. Mat. 2009, 21:3255-3268.
-
(2009)
Adv. Mat.
, vol.21
, pp. 3255-3268
-
-
Lutolf, M.P.1
Blau, H.M.2
-
5
-
-
84873437242
-
Microfluidic systems: a new toolbox for pluripotent stem cells
-
Lesher-Perez S.C., et al. Microfluidic systems: a new toolbox for pluripotent stem cells. Biotechnol. J. 2013, 8:180-191.
-
(2013)
Biotechnol. J.
, vol.8
, pp. 180-191
-
-
Lesher-Perez, S.C.1
-
6
-
-
80155205233
-
Artificial niche microarrays for probing single stem cell fate in high throughput
-
Gobaa S., et al. Artificial niche microarrays for probing single stem cell fate in high throughput. Nat. Method 2011, 8:949-955.
-
(2011)
Nat. Method
, vol.8
, pp. 949-955
-
-
Gobaa, S.1
-
7
-
-
33747152561
-
Matrix elasticity directs stem cell lineage specification
-
Engler A.J., et al. Matrix elasticity directs stem cell lineage specification. Cell 2006, 126:677-689.
-
(2006)
Cell
, vol.126
, pp. 677-689
-
-
Engler, A.J.1
-
8
-
-
11344288033
-
Photopolymerization in microfluidic gradient generators: microscale control of substrate compliance to manipulate cell response
-
Zaari N., et al. Photopolymerization in microfluidic gradient generators: microscale control of substrate compliance to manipulate cell response. Adv. Mater. 2004, 16:2133-2137.
-
(2004)
Adv. Mater.
, vol.16
, pp. 2133-2137
-
-
Zaari, N.1
-
9
-
-
72149130003
-
Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells
-
Yim E.K.F., et al. Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells. Biomat 2010, 31:1299-1306.
-
(2010)
Biomat
, vol.31
, pp. 1299-1306
-
-
Yim, E.K.F.1
-
10
-
-
84884932303
-
Exploitation of s-layer anisotropy: pH-dependent nanolayer orientation for cellular micropatterning
-
Rothbauer M., et al. Exploitation of s-layer anisotropy: pH-dependent nanolayer orientation for cellular micropatterning. ACS Nano 2013, 7:8020-8030.
-
(2013)
ACS Nano
, vol.7
, pp. 8020-8030
-
-
Rothbauer, M.1
-
11
-
-
22044456755
-
Oxygen in the cultivation of stem cells
-
Csete M. Oxygen in the cultivation of stem cells. Ann. N. Y. Acad. Sci. 2005, 1049:1-8.
-
(2005)
Ann. N. Y. Acad. Sci.
, vol.1049
, pp. 1-8
-
-
Csete, M.1
-
12
-
-
84867486363
-
Microfluidic hydrogels for tissue engineering
-
Huang G.Y., et al. Microfluidic hydrogels for tissue engineering. Biofab 2011, 3:012001.
-
(2011)
Biofab
, vol.3
, pp. 012001
-
-
Huang, G.Y.1
-
13
-
-
84876099601
-
Advances in microfluidic materials, functions, integration, and applications
-
Nge P.N., et al. Advances in microfluidic materials, functions, integration, and applications. Chem. Rev. 2013, 113:2550-2583.
-
(2013)
Chem. Rev.
, vol.113
, pp. 2550-2583
-
-
Nge, P.N.1
-
14
-
-
84884937482
-
New materials for microfluidics in biology
-
Ren K., et al. New materials for microfluidics in biology. Curr. Opin. Biotechnol. 2014, 25:78-85.
-
(2014)
Curr. Opin. Biotechnol.
, vol.25
, pp. 78-85
-
-
Ren, K.1
-
15
-
-
7944222137
-
Molded polyethylene glycol microstructures for capturing cells within microfluidic channels
-
Khademhosseini A., et al. Molded polyethylene glycol microstructures for capturing cells within microfluidic channels. Lab Chip 2004, 4:425-430.
