메뉴 건너뛰기




Volumn 20, Issue 3, 2014, Pages 227-238

MicroRNAs as potential regulators of myeloid-derived suppressor cell expansion

Author keywords

innate immunity; microRNAs; myeloid derived suppressor cells; Myelopoiesis

Indexed keywords

CCAAT ENHANCER BINDING PROTEIN; COLONY STIMULATING FACTOR 1; GRANULOCYTE COLONY STIMULATING FACTOR; HIGH MOBILITY GROUP PROTEIN; IMMUNOGLOBULIN ENHANCER BINDING PROTEIN; INTERLEUKIN 10; INTERLEUKIN 6; MICRORNA; MICRORNA 106A; MICRORNA 125B; MICRORNA 146A; MICRORNA 155; MICRORNA 17 5P; MICRORNA 181B; MICRORNA 20A; MICRORNA 21; MICRORNA 223; MICRORNA 29A; MICRORNA 494; STAT3 PROTEIN; TRANSCRIPTION FACTOR; UNCLASSIFIED DRUG; VASCULOTROPIN;

EID: 84898970360     PISSN: 17534259     EISSN: 17534267     Source Type: Journal    
DOI: 10.1177/1753425913489850     Document Type: Review
Times cited : (38)

References (99)
  • 1
    • 20244387299 scopus 로고    scopus 로고
    • Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment
    • Adolfsson J, Mansson R, Buza-Vidas N, et al. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell. 2005 ; 121: 295-306
    • (2005) Cell , vol.121 , pp. 295-306
    • Adolfsson, J.1    Mansson, R.2    Buza-Vidas, N.3
  • 2
    • 0034624828 scopus 로고    scopus 로고
    • A clonogenic common myeloid progenitor that gives rise to all myeloid lineages
    • Akashi K, Traver D, Miyamoto T, Weissman IL. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature. 2000 ; 404: 193-197
    • (2000) Nature , vol.404 , pp. 193-197
    • Akashi, K.1    Traver, D.2    Miyamoto, T.3    Weissman, I.L.4
  • 3
    • 0037244284 scopus 로고    scopus 로고
    • Intrinsic requirement for zinc finger transcription factor Gfi-1 in neutrophil differentiation
    • Hock H, Hamblen MJ, Rooke HM, et al. Intrinsic requirement for zinc finger transcription factor Gfi-1 in neutrophil differentiation. Immunity. 2003 ; 18: 109-120
    • (2003) Immunity , vol.18 , pp. 109-120
    • Hock, H.1    Hamblen, M.J.2    Rooke, H.M.3
  • 4
    • 33747196725 scopus 로고    scopus 로고
    • Multilineage transcriptional priming and determination of alternate hematopoietic cell fates
    • Laslo P, Spooner CJ, Warmflash A, et al. Multilineage transcriptional priming and determination of alternate hematopoietic cell fates. Cell. 2006 ; 126: 755-766
    • (2006) Cell , vol.126 , pp. 755-766
    • Laslo, P.1    Spooner, C.J.2    Warmflash, A.3
  • 5
    • 50849139175 scopus 로고    scopus 로고
    • Gene regulatory networks directing myeloid and lymphoid cell fates within the immune system
    • Laslo P, Pongubala JM, Lancki DW, Singh H. Gene regulatory networks directing myeloid and lymphoid cell fates within the immune system. Semin Immunol. 2008 ; 20: 228-235
    • (2008) Semin Immunol , vol.20 , pp. 228-235
    • Laslo, P.1    Pongubala, J.M.2    Lancki, D.W.3    Singh, H.4
  • 6
    • 79958032037 scopus 로고    scopus 로고
    • Hematopoietic cytokine-induced transcriptional regulation and Notch signaling as modulators of MDSC expansion
    • Saleem SJ, Conrad DH. Hematopoietic cytokine-induced transcriptional regulation and Notch signaling as modulators of MDSC expansion. Int Immunopharmacol. 2011 ; 11: 808-815
    • (2011) Int Immunopharmacol , vol.11 , pp. 808-815
    • Saleem, S.J.1    Conrad, D.H.2
  • 7
    • 22144447520 scopus 로고    scopus 로고
    • Loss of Runx1 perturbs adult hematopoiesis and is associated with a myeloproliferative phenotype
    • Growney JD, Shigematsu H, Li Z, et al. Loss of Runx1 perturbs adult hematopoiesis and is associated with a myeloproliferative phenotype. Blood. 2005 ; 106: 494-504
    • (2005) Blood , vol.106 , pp. 494-504
    • Growney, J.D.1    Shigematsu, H.2    Li, Z.3
  • 8
    • 77949518018 scopus 로고    scopus 로고
    • MicroRNA-29a induces aberrant self-renewal capacity in hematopoietic progenitors, biased myeloid development, and acute myeloid leukemia
    • Han YC, Park CY, Bhagat G, et al. microRNA-29a induces aberrant self-renewal capacity in hematopoietic progenitors, biased myeloid development, and acute myeloid leukemia. J Exp Med. 2010 ; 207: 475-489
    • (2010) J Exp Med , vol.207 , pp. 475-489
    • Han, Y.C.1    Park, C.Y.2    Bhagat, G.3
  • 9
    • 0037315894 scopus 로고    scopus 로고
    • Disruption of differentiation in human cancer: AML shows the way
    • Tenen DG. Disruption of differentiation in human cancer: AML shows the way. Nat Rev Cancer. 2003 ; 3: 89-101
    • (2003) Nat Rev Cancer , vol.3 , pp. 89-101
    • Tenen, D.G.1
  • 10
    • 55749099505 scopus 로고    scopus 로고
    • Distinct microRNA expression profiles in acute myeloid leukemia with common translocations
    • Li Z, Lu J, Sun M, et al. Distinct microRNA expression profiles in acute myeloid leukemia with common translocations. Proc Natl Acad Sci USA. 2008 ; 105: 15535-15540
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 15535-15540
    • Li, Z.1    Lu, J.2    Sun, M.3
  • 11
    • 34347383305 scopus 로고    scopus 로고
