메뉴 건너뛰기




Volumn 25, Issue 8, 2013, Pages 1863-1875

Principal composite kernel feature analysis: Data-dependent kernel approach

Author keywords

Data dependent kernel; Manifold structures; Nonlinear subspace; Principal component analysis

Indexed keywords

CLASSIFICATION PERFORMANCE; DATA-DEPENDENT KERNEL; FEATURE REPRESENTATION; FEATURE SELECTION ALGORITHM; HIGH-DIMENSIONAL FEATURE SPACE; KERNEL PRINCIPAL COMPONENT ANALYSES (KPCA); MANIFOLD STRUCTURES; NONLINEAR SUBSPACE;

EID: 84897584292     PISSN: 10414347     EISSN: None     Source Type: Journal    
DOI: 10.1109/TKDE.2012.110     Document Type: Article
Times cited : (19)

References (77)
  • 4
    • 12844281041 scopus 로고    scopus 로고
    • CAD techniques, challenges, and controversies in computed tomographic colonography
    • DOI 10.1007/s00261-004-0244-x
    • H. Yoshida and A.H. Dachman, "CAD Techniques, Challenges, and Controversies in Computed Tomographic Colonography," Abdominal Imaging, vol. 30, pp. 26-41, Jan./Feb. 2005. (Pubitemid 40169505)
    • (2005) Abdominal Imaging , vol.30 , Issue.1 , pp. 26-41
    • Yoshida, H.1    Dachman, A.H.2
  • 5
    • 0035544612 scopus 로고    scopus 로고
    • Three-dimensional computer-aided diagnosis scheme for detection of colonic polyps
    • DOI 10.1109/42.974921, PII S0278006201112152
    • H. Yoshida and J. Nappi, "Three-Dimensional Computer-Aided Diagnosis Scheme for Detection of Colonic Polyps," IEEE Trans. Medical Imaging, vol. 20, no. 12, pp. 1261-1274, Dec. 2001. (Pubitemid 34125135)
    • (2001) IEEE Transactions on Medical Imaging , vol.20 , Issue.12 , pp. 1261-1274
    • Yoshida, H.1    Nappi, J.2
  • 8
    • 0036359367 scopus 로고    scopus 로고
    • Computer-aided diagnosis in virtual colonography via combination of surface normal and sphere fitting methods
    • DOI 10.1007/s003300101040
    • G. Kiss, J. Van Cleynenbreugel, M. Thomeer, P. Suetens, and G. Marchal, "Computer-Aided Diagnosis in Virtual Colonography via Combination of Surface Normal and Sphere Fitting Methods," European Radiology, vol. 12, pp. 77-81, Jan. 2002. (Pubitemid 36940028)
    • (2002) European Radiology , vol.12 , Issue.1 , pp. 77-81
    • Kiss, G.1    Van Cleynenbreugel, J.2    Thomeer, M.3    Suetens, P.4    Marchal, G.5
  • 9
    • 2942577813 scopus 로고    scopus 로고
    • Surface normal overlap: A computer-aided detection algorithm with application to colonic polyps and lung nodules in helical ct
    • June
    • D.S. Paik, C.F. Beaulieu, G.D. Rubin, B. Acar, R.B. Jeffrey Jr., J. Yee, J. Dey, and S. Napel, "Surface Normal Overlap: A Computer-Aided Detection Algorithm with Application to Colonic Polyps and Lung Nodules in Helical CT," IEEE Trans. Medical Imaging, vol. 23, no. 6, pp. 661-675, June 2004.
    • (2004) IEEE Trans. Medical Imaging , vol.23 , Issue.6 , pp. 661-675
    • Paik, D.S.1    Beaulieu, C.F.2    Rubin, G.D.3    Acar, B.4    Jeffrey Jr., R.B.5    Yee, J.6    Dey, J.7    Napel, S.8
  • 10
    • 0037238384 scopus 로고    scopus 로고
    • Computer-assisted detection of colonic polyps with CT colonography using neural networks and binary classification trees
    • DOI 10.1118/1.1528178
    • A.K. Jerebko, R.M. Summers, J.D. Malley, M. Franaszek, and C.D. Johnson, "Computer-Assisted Detection of Colonic Polyps with CT Colonography Using Neural Networks and Binary Classification Trees," Medical Physics, vol. 30, pp. 52-60, Jan. 2003. (Pubitemid 36106008)