-
(2004)
Lab Chip
, vol.4
, pp. 425-430
-
-
Khademhosseini, A.1
-
16
-
-
59349111076
-
Microfluidic control of cell pairing and fusion
-
Skelley A.M., et al. Microfluidic control of cell pairing and fusion. Nat. Method 2009, 6:147-152.
-
(2009)
Nat. Method
, vol.6
, pp. 147-152
-
-
Skelley, A.M.1
-
17
-
-
84864193005
-
Automated analysis of single stem cells in microfluidic traps
-
Kobel S.A., et al. Automated analysis of single stem cells in microfluidic traps. Lab Chip 2012, 12:2843-2849.
-
(2012)
Lab Chip
, vol.12
, pp. 2843-2849
-
-
Kobel, S.A.1
-
18
-
-
77956061536
-
Label-free cell separation and sorting in microfluidic systems
-
Gossett D.R., et al. Label-free cell separation and sorting in microfluidic systems. Anal. Bioanal. Chem. 2010, 397:3249-3267.
-
(2010)
Anal. Bioanal. Chem.
, vol.397
, pp. 3249-3267
-
-
Gossett, D.R.1
-
19
-
-
84865599598
-
Microfluidic: an innovative tool for efficient cell sorting
-
Autebert J., et al. Microfluidic: an innovative tool for efficient cell sorting. Methods 2012, 57:297-307.
-
(2012)
Methods
, vol.57
, pp. 297-307
-
-
Autebert, J.1
-
20
-
-
70549112925
-
Gravitational field-flow fractionation of human hemopoietic stem cells
-
Roda B., et al. Gravitational field-flow fractionation of human hemopoietic stem cells. J. Chromatogr. A 2009, 1216:9081-9087.
-
(2009)
J. Chromatogr. A
, vol.1216
, pp. 9081-9087
-
-
Roda, B.1
-
21
-
-
84869237943
-
Microfluidics separation reveals the stem-cell-like deformability of tumor-initiating cells
-
Zhang W., et al. Microfluidics separation reveals the stem-cell-like deformability of tumor-initiating cells. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:18707-18712.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 18707-18712
-
-
Zhang, W.1
-
22
-
-
43049111469
-
Unique dielectric properties distinguish stem cells and their differentiated progeny
-
Flanagan L.A., et al. Unique dielectric properties distinguish stem cells and their differentiated progeny. Stem Cells 2008, 26:656-665.
-
(2008)
Stem Cells
, vol.26
, pp. 656-665
-
-
Flanagan, L.A.1
-
23
-
-
80054031493
-
Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies
-
Wang X., et al. Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies. Lab Chip 2011, 11:3656-3662.
-
(2011)
Lab Chip
, vol.11
, pp. 3656-3662
-
-
Wang, X.1
-
24
-
-
84887534526
-
One-step microfluidic generation of pre-hatching embryo-like core-shell microcapsules for miniaturized 3D culture of pluripotent stem cells
-
Agarwal P., et al. One-step microfluidic generation of pre-hatching embryo-like core-shell microcapsules for miniaturized 3D culture of pluripotent stem cells. Lab Chip 2013, 13:4525-4533.
-
(2013)
Lab Chip
, vol.13
, pp. 4525-4533
-
-
Agarwal, P.1
-
25
-
-
77951080101
-
High-performance single cell genetic analysis using microfluidic emulsion generator arrays
-
Zeng Y., et al. High-performance single cell genetic analysis using microfluidic emulsion generator arrays. Anal. Chem. 2010, 82:3183-3190.
-
(2010)
Anal. Chem.
, vol.82
, pp. 3183-3190
-
-
Zeng, Y.1
-
26
-
-
84887531869
-
Development of a multiplexed microfluidic platform for the automated cultivation of embryonic stem cells
-
Reichen M., et al. Development of a multiplexed microfluidic platform for the automated cultivation of embryonic stem cells. J. Lab. Autom. 2013, 18:519-529.