    • MicroRNAs 17-5p-20a-106a control monocytopoiesis through AML1 targeting and M-CSF receptor upregulation
    • Fontana L, Pelosi E, Greco P, et al. MicroRNAs 17-5p-20a-106a control monocytopoiesis through AML1 targeting and M-CSF receptor upregulation. Nat Cell Biol. 2007 ; 9: 775-787
    • (2007) Nat Cell Biol , vol.9 , pp. 775-787
    • Fontana, L.1    Pelosi, E.2    Greco, P.3
  • 12
    • 39849096995 scopus 로고    scopus 로고
    • Regulation of progenitor cell proliferation and granulocyte function by microRNA-223
    • Johnnidis JB, Harris MH, Wheeler RT, et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature. 2008 ; 451: 1125-1129
    • (2008) Nature , vol.451 , pp. 1125-1129
    • Johnnidis, J.B.1    Harris, M.H.2    Wheeler, R.T.3
  • 13
    • 61349100687 scopus 로고    scopus 로고
    • Myeloid-derived suppressor cells as regulators of the immune system
    • Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009 ; 9: 162-174
    • (2009) Nat Rev Immunol , vol.9 , pp. 162-174
    • Gabrilovich, D.I.1    Nagaraj, S.2
  • 14
    • 65249138393 scopus 로고    scopus 로고
    • Myeloid-derived suppressor cells: Linking inflammation and cancer
    • Ostrand-Rosenberg S, Sinha P. Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol. 2009 ; 182: 4499-4506
    • (2009) J Immunol , vol.182 , pp. 4499-4506
    • Ostrand-Rosenberg, S.1    Sinha, P.2
  • 15
    • 0035164478 scopus 로고    scopus 로고
    • Increased production of immature myeloid cells in cancer patients: A mechanism of immunosuppression in cancer
    • Almand B, Clark JI, Nikitina E, et al. Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol. 2001 ; 166: 678-689
    • (2001) J Immunol , vol.166 , pp. 678-689
    • Almand, B.1    Clark, J.I.2    Nikitina, E.3
  • 16
    • 0023136055 scopus 로고
    • Hematopoiesis and suppressor bone marrow cells in mice bearing large metastatic Lewis lung carcinoma tumors
    • Young MR, Newby M, Wepsic HT. Hematopoiesis and suppressor bone marrow cells in mice bearing large metastatic Lewis lung carcinoma tumors. Cancer Res. 1987 ; 47: 100-105
    • (1987) Cancer Res , vol.47 , pp. 100-105
    • Young, M.R.1    Newby, M.2    Wepsic, H.T.3
  • 17
    • 0021244805 scopus 로고
    • Influence of mammary tumor progression on phenotype and function of spleen and in situ lymphocytes in mice
    • Buessow SC, Paul RD, Lopez DM. Influence of mammary tumor progression on phenotype and function of spleen and in situ lymphocytes in mice. J Natl Cancer Inst. 1984 ; 73: 249-255
    • (1984) J Natl Cancer Inst , vol.73 , pp. 249-255
    • Buessow, S.C.1    Paul, R.D.2    Lopez, D.M.3
  • 18
    • 0021558066 scopus 로고
    • Natural suppressor (NS) cells, neonatal tolerance, and total lymphoid irradiation: Exploring obscure relationships
    • Strober S. Natural suppressor (NS) cells, neonatal tolerance, and total lymphoid irradiation: exploring obscure relationships. Annu Rev Immunol. 1984 ; 2: 219-237
    • (1984) Annu Rev Immunol , vol.2 , pp. 219-237
    • Strober, S.1
  • 19
    • 79952822608 scopus 로고    scopus 로고
    • A paradoxical role for myeloid-derived suppressor cells in sepsis and trauma
    • Cuenca AG, Delano MJ, Kelly-Scumpia KM, et al. A paradoxical role for myeloid-derived suppressor cells in sepsis and trauma. Mol Med. 2011 ; 17: 281-292
    • (2011) Mol Med , vol.17 , pp. 281-292
    • Cuenca, A.G.1    Delano, M.J.2    Kelly-Scumpia, K.M.3
  • 20
    • 85047689277 scopus 로고    scopus 로고
    • Myeloid-derived suppressor cells evolve during sepsis and can enhance or attenuate the systemic inflammatory response
    • Brudecki L, Ferguson DA, McCall CE, El Gazzar M. Myeloid-derived suppressor cells evolve during sepsis and can enhance or attenuate the systemic inflammatory response. Infect Immun. 2012 ; 80: 2026-2034
    • (2012) Infect Immun , vol.80 , pp. 2026-2034
    • Brudecki, L.1    Ferguson, D.A.2    McCall, C.E.3    El Gazzar, M.4
  • 21
    • 77954399377 scopus 로고    scopus 로고
    • Hepatic acute-phase proteins control innate immune responses during infection by promoting myeloid-derived suppressor cell function
    • Sander LE, Sackett SD, Dierssen U, et al. Hepatic acute-phase proteins control innate immune responses during infection by promoting myeloid-derived suppressor cell function. J Exp Med. 2010 ; 207: 1453-1464
    • (2010) J Exp Med , vol.207 , pp. 1453-1464
    • Sander, L.E.1    Sackett, S.D.2    Dierssen, U.3
  • 22
    • 78650756969 scopus 로고    scopus 로고
    • Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function
    • Condamine T, Gabrilovich DI. Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol. 2011 ; 32: 19-25
    • (2011) Trends Immunol , vol.32 , pp. 19-25
    • Condamine, T.1    Gabrilovich, D.I.2
  • 23
    • 59849126377 scopus 로고    scopus 로고
    • Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1
    • Li H, Han Y, Guo Q, et al. Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1. J Immunol. 2009 ; 182: 240-249