    • (2003) Medical Physics , vol.30 , Issue.1 , pp. 52-60
    • Jerebko, A.K.1    Summers, R.M.2    Malley, J.D.3    Franaszek, M.4    Johnson, C.D.5
  • 11
    • 33847355213 scopus 로고    scopus 로고
    • Fully Automated Three-Dimensional Detection of Polyps in Fecal-Tagging CT Colonography
    • DOI 10.1016/j.acra.2006.11.007, PII S1076633206006738
    • J. Nappi and H. Yoshida, "Fully Automated Three-Dimensional Detection of Polyps in Fecal-Tagging CT Colonography," Academic Radiology, vol. 14, pp. 287-300, Mar. 2007. (Pubitemid 46331875)
    • (2007) Academic Radiology , vol.14 , Issue.3 , pp. 287-300
    • Nappi, J.1    Yoshida, H.2
  • 12
    • 0037306325 scopus 로고    scopus 로고
    • Multiple neural network classification scheme for detection of colonic polyps in CT colonography data sets
    • DOI 10.1016/S1076-6332(03)80039-9
    • A.K. Jerebko, J.D. Malley, M. Franaszek, and R.M. Summers, "Multiple Neural Network Classification Scheme for Detection of Colonic Polyps in CT Colonography Data Sets," Academic Radiology, vol. 10, pp. 154-160, Feb. 2003. (Pubitemid 36150968)
    • (2003) Academic Radiology , vol.10 , Issue.2 , pp. 154-160
    • Jerebko, A.K.1    Malley, J.D.2    Franaszek, M.3    Summers, R.M.4
  • 13
    • 17044407594 scopus 로고    scopus 로고
    • Support vector machines committee classification method for computer-aided polyp detection in ct colonography
    • Apr.
    • A.K. Jerebko, J.D. Malley, M. Franaszek, and R.M. Summers, "Support Vector Machines Committee Classification Method for Computer-Aided Polyp Detection in CT Colonography," Academic Radiology, vol. 12, pp. 479-486, Apr. 2005.
    • (2005) Academic Radiology , vol.12 , pp. 479-486
    • Jerebko, A.K.1    Malley, J.D.2    Franaszek, M.3    Summers, R.M.4
  • 21
    • 35248814824 scopus 로고    scopus 로고
    • Greedy algorithm for a training set reduction in the kernel methods
    • V. France and V. Hlavac, "Greedy Algorithm for a Training set Reduction in the Kernel Methods," Computer Analysis of Image and Patterns, vol. 2756, pp. 426-433, 2003.
    • (2003) Computer Analysis of Image and Patterns , vol.2756 , pp. 426-433
    • France, V.1    Hlavac, V.2
  • 22
    • 27644572056 scopus 로고
    • Optimization of k-nearest neighbor density estimates
    • May
    • K. Fukunaga and L. Hostetler, "Optimization of K-Nearest Neighbor Density Estimates," IEEE Trans. Information Theory, vol. IT-19, no. 3, pp. 320-326, May 1973.
    • (1973) IEEE Trans. Information Theory , vol.19 , Issue.3 , pp. 320-326
    • Fukunaga, K.1    Hostetler, L.2
  • 25
    • 0001920729 scopus 로고
    • Similarity metric learning for a variable-kernel classifier
    • D.G. Lowe, "Similarity Metric Learning for a Variable-Kernel Classifier," Neural Computation, vol. 7, no. 1, pp. 72-85, 1995.
    • (1995) Neural Computation , vol.7 , Issue.1 , pp. 72-85
    • Lowe, D.G.1
  • 27
    • 33749265708 scopus 로고    scopus 로고
    • Center-based nearest neighbor classifier
    • Q.B. Gao and Z.Z. Wang, "Center-Based Nearest Neighbor Classifier," Pattern Recognition, vol. 40, pp. 346-349, 2007.
    • (2007) Pattern Recognition , vol.40 , pp. 346-349
    • Gao, Q.B.1    Wang, Z.Z.2
  • 28
    • 0033096854 scopus 로고    scopus 로고
    • Face recognition using the nearest feature line method
    • Mar