-
(2013)
J. Lab. Autom.
, vol.18
, pp. 519-529
-
-
Reichen, M.1
-
27
-
-
59649114748
-
An integrated microfluidic culture device for quantitative analysis of human embryonic stem cells
-
Kamei K.I., et al. An integrated microfluidic culture device for quantitative analysis of human embryonic stem cells. Lab Chip 2009, 9:555-563.
-
(2009)
Lab Chip
, vol.9
, pp. 555-563
-
-
Kamei, K.I.1
-
28
-
-
78650334218
-
Microenvironment array chip for cell culture environment screening
-
Hattori K., et al. Microenvironment array chip for cell culture environment screening. Lab Chip 2011, 11:212-214.
-
(2011)
Lab Chip
, vol.11
, pp. 212-214
-
-
Hattori, K.1
-
29
-
-
84882257654
-
A novel microfluidic platform with stable concentration gradient for on chip cell culture and screening assays
-
Xu B-Y., et al. A novel microfluidic platform with stable concentration gradient for on chip cell culture and screening assays. Lab Chip 2013, 13:3714-3720.
-
(2013)
Lab Chip
, vol.13
, pp. 3714-3720
-
-
Xu, B.-Y.1
-
30
-
-
84870880555
-
Diffusion- and convection-based activation of Wnt/β-catenin signaling in a gradient generating microfluidic chip
-
Kim C., et al. Diffusion- and convection-based activation of Wnt/β-catenin signaling in a gradient generating microfluidic chip. Lab Chip 2012, 12:5186-5194.
-
(2012)
Lab Chip
, vol.12
, pp. 5186-5194
-
-
Kim, C.1
-
31
-
-
78149385344
-
Microfluidic device generating stable concentration gradients for long term cell culture: application to Wnt3a regulation of β-catenin signaling
-
Cimetta E., et al. Microfluidic device generating stable concentration gradients for long term cell culture: application to Wnt3a regulation of β-catenin signaling. Lab Chip 2010, 10:3277-3283.
-
(2010)
Lab Chip
, vol.10
, pp. 3277-3283
-
-
Cimetta, E.1
-
32
-
-
84874049624
-
Microfluidic investigation of BDNF-enhanced neural stem cell chemotaxis in CXCL12 gradients
-
Xu H., Heilshorn S.C. Microfluidic investigation of BDNF-enhanced neural stem cell chemotaxis in CXCL12 gradients. Small 2013, 9:585-595.
-
(2013)
Small
, vol.9
, pp. 585-595
-
-
Xu, H.1
Heilshorn, S.C.2
-
33
-
-
79953285094
-
Stem cells in microfluidics
-
Wu H-W., et al. Stem cells in microfluidics. Biomicrofluidics 2011, 5:013401.
-
(2011)
Biomicrofluidics
, vol.5
, pp. 013401
-
-
Wu, H.-W.1
-
34
-
-
84892369456
-
Combined effects of flow-induced shear stress and micropatterned surface morphology on neuronal differentiation of human mesenchymal stem cells
-
Jeon K.J., et al. Combined effects of flow-induced shear stress and micropatterned surface morphology on neuronal differentiation of human mesenchymal stem cells. J. Biosci. Bioeng. 2014, 117:242-247.
-
(2014)
J. Biosci. Bioeng.
, vol.117
, pp. 242-247
-
-
Jeon, K.J.1
-
36
-
-
84863194091
-
Covalently immobilized biomolecule gradient on hydrogel surface using a gradient generating microfluidic device for a quantitative mesenchymal stem cell study
-
Liu Z., et al. Covalently immobilized biomolecule gradient on hydrogel surface using a gradient generating microfluidic device for a quantitative mesenchymal stem cell study. Biomicrofluidics 2012, 6:024111.
-
(2012)
Biomicrofluidics
, vol.6
, pp. 024111
-
-
Liu, Z.1
-
37
-
-
34249808808
-
A chip-based platform for the in vitro generation of tissues in three-dimensional organization
-
Gottwald E., et al. A chip-based platform for the in vitro generation of tissues in three-dimensional organization. Lab Chip 2007, 7:777-785.