    • (2009) J Immunol , vol.182 , pp. 240-249
    • Li, H.1    Han, Y.2    Guo, Q.3
  • 24
    • 54049134747 scopus 로고    scopus 로고
    • Subsets of myeloid-derived suppressor cells in tumor-bearing mice
    • Youn JI, Nagaraj S, Collazo M, Gabrilovich DI. Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol. 2008 ; 181: 5791-5802
    • (2008) J Immunol , vol.181 , pp. 5791-5802
    • Youn, J.I.1    Nagaraj, S.2    Collazo, M.3    Gabrilovich, D.I.4
  • 25
    • 78649598159 scopus 로고    scopus 로고
    • Pivotal advance: Tumor-mediated induction of myeloid-derived suppressor cells and M2-polarized macrophages by altering intracellular PGE(2) catabolism in myeloid cells
    • Eruslanov E, Daurkin I, Ortiz J, et al. Pivotal advance: Tumor-mediated induction of myeloid-derived suppressor cells and M2-polarized macrophages by altering intracellular PGE(2) catabolism in myeloid cells. J Leukoc Biol. 2010 ; 88: 839-848
    • (2010) J Leukoc Biol , vol.88 , pp. 839-848
    • Eruslanov, E.1    Daurkin, I.2    Ortiz, J.3
  • 26
    • 34250359119 scopus 로고    scopus 로고
    • MyD88-dependent expansion of an immature GR-1(+)CD11b(+) population induces T cell suppression and Th2 polarization in sepsis
    • Delano MJ, Scumpia PO, Weinstein JS, et al. MyD88-dependent expansion of an immature GR-1(+)CD11b(+) population induces T cell suppression and Th2 polarization in sepsis. J Exp Med. 2007 ; 204: 1463-1474
    • (2007) J Exp Med , vol.204 , pp. 1463-1474
    • Delano, M.J.1    Scumpia, P.O.2    Weinstein, J.S.3
  • 27
    • 43249130187 scopus 로고    scopus 로고
    • Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity
    • Movahedi K, Guilliams M, Van den Bossche J, et al. Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood. 2008 ; 111: 4233-4244
    • (2008) Blood , vol.111 , pp. 4233-4244
    • Movahedi, K.1    Guilliams, M.2    Van Den Bossche, J.3
  • 28
    • 84862127053 scopus 로고    scopus 로고
    • Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression
    • Ostrand-Rosenberg S, Sinha P, Beury DW, Clements VK. Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression. Semin Cancer Biol. 2012 ; 22: 275-281
    • (2012) Semin Cancer Biol , vol.22 , pp. 275-281
    • Ostrand-Rosenberg, S.1    Sinha, P.2    Beury, D.W.3    Clements, V.K.4
  • 29
    • 79951793550 scopus 로고    scopus 로고
    • In vivo suppressive function of myeloid-derived suppressor cells is limited to the inflammatory site
    • Haverkamp JM, Crist SA, Elzey BD, et al. In vivo suppressive function of myeloid-derived suppressor cells is limited to the inflammatory site. Eur J Immunol. 2011 ; 41: 749-759
    • (2011) Eur J Immunol , vol.41 , pp. 749-759
    • Haverkamp, J.M.1    Crist, S.A.2    Elzey, B.D.3
  • 30
    • 77951073272 scopus 로고    scopus 로고
    • IL-1R type I-dependent hemopoietic stem cell proliferation is necessary for inflammatory granulopoiesis and reactive neutrophilia
    • Ueda Y, Cain DW, Kuraoka M, et al. IL-1R type I-dependent hemopoietic stem cell proliferation is necessary for inflammatory granulopoiesis and reactive neutrophilia. J Immunol. 2009 ; 182: 6477-6484
    • (2009) J Immunol , vol.182 , pp. 6477-6484
    • Ueda, Y.1    Cain, D.W.2    Kuraoka, M.3
  • 31
    • 22344437262 scopus 로고    scopus 로고
    • Inflammation and the reciprocal production of granulocytes and lymphocytes in bone marrow
    • Ueda Y, Kondo M, Kelsoe G. Inflammation and the reciprocal production of granulocytes and lymphocytes in bone marrow. J Exp Med. 2005 ; 201: 1771-1780
    • (2005) J Exp Med , vol.201 , pp. 1771-1780
    • Ueda, Y.1    Kondo, M.2    Kelsoe, G.3
  • 32
    • 58149332680 scopus 로고    scopus 로고
    • Reversal of myeloid cell-mediated immunosuppression in patients with metastatic renal cell carcinoma
    • Kusmartsev S, Su Z, Heiser A, et al. Reversal of myeloid cell-mediated immunosuppression in patients with metastatic renal cell carcinoma. Clin Cancer Res. 2008 ; 14: 8270-8278
    • (2008) Clin Cancer Res , vol.14 , pp. 8270-8278
    • Kusmartsev, S.1    Su, Z.2    Heiser, A.3
  • 33
    • 84874211785 scopus 로고    scopus 로고
    • Myeloid-derived suppressor cells: Mechanisms of action and recent advances in their role in transplant tolerance
    • Dilek N, Vuillefroy de SR, Blancho G, Vanhove B. Myeloid-derived suppressor cells: mechanisms of action and recent advances in their role in transplant tolerance. Front Immunol. 2012 ; 3: 208-208
    • (2012) Front Immunol , vol.3 , pp. 208-208
    • Dilek, N.1    Vuillefroy De, S.R.2    Blancho, G.3    Vanhove, B.4
  • 34
    • 77953141534 scopus 로고    scopus 로고
    • Immature immunosuppressive CD14+HLA-DR-/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign
    • Poschke I, Mougiakakos D, Hansson J, et al. Immature immunosuppressive CD14+HLA-DR-/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. Cancer Res. 2010 ; 70: 4335-4345
    • (2010) Cancer Res , vol.70 , pp. 4335-4345
