메뉴 건너뛰기




Volumn , Issue , 2011, Pages 331-336

Toward an ensemble of filters for classification

Author keywords

classification; ensemble methods; feature selection; microarray data

Indexed keywords

DNA MICROARRAY DATA; ENSEMBLE METHODS; MICROARRAY DATA;

EID: 84857620564     PISSN: 21647143     EISSN: 21647151     Source Type: Conference Proceeding    
DOI: 10.1109/ISDA.2011.6121677     Document Type: Conference Paper
Times cited : (3)

References (17)
  • 1
    • 0025725905 scopus 로고
    • Instance-based learning algorithms
    • DOI 10.1023/A:1022689900470
    • D.W. Aha, D. Kibler, and M.K. Albert. Instance-based learning algorithms. Machine learning, 6(1):37-66, 1991. (Pubitemid 21727227)
    • (1991) Machine Learning , vol.6 , Issue.1 , pp. 37-66
    • Aha, D.W.1    Kibler, D.2    Albert, M.K.3
  • 3
    • 80052772754 scopus 로고    scopus 로고
    • An ensemble of filters and classifiers for microarray data classification
    • doi:10.1016/j.patcog.2011.06.006
    • V. Bolón-Canedo, N. Sánchez-Maroño, and A. Alonso- Betanzos. An ensemble of filters and classifiers for microarray data classification. Pattern Recognition, 2011. doi:10.1016/j.patcog.2011.06.006.
    • (2011) Pattern Recognition
    • Bolón-Canedo, V.1    Sánchez-Maroño, N.2    Alonso- Betanzos, A.3
  • 4
    • 0242302657 scopus 로고    scopus 로고
    • Consistency-based search in feature selection
    • M. Dash and H. Liu. Consistency-based search in feature selection. Artificial intelligence, 151(1-2):155-176, 2003.
    • (2003) Artificial Intelligence , vol.151 , Issue.1-2 , pp. 155-176
    • Dash, M.1    Liu, H.2
  • 7
    • 0000916783 scopus 로고    scopus 로고
    • Practical feature subset selection for machine learning
    • M.A. Hall and L.A. Smith. Practical feature subset selection for machine learning. Computer Science, 98:181-191, 1998.
    • (1998) Computer Science , vol.98 , pp. 181-191
    • Hall, M.A.1    Smith, L.A.2
  • 8
    • 84992726552 scopus 로고
    • Estimating attributes: Analysis and extensions of relief
    • Springer
    • I. Kononenko. Estimating attributes: analysis and extensions of relief. In Machine Learning: ECML-94, pages 171-182. Springer, 1994.
    • (1994) Machine Learning: ECML-94 , pp. 171-182
    • Kononenko, I.1
  • 10
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • DOI 10.1109/TKDE.2005.66
    • H. Liu and L. Yu. Toward integrating feature selection algorithms for classification and clustering. Knowledge and Data Engineering, IEEE Transactions on, 17(4):491-502, 2005. (Pubitemid 40495592)
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.4 , pp. 491-502
    • Liu, H.1    Yu, L.2
  • 11
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy
    • DOI 10.1109/TPAMI.2005.159
    • H. Peng, F. Long, and C. Ding. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on pattern analysis and machine intelligence, pages 1226-1238, 2005. (Pubitemid 41245053)
    • (2005) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.