-
(2007)
Lab Chip
, vol.7
, pp. 777-785
-
-
Gottwald, E.1
-
38
-
-
33644517215
-
In vitro generated extracellular matrix and fluid shear stress synergistically enhance 3D osteoblastic differentiation
-
Datta N., et al. In vitro generated extracellular matrix and fluid shear stress synergistically enhance 3D osteoblastic differentiation. PNAS 2006, 103:2488-2493.
-
(2006)
PNAS
, vol.103
, pp. 2488-2493
-
-
Datta, N.1
-
39
-
-
84895434725
-
Microfluidic generation of gradient hydrogels to modulate hematopoietic stem cell culture environment
-
Mahadik B.P., Wheeler T.D. Microfluidic generation of gradient hydrogels to modulate hematopoietic stem cell culture environment. Adv. Healthcare Mater. 2013, 3:449-458.
-
(2013)
Adv. Healthcare Mater.
, vol.3
, pp. 449-458
-
-
Mahadik, B.P.1
Wheeler, T.D.2
-
40
-
-
33847356130
-
A novel 3D mammalian cell perfusion-culture system in microfluidic channels
-
Toh Y.C., et al. A novel 3D mammalian cell perfusion-culture system in microfluidic channels. Lab Chip 2007, 7:302-309.
-
(2007)
Lab Chip
, vol.7
, pp. 302-309
-
-
Toh, Y.C.1
-
41
-
-
77952638341
-
Extensive adipogenic and osteogenic differentiation of patterned human mesenchymal stem cells in a microfluidic device
-
Tenstad E., et al. Extensive adipogenic and osteogenic differentiation of patterned human mesenchymal stem cells in a microfluidic device. Lab Chip 2010, 10:1401-1409.
-
(2010)
Lab Chip
, vol.10
, pp. 1401-1409
-
-
Tenstad, E.1
-
42
-
-
84861551923
-
Laser direct-write of single microbeads into spatially-ordered patterns
-
Phamduy T.B., et al. Laser direct-write of single microbeads into spatially-ordered patterns. Biofabrication 2012, 4:025006.
-
(2012)
Biofabrication
, vol.4
, pp. 025006
-
-
Phamduy, T.B.1
-
43
-
-
84887964471
-
Mechanically induced osteogenic lineage commitment of stem cells
-
Chen J.C., Jacobs C.R. Mechanically induced osteogenic lineage commitment of stem cells. Stem Cell Res. Ther. 2013, 4:107.
-
(2013)
Stem Cell Res. Ther.
, vol.4
, pp. 107
-
-
Chen, J.C.1
Jacobs, C.R.2
-
44
-
-
69549133679
-
Simultaneous generation of chemical concentration and mechanical shear stress gradients using microfluidic osmotic flow comparable to interstitial flow
-
Park J.Y., et al. Simultaneous generation of chemical concentration and mechanical shear stress gradients using microfluidic osmotic flow comparable to interstitial flow. Lab Chip 2009, 9:2194-2202.
-
(2009)
Lab Chip
, vol.9
, pp. 2194-2202
-
-
Park, J.Y.1
-
45
-
-
0037710189
-
Cyclic strain enhances matrix mineralization by adult human mesenchymal stem cells via the extracellular signal-regulated kinase (ERK1/2) signaling pathway
-
Simmons C.A., et al. Cyclic strain enhances matrix mineralization by adult human mesenchymal stem cells via the extracellular signal-regulated kinase (ERK1/2) signaling pathway. J. Biomech. 2003, 36:1087-1096.
-
(2003)
J. Biomech.
, vol.36
, pp. 1087-1096
-
-
Simmons, C.A.1
-
46
-
-
38349136762
-
Regulatory effects of mechanical strain on the chondrogenic differentiation of MSCs in a collagen-GAG scaffold: experimental and computational analysis
-
McMahon L.A., et al. Regulatory effects of mechanical strain on the chondrogenic differentiation of MSCs in a collagen-GAG scaffold: experimental and computational analysis. Ann. Biomed. Eng. 2008, 36:185-194.
-
(2008)
Ann. Biomed. Eng.