    • Poschke, I.1    Mougiakakos, D.2    Hansson, J.3
  • 35
    • 46049098560 scopus 로고    scopus 로고
    • A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells
    • Hoechst B, Ormandy LA, Ballmaier M, et al. A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology. 2008 ; 135: 234-243
    • (2008) Gastroenterology , vol.135 , pp. 234-243
    • Hoechst, B.1    Ormandy, L.A.2    Ballmaier, M.3
  • 36
    • 33749461167 scopus 로고    scopus 로고
    • All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients
    • Mirza N, Fishman M, Fricke I, et al. All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res. 2006 ; 66: 9299-9307
    • (2006) Cancer Res , vol.66 , pp. 9299-9307
    • Mirza, N.1    Fishman, M.2    Fricke, I.3
  • 38
    • 3042767202 scopus 로고    scopus 로고
    • MicroRNAs: Small RNAs with a big role in gene regulation
    • He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004 ; 5: 522-531
    • (2004) Nat Rev Genet , vol.5 , pp. 522-531
    • He, L.1    Hannon, G.J.2
  • 39
    • 0347444723 scopus 로고    scopus 로고
    • MicroRNAs: Genomics, biogenesis, mechanism, and function
    • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004 ; 116: 281-297
    • (2004) Cell , vol.116 , pp. 281-297
    • Bartel, D.P.1
  • 40
    • 4644309196 scopus 로고    scopus 로고
    • The functions of animal microRNAs
    • Ambros V. The functions of animal microRNAs. Nature. 2004 ; 431: 350-355
    • (2004) Nature , vol.431 , pp. 350-355
    • Ambros, V.1
  • 41
    • 58249088751 scopus 로고    scopus 로고
    • MicroRNAs: Target recognition and regulatory functions
    • Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009 ; 136: 215-233
    • (2009) Cell , vol.136 , pp. 215-233
    • Bartel, D.P.1
  • 42
    • 33644768174 scopus 로고    scopus 로고
    • Control of translation and mRNA degradation by miRNAs and siRNAs
    • Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev. 2006 ; 20: 515-524
    • (2006) Genes Dev , vol.20 , pp. 515-524
    • Valencia-Sanchez, M.A.1    Liu, J.2    Hannon, G.J.3    Parker, R.4
  • 43
    • 38349169664 scopus 로고    scopus 로고
    • Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight?
    • Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?. Nat Rev Genet. 2008 ; 9: 102-114
    • (2008) Nat Rev Genet , vol.9 , pp. 102-114
    • Filipowicz, W.1    Bhattacharyya, S.N.2    Sonenberg, N.3
  • 44
    • 39749110034 scopus 로고    scopus 로고
    • Functional aspects of animal microRNAs
    • Williams AE. Functional aspects of animal microRNAs. Cell Mol Life Sci. 2008 ; 65: 545-562
    • (2008) Cell Mol Life Sci , vol.65 , pp. 545-562
    • Williams, A.E.1
  • 45
    • 33644779735 scopus 로고    scopus 로고
    • The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation
    • Naguibneva I, Ameyar-Zazoua M, Polesskaya A, et al. The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat Cell Biol. 2006 ; 8: 278-284
    • (2006) Nat Cell Biol , vol.8 , pp. 278-284
    • Naguibneva, I.1    Ameyar-Zazoua, M.2    Polesskaya, A.3
  • 46
    • 0346727524 scopus 로고    scopus 로고
    • MicroRNAs modulate hematopoietic lineage differentiation
    • Chen CZ, Li L, Lodish HF, Bartel DP. MicroRNAs modulate hematopoietic lineage differentiation. Science. 2004 ; 303: 83-86
    • (2004) Science , vol.303 , pp. 83-86
    • Chen, C.Z.1    Li, L.2    Lodish, H.F.3    Bartel, D.P.4
  • 47
    • 75649139134 scopus 로고    scopus 로고
    • Physiological and pathological roles for microRNAs in the immune system
    • O'Connell RM, Rao DS, Chaudhuri AA, Baltimore D. Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol. 2010 ; 10: 111-122
    • (2010) Nat Rev Immunol , vol.10 , pp. 111-122
    • O'Connell, R.M.1    Rao, D.S.2    Chaudhuri, A.A.3    Baltimore, D.4
  • 48
    • 84863723933 scopus 로고    scopus 로고
    • MicroRNAs regulatory networks in myeloid lineage development and differentiation: Regulators of the regulators
    • El Gazzar M, McCall CE. MicroRNAs regulatory networks in myeloid lineage development and differentiation: regulators of the regulators. Immunol Cell Biol. 2012 ; 90: 587-593
    • (2012) Immunol Cell Biol , vol.90 , pp. 587-593
    • El Gazzar, M.1    McCall, C.E.2
  • 49
    • 70249129354 scopus 로고    scopus 로고
    • MicroRNAs in normal and malignant myelopoiesis
    • Pelosi E, Labbaye C, Testa U. MicroRNAs in normal and malignant myelopoiesis. Leuk Res. 2009 ; 33: 1584-1593
    • (2009) Leuk Res , vol.33 , pp. 1584-1593
    • Pelosi, E.1    Labbaye, C.2    Testa, U.3
  • 50
    • 50849104285 scopus 로고    scopus 로고
    • Mechanisms of microRNA deregulation in human cancer
    • Deng S, Calin GA, Croce CM, et al. Mechanisms of microRNA deregulation in human cancer. Cell Cycle. 2008 ; 7: 2643-2646
    • (2008) Cell Cycle , vol.7 , pp. 2643-2646
    • Deng, S.1    Calin, G.A.2    Croce, C.M.3
  • 51
    • 79953185385 scopus 로고    scopus 로고
    • MicroRNA: Potential targets for the development of novel drugs?