    • S. Li and J. Lu, "Face Recognition Using the Nearest Feature Line Method," IEEE Trans. Neural Networks, vol. 10, no. 2, pp. 439-443, Mar. 1999.
    • (1999) IEEE Trans. Neural Networks , vol.10 , Issue.2 , pp. 439-443
    • Li, S.1    Lu, J.2
  • 30
    • 2142658770 scopus 로고    scopus 로고
    • Locally nearest neighbor classifiers for pattern classification
    • DOI 10.1016/j.patcog.2003.11.004, PII S0031320303004217
    • W. Zheng, L. Zhao, and C. Zou, "Locally Nearest Neighbor Classifiers for Pattern Classification," Pattern Recognition, vol. 37, pp. 1307-1309, 2004. (Pubitemid 38549829)
    • (2004) Pattern Recognition , vol.37 , Issue.6 , pp. 1307-1309
    • Zheng, W.1    Zhao, L.2    Zou, C.3
  • 32
    • 44649123652 scopus 로고    scopus 로고
    • Multi-class discriminant kernel learning via convex programming
    • J. Ye, S. Ji, and J. Chen, "Multi-Class Discriminant Kernel Learning Via Convex Programming," J. Machine Learning Research, vol. 9, pp. 719-758, 1999.
    • (1999) J. Machine Learning Research , vol.9 , pp. 719-758
    • Ye, J.1    Ji, S.2    Chen, J.3
  • 33
    • 33646184455 scopus 로고    scopus 로고
    • Gene selection based on multi-class support vector machines and genetic algorithms
    • B. Souza and A. de Carvalho, "Gene Selection Based on Multi-Class Support Vector Machines and Genetic Algorithms," Molecular Research, vol. 4, no. 3, pp. 599-607, 2005.
    • (2005) Molecular Research , vol.4 , Issue.3 , pp. 599-607
    • Souza, B.1    De Carvalho, A.2
  • 36
    • 15344339935 scopus 로고    scopus 로고
    • Optimizing the kernel in the empirical feature space
    • DOI 10.1109/TNN.2004.841784
    • H. Xiong, M.N.S. Swamy, and M.O. Ahmad, "Optimizing the Data-Dependent Kernel in the Empirical Feature Space," IEEE Trans. Neural Networks, vol. 16, no. 2, pp. 460-474, Mar. 2005. (Pubitemid 40390828)
    • (2005) IEEE Transactions on Neural Networks , vol.16 , Issue.2 , pp. 460-474
    • Xiong, H.1    Swamy, M.N.S.2    Ahmad, M.O.3
  • 38
    • 0030374103 scopus 로고    scopus 로고
    • Bootstrapping with noise: An efficient regularization technique
    • Y. Raviv and N. Intrator, "Bootstrapping with Noise: An Efficient Regularization Technique," Connection Science, vol. 8, pp. 355-372, 1996.
    • (1996) Connection Science , vol.8 , pp. 355-372
    • Raviv, Y.1    Intrator, N.2
  • 41
    • 84862596438 scopus 로고    scopus 로고
    • A greedy algorithm for optimizing the kernel alignment and the performance of kernel machines
    • Sept.
    • Pothin and Richard, "A Greedy Algorithm for Optimizing the Kernel Alignment and the Performance of Kernel Machines," Proc. 14th European Signal Processing Conf. (EUSIPCO '06), Sept. 2006.
    • (2006) Proc. 14th European Signal Processing Conf. (EUSIPCO '06)
    • Pothin1    Richard2
  • 46
    • 84960354764 scopus 로고    scopus 로고
    • Gene selection for cancer classification using bootstrapped genetic algorithms and support vector machines
    • X.W. Chen, "Gene Selection for Cancer Classification Using Bootstrapped Genetic Algorithms and Support Vector Machines," Proc. IEEE Int'l Conf. Computational Systems, Bioinformatics, pp. 504-505, 2003.
    • (2003) Proc. IEEE Int'l Conf. Computational Systems, Bioinformatics , pp. 504-505
    • Chen, X.W.1
  • 47
    • 0141794694 scopus 로고    scopus 로고
    • Genetic search for optimal ensemble of feature-classifier pairs in dna gene expression profiles