, vol.36
, pp. 185-194
-
-
McMahon, L.A.1
-
47
-
-
8744233676
-
Differential effects of equiaxial and uniaxial strain on mesenchymal stem cells
-
Park J.S., et al. Differential effects of equiaxial and uniaxial strain on mesenchymal stem cells. Biotechnol. Bioeng. 2004, 88:359-368.
-
(2004)
Biotechnol. Bioeng.
, vol.88
, pp. 359-368
-
-
Park, J.S.1
-
48
-
-
84885065040
-
Effects of mechanical and chemical stimuli on differentiation of human adipose-derived stem cells into endothelial cells
-
Shojaei S., et al. Effects of mechanical and chemical stimuli on differentiation of human adipose-derived stem cells into endothelial cells. Int. J. Artif. Organs 2013, 36:663-673.
-
(2013)
Int. J. Artif. Organs
, vol.36
, pp. 663-673
-
-
Shojaei, S.1
-
49
-
-
77954038080
-
Reconstituting organ-level lung functions on a chip
-
Huh D., et al. Reconstituting organ-level lung functions on a chip. Science 2010, 328:1662-1668.
-
(2010)
Science
, vol.328
, pp. 1662-1668
-
-
Huh, D.1
-
50
-
-
79958807585
-
Mechanical stimulation of bovine embryos in a microfluidic culture platform
-
Bae C.Y., et al. Mechanical stimulation of bovine embryos in a microfluidic culture platform. BioChip J. 2011, 5:106-113.
-
(2011)
BioChip J.
, vol.5
, pp. 106-113
-
-
Bae, C.Y.1
-
51
-
-
84865270577
-
A microfluidic flow-stretch chip for investigating blood vessel biomechanics
-
Zheng W., et al. A microfluidic flow-stretch chip for investigating blood vessel biomechanics. Lab Chip 2012, 12:3441-3450.
-
(2012)
Lab Chip
, vol.12
, pp. 3441-3450
-
-
Zheng, W.1
-
52
-
-
84864699124
-
Atomic force microscopy reveals important differences in axonal resistance to injury
-
Magdesian M.H., et al. Atomic force microscopy reveals important differences in axonal resistance to injury. Biophys. J. 2012, 103:405-414.
-
(2012)
Biophys. J.
, vol.103
, pp. 405-414
-
-
Magdesian, M.H.1
-
53
-
-
80052525621
-
Mechanical stimulation of epithelial cells using polypyrrole microactuators
-
Svennersten K., et al. Mechanical stimulation of epithelial cells using polypyrrole microactuators. Lab Chip 2011, 11:3287-3293.
-
(2011)
Lab Chip
, vol.11
, pp. 3287-3293
-
-
Svennersten, K.1
-
54
-
-
84883467395
-
Capillary-valve-based platform towards cell-on-chip mechanotransduction assays
-
Hausherr T.C., et al. Capillary-valve-based platform towards cell-on-chip mechanotransduction assays. Sens. Actuat. B 2013, 188:1019-1025.
-
(2013)
Sens. Actuat. B
, vol.188
, pp. 1019-1025
-
-
Hausherr, T.C.1
-
55
-
-
34249788381
-
Micromechanical control of cell-cell interactions
-
Hui E.E., Bhatia S.N. Micromechanical control of cell-cell interactions. PNAS 2007, 104:5722-5726.
-
(2007)
PNAS
, vol.104
, pp. 5722-5726
-
-
Hui, E.E.1
Bhatia, S.N.2
-
56
-
-
84857502547
-
Adult neural progenitor cells reactivate superbursting in mature neural networks
-
Stephens C.L., et al. Adult neural progenitor cells reactivate superbursting in mature neural networks. Exp. Neurol. 2012, 234:20-30.
-
(2012)
Exp. Neurol.
, vol.234
, pp. 20-30
-
-
Stephens, C.L.1
-
57
-
-
84862924084
-
Laser-patterned stem-cell bridges in a cardiac muscle model for on-chip electrical conductivity analyses
-
Ma Z., et al. Laser-patterned stem-cell bridges in a cardiac muscle model for on-chip electrical conductivity analyses. Lab Chip 2012, 12:566-573.