    • Wu W. MicroRNA: potential targets for the development of novel drugs?. Drugs R D. 2010 ; 10: 1-8
    • (2010) Drugs R D , vol.10 , pp. 1-8
    • Wu, W.1
  • 52
    • 84876744817 scopus 로고    scopus 로고
    • Epigenetic deregulation of microRNAs: New opportunities to target oncogenic signaling pathways in hepatocellular carcinoma
    • Yu Z, Cheng AS. Epigenetic deregulation of microRNAs: new opportunities to target oncogenic signaling pathways in hepatocellular carcinoma. Curr Pharm Des. 2013 ; 19: 1192-1200
    • (2013) Curr Pharm des , vol.19 , pp. 1192-1200
    • Yu, Z.1    Cheng, A.S.2
  • 53
    • 35748979703 scopus 로고    scopus 로고
    • Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein
    • Fazi F, Racanicchi S, Zardo G, et al. Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein. Cancer Cell. 2007 ; 12: 457-466
    • (2007) Cancer Cell , vol.12 , pp. 457-466
    • Fazi, F.1    Racanicchi, S.2    Zardo, G.3
  • 54
    • 80052936529 scopus 로고    scopus 로고
    • MicroRNA function in myeloid biology
    • O'Connell RM, Zhao JL, Rao DS. MicroRNA function in myeloid biology. Blood. 2011 ; 118: 2960-2969
    • (2011) Blood , vol.118 , pp. 2960-2969
    • O'Connell, R.M.1    Zhao, J.L.2    Rao, D.S.3
  • 55
    • 79958257077 scopus 로고    scopus 로고
    • MiR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice
    • Boldin MP, Taganov KD, Rao DS, et al. miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J Exp Med. 2011 ; 208: 1189-1201
    • (2011) J Exp Med , vol.208 , pp. 1189-1201
    • Boldin, M.P.1    Taganov, K.D.2    Rao, D.S.3
  • 56
    • 79959362128 scopus 로고    scopus 로고
    • NF-kappaB dysregulation in microRNA-146a-deficient mice drives the development of myeloid malignancies
    • Zhao JL, Rao DS, Boldin MP, et al. NF-kappaB dysregulation in microRNA-146a-deficient mice drives the development of myeloid malignancies. Proc Natl Acad Sci USA. 2011 ; 108: 9184-9189
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 9184-9189
    • Zhao, J.L.1    Rao, D.S.2    Boldin, M.P.3
  • 57
    • 79251585937 scopus 로고    scopus 로고
    • The prognostic and functional role of microRNAs in acute myeloid leukemia
    • Marcucci G, Mrozek K, Radmacher MD, et al. The prognostic and functional role of microRNAs in acute myeloid leukemia. Blood. 2011 ; 117: 1121-1129
    • (2011) Blood , vol.117 , pp. 1121-1129
    • Marcucci, G.1    Mrozek, K.2    Radmacher, M.D.3
  • 58
    • 47849125676 scopus 로고    scopus 로고
    • MicroRNAs: New regulators of immune cell development and function
    • Baltimore D, Boldin MP, O'Connell RM, et al. MicroRNAs: new regulators of immune cell development and function. Nat Immunol. 2008 ; 9: 839-845
    • (2008) Nat Immunol , vol.9 , pp. 839-845
    • Baltimore, D.1    Boldin, M.P.2    O'Connell, R.M.3
  • 59
    • 66549105485 scopus 로고    scopus 로고
    • Gfi1 regulates miR-21 and miR-196b to control myelopoiesis
    • Velu CS, Baktula AM, Grimes HL. Gfi1 regulates miR-21 and miR-196b to control myelopoiesis. Blood. 2009 ; 113: 4720-4728
    • (2009) Blood , vol.113 , pp. 4720-4728
    • Velu, C.S.1    Baktula, A.M.2    Grimes, H.L.3
  • 60
    • 28344438648 scopus 로고    scopus 로고
    • A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis
    • Fazi F, Rosa A, Fatica A, et al. A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell. 2005 ; 123: 819-831
    • (2005) Cell , vol.123 , pp. 819-831
    • Fazi, F.1    Rosa, A.2    Fatica, A.3
  • 61
    • 45549103746 scopus 로고    scopus 로고
    • MicroRNAs and the immune response
    • Lindsay MA. microRNAs and the immune response. Trends Immunol. 2008 ; 29: 343-351
    • (2008) Trends Immunol , vol.29 , pp. 343-351
    • Lindsay, M.A.1
  • 62
    • 84861148197 scopus 로고    scopus 로고
    • Regulation of monocyte functional heterogeneity by miR-146a and Relb
    • Etzrodt M, Cortez-Retamozo V, Newton A, et al. Regulation of monocyte functional heterogeneity by miR-146a and Relb. Cell Rep. 2012 ; 1: 317-324
    • (2012) Cell Rep , vol.1 , pp. 317-324
    • Etzrodt, M.1    Cortez-Retamozo, V.2    Newton, A.3
  • 63
    • 33749425534 scopus 로고    scopus 로고
    • Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells
    • Gallina G, Dolcetti L, Serafini P, et al. Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J Clin Invest. 2006 ; 116: 2777-2790
    • (2006) J Clin Invest , vol.116 , pp. 2777-2790
    • Gallina, G.1    Dolcetti, L.2    Serafini, P.3
  • 64
    • 42249090353 scopus 로고    scopus 로고