-
(2012)
Lab Chip
, vol.12
, pp. 566-573
-
-
Ma, Z.1
-
58
-
-
84858296196
-
Electric impedance sensing in cell-substrates for rapid and selective multipotential differentiation capacity monitoring of human mesenchymal stem cells
-
Reitinger S., et al. Electric impedance sensing in cell-substrates for rapid and selective multipotential differentiation capacity monitoring of human mesenchymal stem cells. Biosens. Bioelectron. 2012, 34:63-69.
-
(2012)
Biosens. Bioelectron.
, vol.34
, pp. 63-69
-
-
Reitinger, S.1
-
59
-
-
33748804979
-
Surface plasmon resonance imaging measurements of antibody arrays for the multiplexed detection of low molecular weight protein biomarkers
-
Lee H.J., et al. Surface plasmon resonance imaging measurements of antibody arrays for the multiplexed detection of low molecular weight protein biomarkers. Anal. Chem. 2006, 78:6504-6510.
-
(2006)
Anal. Chem.
, vol.78
, pp. 6504-6510
-
-
Lee, H.J.1
-
60
-
-
84861661500
-
Magnetoresistive-based real-time cell phagocytosis monitoring
-
Soshi A., et al. Magnetoresistive-based real-time cell phagocytosis monitoring. Biosens. Bioelectron. 2012, 36:116-122.
-
(2012)
Biosens. Bioelectron.
, vol.36
, pp. 116-122
-
-
Soshi, A.1
-
61
-
-
34548126885
-
Stem cell differentiation base on acoustic wave sensor
-
Shih C.J., et al. Stem cell differentiation base on acoustic wave sensor. Proc. IEEE NEMS '07 2007, 626-629.
-
(2007)
Proc. IEEE NEMS '07
, pp. 626-629
-
-
Shih, C.J.1
-
62
-
-
79960822715
-
Development of a surface plasmon resonance biosensor for Real-Time detection of osteogenic differentiation in live mesenchymal stem cells
-
Kuo Y.C., et al. Development of a surface plasmon resonance biosensor for Real-Time detection of osteogenic differentiation in live mesenchymal stem cells. PLoS ONE 2011, 6:e22382.
-
(2011)
PLoS ONE
, vol.6
-
-
Kuo, Y.C.1
-
63
-
-
84881654337
-
Genomagnetic assay for electrochemical detection of osteogenic differentiation in mesenchymal stem cells
-
Erdem A., et al. Genomagnetic assay for electrochemical detection of osteogenic differentiation in mesenchymal stem cells. Analyst 2013, 138:5424-5430.
-
(2013)
Analyst
, vol.138
, pp. 5424-5430
-
-
Erdem, A.1
-
64
-
-
79955633316
-
Real-time label-free monitoring of adipose-derived stem cell differentiation with electric cell-substrate impedance sensing
-
Bagnaninchi P.O., Drummond N. Real-time label-free monitoring of adipose-derived stem cell differentiation with electric cell-substrate impedance sensing. PNASci 2011, 108:6462-6467.
-
(2011)
PNASci
, vol.108
, pp. 6462-6467
-
-
Bagnaninchi, P.O.1
Drummond, N.2
-
65
-
-
77953912427
-
Detection of the osteogenic differentiation of mesenchymal stem cells in 2D and 3D cultures by electrochemical impedance spectroscopy
-
Hildebrandt C., et al. Detection of the osteogenic differentiation of mesenchymal stem cells in 2D and 3D cultures by electrochemical impedance spectroscopy. J. Biotechnol. 2010, 148:83-90.
-
(2010)
J. Biotechnol.
, vol.148
, pp. 83-90
-
-
Hildebrandt, C.1
-
66
-
-
84875874021
-
From cellular cultures to cellular spheroids: is impedance spectroscopy a viable tool for monitoring multicellular spheroid (MCS) drug models?
-
Alexander F.A. From cellular cultures to cellular spheroids: is impedance spectroscopy a viable tool for monitoring multicellular spheroid (MCS) drug models?. IEEE Rev. Biomed. Eng. 2013, 6:63-76.
-
(2013)
IEEE Rev. Biomed. Eng.
, vol.6
, pp. 63-76
-
-
Alexander, F.A.1
-
67
-
-
80053596591
-
Biophysical characteristics reveal neural stem cell differentiation potential
-
Labeed F.H., et al. Biophysical characteristics reveal neural stem cell differentiation potential. PLoS ONE 2011, 6:e25458.
-
(2011)
PLoS ONE
, vol.6
-
-
Labeed, F.H.1
-
68
-
-
84868632844
-
Impedance spectroscopy with field-effect transistor arrays for the analysis of anti-cancer drug action on individual cells
-
Susloparova A., et al. Impedance spectroscopy with field-effect transistor arrays for the analysis of anti-cancer drug action on individual cells. Biosens. Bioelectron. 2013, 40:50-56.
-
(2013)
Biosens. Bioelectron.
, vol.40
, pp. 50-56
-
-
Susloparova, A.1
-
69
-
-
84874087773
-
Organic ultra-thin film transistors with a liquid gate for extracellular stimulation and recording of electric activity of stem cell-derived neuronal networks
-
Cramer T., et al. Organic ultra-thin film transistors with a liquid gate for extracellular stimulation and recording of electric activity of stem cell-derived neuronal networks. Phys. Chem. Chem. Phys. 2013, 15:3897-3905.
-
(2013)
Phys. Chem. Chem. Phys.
, vol.15
, pp. 3897-3905
-
-
Cramer, T.1
-
70
-
-
84886086932
-
Carbon nanotube multi-electrode array chips for noninvasive real-time measurement of dopamine, action potentials, and postsynaptic potentials
-
Suzuki I., et al. Carbon nanotube multi-electrode array chips for noninvasive real-time measurement of dopamine, action potentials, and postsynaptic potentials. Biosens. Bioelectron. 2013, 49:270-275.
-
(2013)
Biosens. Bioelectron.
, vol.49
, pp. 270-275
-
-
Suzuki, I.1
-
71
-
-
79959787621
-
Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells
-
Nayak T.R., et al. Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano 2011, 5:4670-4678.
-
(2011)
ACS Nano
, vol.5
, pp. 4670-4678
-
-
Nayak, T.R.1
-
72
-
-
79959228013
-
High-throughput combinatorial cell co-culture using microfluidics
-
Tumarkin E., et al. High-throughput combinatorial cell co-culture using microfluidics. Integr. Biol. 2011, 3:653-662.
-
(2011)
Integr. Biol.
, vol.3
, pp. 653-662
-
-
Tumarkin, E.1
-
73
-
-
77649211191
-
Microfluidic hydrodynamic cellular patterning for systematic formation of co-culture spheroids
-
Torisawa Y-s., et al. Microfluidic hydrodynamic cellular patterning for systematic formation of co-culture spheroids. Integr. Biol. 2009, 1:649-654.
-
(2009)
Integr. Biol.
, vol.1
, pp. 649-654
-
-
Torisawa, Y.-S.1
-
74
-
-
84881164304
-
Enhancement of renal epithelial cell functions through microfluidic-based coculture with adipose-derived stem cells
-
Huang H-C., et al. Enhancement of renal epithelial cell functions through microfluidic-based coculture with adipose-derived stem cells. Tissue Eng. A 2013, 19:2024-2034.
-
(2013)
Tissue Eng. A
, vol.19
, pp. 2024-2034
-
-
Huang, H.-C.1
-
75
-
-
84882746521
-
Microfluidic isolation of highly pure embryonic stem cells using feeder-separated co-culture system
-
Chen Q., et al. Microfluidic isolation of highly pure embryonic stem cells using feeder-separated co-culture system. Sci. Rep. 2013, 3:2433.
-
(2013)
Sci. Rep.