    • MiR-21 Gene expression triggered by AP-1 is sustained through a double-negative feedback mechanism
    • Fujita S, Ito T, Mizutani T, et al. miR-21 Gene expression triggered by AP-1 is sustained through a double-negative feedback mechanism. J Mol Biol. 2008 ; 378: 492-504
    • (2008) J Mol Biol , vol.378 , pp. 492-504
    • Fujita, S.1    Ito, T.2    Mizutani, T.3
  • 65
    • 75649113377 scopus 로고    scopus 로고
    • Negative regulation of TLR4 via targeting of the pro-inflammatory tumor suppressor PDCD4 by the microRNA miR-21
    • Sheedy FJ, Palsson-McDermott E, Hennessy EJ, et al. Negative regulation of TLR4 via targeting of the pro-inflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat Immunol. 2010 ; 11: 141-147
    • (2010) Nat Immunol , vol.11 , pp. 141-147
    • Sheedy, F.J.1    Palsson-Mcdermott, E.2    Hennessy, E.J.3
  • 66
    • 77956339881 scopus 로고    scopus 로고
    • OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma
    • Medina PP, Nolde M, Slack FJ. OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature. 2010 ; 467: 86-90
    • (2010) Nature , vol.467 , pp. 86-90
    • Medina, P.P.1    Nolde, M.2    Slack, F.J.3
  • 67
    • 77955992756 scopus 로고    scopus 로고
    • STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer
    • Iliopoulos D, Jaeger SA, Hirsch HA, et al. STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol Cell. 2010 ; 39: 493-506
    • (2010) Mol Cell , vol.39 , pp. 493-506
    • Iliopoulos, D.1    Jaeger, S.A.2    Hirsch, H.A.3
  • 69
    • 40249100094 scopus 로고    scopus 로고
    • Mutations in growth factor independent-1 associated with human neutropenia block murine granulopoiesis through colony stimulating factor-1
    • Zarebski A, Velu CS, Baktula AM, et al. Mutations in growth factor independent-1 associated with human neutropenia block murine granulopoiesis through colony stimulating factor-1. Immunity. 2008 ; 28: 370-380
    • (2008) Immunity , vol.28 , pp. 370-380
    • Zarebski, A.1    Velu, C.S.2    Baktula, A.M.3
  • 70
    • 77950095763 scopus 로고    scopus 로고
    • TGFbeta-mediated upregulation of hepatic miR-181b promotes hepatocarcinogenesis by targeting TIMP3
    • Wang B, Hsu SH, Majumder S, et al. TGFbeta-mediated upregulation of hepatic miR-181b promotes hepatocarcinogenesis by targeting TIMP3. Oncogene. 2010 ; 29: 1787-1797
    • (2010) Oncogene , vol.29 , pp. 1787-1797
    • Wang, B.1    Hsu, S.H.2    Majumder, S.3
  • 71
    • 34249331209 scopus 로고    scopus 로고
    • MicroRNA gene expression during retinoic acid-induced differentiation of human acute promyelocytic leukemia
    • Garzon R, Pichiorri F, Palumbo T, et al. MicroRNA gene expression during retinoic acid-induced differentiation of human acute promyelocytic leukemia. Oncogene. 2007 ; 26: 4148-4157
    • (2007) Oncogene , vol.26 , pp. 4148-4157
    • Garzon, R.1    Pichiorri, F.2    Palumbo, T.3
  • 72
  • 73
    • 77957725130 scopus 로고    scopus 로고
    • STAT3 controls myeloid progenitor growth during emergency granulopoiesis
    • Zhang H, Nguyen-Jackson H, Panopoulos AD, et al. STAT3 controls myeloid progenitor growth during emergency granulopoiesis. Blood. 2010 ; 116: 2462-2471
    • (2010) Blood , vol.116 , pp. 2462-2471
    • Zhang, H.1    Nguyen-Jackson, H.2    Panopoulos, A.D.3
  • 74
    • 0031987330 scopus 로고    scopus 로고
    • Essential roles for granulocyte-macrophage colony-stimulating factor (G-CSF) and G-CSF in the sustained hematopoietic response of Listeria monocytogenes-infected mice
    • Zhan Y, Lieschke GJ, Grail D, et al. Essential roles for granulocyte-macrophage colony-stimulating factor (G-CSF) and G-CSF in the sustained hematopoietic response of Listeria monocytogenes-infected mice. Blood. 1998 ; 91: 863-869
    • (1998) Blood , vol.91 , pp. 863-869
    • Zhan, Y.1    Lieschke, G.J.2    Grail, D.3
  • 75
    • 33745225494 scopus 로고    scopus 로고
    • C/EBPbeta is required for 'emergency' granulopoiesis
    • Hirai H, Zhang P, Dayaram T, et al. C/EBPbeta is required for 'emergency' granulopoiesis. Nat Immunol. 2006 ; 7: 732-739
    • (2006) Nat Immunol , vol.7 , pp. 732-739
    • Hirai, H.1    Zhang, P.2    Dayaram, T.3
  • 76
    • 77953914366 scopus 로고    scopus 로고
    • Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor
    • Marigo I, Bosio E, Solito S, et al. Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor. Immunity. 2010 ; 32: 790-802
    • (2010) Immunity , vol.32 , pp. 790-802
    • Marigo, I.1    Bosio, E.2    Solito, S.3
  • 77
    • 84858722006 scopus 로고    scopus 로고
    • MicroRNAs, new effectors and regulators of NF-kappaB
    • Boldin MP, Baltimore D. MicroRNAs, new effectors and regulators of NF-kappaB. Immunol Rev. 2012 ; 246: 205-220
    • (2012) Immunol Rev , vol.246 , pp. 205-220
    • Boldin, M.P.1    Baltimore, D.2
  • 78
    • 41149130219 scopus 로고    scopus 로고
    • Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder
    • O'Connell RM, Rao DS, Chaudhuri AA, et al. Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exp Med. 2008 ; 205: 585-594
    • (2008) J Exp Med , vol.205 , pp. 585-594
    • O'Connell, R.M.1    Rao, D.S.2    Chaudhuri, A.A.3
  • 80
    • 41649119008 scopus 로고    scopus 로고
    • Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin
    • Garzon R, Garofalo M, Martelli MP, et al. Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin. Proc Natl Acad Sci USA. 2008 ; 105: 3945-3950
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 3945-3950
    • Garzon, R.1    Garofalo, M.2    Martelli, M.P.3
  • 81
    • 25444457833 scopus 로고    scopus 로고
    • MicroRNAs: Critical regulators of development, cellular physiology and malignancy
    • Mendell JT. MicroRNAs: critical regulators of development, cellular physiology and malignancy. Cell Cycle. 2005 ; 4: 1179-1184
    • (2005) Cell Cycle , vol.4 , pp. 1179-1184
    • Mendell, J.T.1
  • 82
    • 39749143354 scopus 로고    scopus 로고
    • Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters
    • Ventura A, Young AG, Winslow MM, et al. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell. 2008 ; 132: 875-886
    • (2008) Cell , vol.132 , pp. 875-886
    • Ventura, A.1    Young, A.G.2    Winslow, M.M.3
  • 83
    • 79955022118 scopus 로고    scopus 로고
    • Both miR-17-5p and miR-20a alleviate suppressive potential of myeloid-derived suppressor cells by modulating STAT3 expression
    • Zhang M, Liu Q, Mi S, et al. Both miR-17-5p and miR-20a alleviate suppressive potential of myeloid-derived suppressor cells by modulating STAT3 expression. J Immunol. 2011 ; 186: 4716-4724
    • (2011) J Immunol , vol.186 , pp. 4716-4724
    • Zhang, M.1    Liu, Q.2    Mi, S.3
  • 84
    • 38049146022 scopus 로고    scopus 로고
    • The interplay between the master transcription factor PU.1 and miR-424 regulates human monocyte/macrophage differentiation
    • Rosa A, Ballarino M, Sorrentino A, et al. The interplay between the master transcription factor PU.1 and miR-424 regulates human monocyte/macrophage differentiation. Proc Natl Acad Sci USA. 2007 ; 104: 19849-19854
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 19849-19854
    • Rosa, A.1    Ballarino, M.2    Sorrentino, A.3
  • 85
    • 42749095242 scopus 로고    scopus 로고
    • Human chromosome 21-derived miRNAs are overexpressed in down syndrome brains and hearts
    • Kuhn DE, Nuovo GJ, Martin MM, et al. Human chromosome 21-derived miRNAs are overexpressed in down syndrome brains and hearts. Biochem Biophys Res Commun. 2008 ; 370: 473-477
    • (2008) Biochem Biophys Res Commun , vol.370 , pp. 473-477
    • Kuhn, D.E.1    Nuovo, G.J.2    Martin, M.M.3
  • 86
    • 1942494040 scopus 로고    scopus 로고
    • Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation
    • Sempere LF, Freemantle S, Pitha-Rowe I, et al. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol. 2004 ; 5: R13 - R13
    • (2004) Genome Biol , vol.5
    • Sempere, L.F.1    Freemantle, S.2    Pitha-Rowe, I.3
  • 87
    • 77956270732 scopus 로고    scopus 로고
    • MicroRNA miR-125a controls hematopoietic stem cell number
    • Guo S, Lu J, Schlanger R, et al. MicroRNA miR-125a controls hematopoietic stem cell number. Proc Natl Acad Sci USA. 2010 ; 107: 14229-14234
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 14229-14234
    • Guo, S.1    Lu, J.2    Schlanger, R.3
  • 88
    • 77649143631 scopus 로고    scopus 로고
    • MiR-125b-2 is a potential oncomiR on human chromosome 21 in megakaryoblastic leukemia
    • Klusmann JH, Li Z, Bohmer K, et al. miR-125b-2 is a potential oncomiR on human chromosome 21 in megakaryoblastic leukemia. Genes Dev. 2010 ; 24: 478-490
    • (2010) Genes Dev , vol.24 , pp. 478-490
    • Klusmann, J.H.1    Li, Z.2    Bohmer, K.3
  • 89
    • 58149145653 scopus 로고    scopus 로고
    • Myeloid cell differentiation arrest by miR-125b-1 in myelodysplastic syndrome and acute myeloid leukemia with the t(2;11)(p21;q23) translocation