, vol.3
, pp. 2433
-
-
Chen, Q.1
-
76
-
-
84887534526
-
One-step microfluidic generation of pre-hatching embryo-like core-shell microcapsules for miniaturized 3D culture of pluripotent stem cells
-
Agarwal P., et al. One-step microfluidic generation of pre-hatching embryo-like core-shell microcapsules for miniaturized 3D culture of pluripotent stem cells. Lab Chip 2013, 3:4525-4533.
-
(2013)
Lab Chip
, vol.3
, pp. 4525-4533
-
-
Agarwal, P.1
-
77
-
-
79960824262
-
Directed stem cell differentiation by fluid mechanical forces
-
Adamo L., García-Cardeña G. Directed stem cell differentiation by fluid mechanical forces. Antiox Redox Signal. 2011, 15:1463-1473.
-
(2011)
Antiox Redox Signal.
, vol.15
, pp. 1463-1473
-
-
Adamo, L.1
García-Cardeña, G.2
-
78
-
-
46249118114
-
The response of human embryonic stem cell-derived endothelial cells to shear stress
-
Metallo C.M., et al. The response of human embryonic stem cell-derived endothelial cells to shear stress. Biotechnol. Bioeng. 2008, 100:830-837.
-
(2008)
Biotechnol. Bioeng.
, vol.100
, pp. 830-837
-
-
Metallo, C.M.1
-
79
-
-
64549142058
-
Can shear stress direct stem cell fate?
-
Stolberg S., McCloskey K.E. Can shear stress direct stem cell fate?. Biotechnol. Prog. 2009, 25:10-19.
-
(2009)
Biotechnol. Prog.
, vol.25
, pp. 10-19
-
-
Stolberg, S.1
McCloskey, K.E.2
-
80
-
-
66749170191
-
Response of mesenchymal stem cells to shear stress in tissue-engineered vascular grafts
-
Jian-de Dong Y-q.G., et al. Response of mesenchymal stem cells to shear stress in tissue-engineered vascular grafts. Acta Pharmacol. Sin. 2009, 30:530-536.
-
(2009)
Acta Pharmacol. Sin.
, vol.30
, pp. 530-536
-
-
Jian-de Dong, Y.-Q.1
-
81
-
-
33846928754
-
Effects of shear stress on 3-D human mesenchymal stem cell construct development in a perfusion bioreactor system: experiments and hydrodynamic modeling
-
Zhao F., et al. Effects of shear stress on 3-D human mesenchymal stem cell construct development in a perfusion bioreactor system: experiments and hydrodynamic modeling. Biotechnol. Bioeng. 2007, 96:584-595.
-
(2007)
Biotechnol. Bioeng.
, vol.96
, pp. 584-595
-
-
Zhao, F.1
-
82
-
-
42049100497
-
Effect of intermittent shear stress on mechanotransductive signaling and osteoblastic differentiation of bone marrow stromal cells
-
Kreke M.R., et al. Effect of intermittent shear stress on mechanotransductive signaling and osteoblastic differentiation of bone marrow stromal cells. Tissue Eng. A 2008, 14:529-537.
-
(2008)
Tissue Eng. A
, vol.14
, pp. 529-537
-
-
Kreke, M.R.1
-
83
-
-
79954601102
-
Fluid shear stress primes mouse embryonic stem cells for differentiation in a self-renewing environment via heparan sulfate proteoglycans transduction
-
Toh Y-C., Voldman J. Fluid shear stress primes mouse embryonic stem cells for differentiation in a self-renewing environment via heparan sulfate proteoglycans transduction. FASEB J. 2011, 25:1208-1217.
-
(2011)
FASEB J.
, vol.25
, pp. 1208-1217
-
-
Toh, Y.-C.1
Voldman, J.2
-
84
-
-
82555164550
-
Multifrequency impedance measurement technique for wireless characterization of microbiological cell cultures
-
Wissenwasser J., et al. Multifrequency impedance measurement technique for wireless characterization of microbiological cell cultures. Rev. Sci. Instrum. 2011, 82:115110.
-
(2011)
Rev. Sci. Instrum.
, vol.82
, pp. 115110
-
-
Wissenwasser, J.1
|