    • Bousquet M, Quelen C, Rosati R, et al. Myeloid cell differentiation arrest by miR-125b-1 in myelodysplastic syndrome and acute myeloid leukemia with the t(2;11)(p21;q23) translocation. J Exp Med. 2008 ; 205: 2499-2506
    • (2008) J Exp Med , vol.205 , pp. 2499-2506
    • Bousquet, M.1    Quelen, C.2    Rosati, R.3
  • 90
    • 83555166166 scopus 로고    scopus 로고
    • Emu/miR-125b transgenic mice develop lethal B-cell malignancies
    • Enomoto Y, Kitaura J, Hatakeyama K, et al. Emu/miR-125b transgenic mice develop lethal B-cell malignancies. Leukemia. 2011 ; 25: 1849-1856
    • (2011) Leukemia , vol.25 , pp. 1849-1856
    • Enomoto, Y.1    Kitaura, J.2    Hatakeyama, K.3
  • 91
    • 84858257170 scopus 로고    scopus 로고
    • Oncomir miR-125b regulates hematopoiesis by targeting the gene Lin28A
    • Chaudhuri AA, So AY, Mehta A, et al. Oncomir miR-125b regulates hematopoiesis by targeting the gene Lin28A. Proc Natl Acad Sci USA. 2012 ; 109: 4233-4238
    • (2012) Proc Natl Acad Sci USA , vol.109 , pp. 4233-4238
    • Chaudhuri, A.A.1    So, A.Y.2    Mehta, A.3
  • 92
    • 68649091506 scopus 로고    scopus 로고
    • The kinase Akt1 controls macrophage response to lipopolysaccharide by regulating microRNAs
    • Androulidaki A, Iliopoulos D, Arranz A, et al. The kinase Akt1 controls macrophage response to lipopolysaccharide by regulating microRNAs. Immunity. 2009 ; 31: 220-231
    • (2009) Immunity , vol.31 , pp. 220-231
    • Androulidaki, A.1    Iliopoulos, D.2    Arranz, A.3
  • 93
    • 38049030287 scopus 로고    scopus 로고
    • Modulation of miR-155 and miR-125b levels following lipopolysaccharide/ TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock
    • Tili E, Michaille JJ, Cimino A, et al. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol. 2007 ; 179: 5082-5089
    • (2007) J Immunol , vol.179 , pp. 5082-5089
    • Tili, E.1    Michaille, J.J.2    Cimino, A.3
  • 94
    • 79954997645 scopus 로고    scopus 로고
    • MiR-223 suppresses differentiation of tumor-induced CD11b(+) Gr1(+) myeloid-derived suppressor cells from bone marrow cells
    • Liu Q, Zhang M, Jiang X, et al. miR-223 suppresses differentiation of tumor-induced CD11b(+) Gr1(+) myeloid-derived suppressor cells from bone marrow cells. Int J Cancer. 2011 ; 129: 2662-2673
    • (2011) Int J Cancer , vol.129 , pp. 2662-2673
    • Liu, Q.1    Zhang, M.2    Jiang, X.3
  • 95
    • 0030031409 scopus 로고    scopus 로고
    • Retinoblastoma protein directly interacts with and activates the transcription factor NF-IL6
    • Chen PL, Riley DJ, Chen-Kiang S, Lee WH. Retinoblastoma protein directly interacts with and activates the transcription factor NF-IL6. Proc Natl Acad Sci USA. 1996 ; 93: 465-469
    • (1996) Proc Natl Acad Sci USA , vol.93 , pp. 465-469
    • Chen, P.L.1    Riley, D.J.2    Chen-Kiang, S.3    Lee, W.H.4
  • 96
    • 0037071397 scopus 로고    scopus 로고
    • Transcriptional regulation of granulocyte and monocyte development
    • Friedman AD. Transcriptional regulation of granulocyte and monocyte development. Oncogene. 2002 ; 21: 3377-3390
    • (2002) Oncogene , vol.21 , pp. 3377-3390
    • Friedman, A.D.1
  • 97
    • 34247483919 scopus 로고    scopus 로고
    • An evolutionarily conserved mechanism for microRNA-223 expression revealed by microRNA gene profiling
    • Fukao T, Fukuda Y, Kiga K, et al. An evolutionarily conserved mechanism for microRNA-223 expression revealed by microRNA gene profiling. Cell. 2007 ; 129: 617-631
    • (2007) Cell , vol.129 , pp. 617-631
    • Fukao, T.1    Fukuda, Y.2    Kiga, K.3
  • 98
    • 84862074482 scopus 로고    scopus 로고
    • MicroRNA-494 is required for the accumulation and functions of tumor-expanded myeloid-derived suppressor cells via targeting of PTEN
    • Liu Y, Lai L, Chen Q, et al. MicroRNA-494 is required for the accumulation and functions of tumor-expanded myeloid-derived suppressor cells via targeting of PTEN. J Immunol. 2012 ; 188: 5500-5510
    • (2012) J Immunol , vol.188 , pp. 5500-5510
    • Liu, Y.1    Lai, L.2    Chen, Q.3
  • 99
    • 38949171376 scopus 로고    scopus 로고
    • MicroRNA targets in immune genes and the Dicer/Argonaute and ARE machinery components
    • Asirvatham AJ, Gregorie CJ, Hu Z, et al. MicroRNA targets in immune genes and the Dicer/Argonaute and ARE machinery components. Mol Immunol. 2008 ; 45: 1995-2006
    • (2008) Mol Immunol , vol.45 , pp. 1995-2006
    • Asirvatham, A.J.1    Gregorie, C.J.2    Hu, Z.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.