    • C. Park and S.B. Cho, "Genetic Search for Optimal Ensemble of Feature-Classifier Pairs in DNA Gene Expression Profiles," Proc. Int'l Joint Conf. Neural Networks, vol. 3, pp. 1702-1707, 2003.
    • (2003) Proc. Int'l Joint Conf. Neural Networks , vol.3 , pp. 1702-1707
    • Park, C.1    Cho, S.B.2
  • 48
    • 42949100766 scopus 로고    scopus 로고
    • Polarimetric radar target classification using support vector machines
    • Apr
    • F.A. Sadjadi, "Polarimetric Radar Target Classification Using Support Vector Machines," Optical Eng., vol. 47, no. 4, p. 046201, Apr. 2008.
    • (2008) Optical Eng. , vol.47 , Issue.4 , pp. 046201
    • Sadjadi, F.A.1
  • 52
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination method for the classification of tumor using gene expression data
    • S. Dudoit, J. Fridlyand, and T.P. Speed, "Comparison of Discrimination Method for the Classification of Tumor Using Gene Expression Data," J. Am. Statistical Assoc., vol. 97, pp. 77-87, 2002.
    • (2002) J. Am. Statistical Assoc. , vol.97 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.P.3
  • 54
    • 34249709906 scopus 로고    scopus 로고
    • Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process
    • Apr.
    • U.R. Chandran et al., "Gene Expression Profiles of Prostate Cancer Reveal Involvement of Multiple Molecular Pathways in the Metastatic Process," BMC Cancer, pp. 7-64, Apr. 2007.
    • (2007) BMC Cancer , pp. 7-64
    • Chandran, U.R.1
  • 56
    • 23844545358 scopus 로고    scopus 로고
    • An improved algorithm for kernel principal component analysis
    • DOI 10.1007/s11063-004-0036-x
    • W. Zheng, C. Zou, and L. Zao, "An Improved Algorithm for Kernel Principal Component Analysis," Neural Processing Letters, vol. 22, no. 1, pp. 49-56, 2005. (Pubitemid 41156266)
    • (2005) Neural Processing Letters , vol.22 , Issue.1 , pp. 49-56
    • Zheng, W.1    Zou, C.2    Zhao, L.3
  • 57
    • 0035014847 scopus 로고    scopus 로고
    • Multi-class protein fold recognition using support vector machines and neural networks
    • C. Ding and I. Dubchak, "Multi-Class Protein Fold Recognition Using Support Vector Machines and Neural Networks," Bioinformatics, vol. 17, no. 4, pp. 349-358, Apr. 2001. (Pubitemid 32421929)
    • (2001) Bioinformatics , vol.17 , Issue.4 , pp. 349-358
    • Ding, C.H.Q.1    Dubchak, I.2
  • 58
    • 0036100116 scopus 로고    scopus 로고
    • Learning gene functional classifications from multiple data types
    • DOI 10.1089/10665270252935539
    • P. Pavlidis et al., "Learning Gene Functional Classifications from Multiple Data Types," J. Computational Biology, vol. 9, no. 2, pp. 401-411, 2002. (Pubitemid 34548272)
    • (2002) Journal of Computational Biology , vol.9 , Issue.2 , pp. 401-411
    • Pavlidis, P.1    Weston, J.2    Cai, J.3    Noble, W.S.4
  • 59
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • DOI 10.1023/A:1012450327387
    • O. Chapelle et al., "Choosing Multiple Parameters for Support Vector Machines," Machine Learning, vol. 46, nos. 1-3, pp. 131-159, 2002. (Pubitemid 34129966)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 62
    • 0031222594 scopus 로고    scopus 로고
    • Transaction processing in multilevel secure databases with kernelized architecture: Challenges and solutions
    • V. Atluri, S. Jajodia, and E. Bertino, "Transaction Processing in Multilevel Secure Databases with Kernelized Architecture: Challenges and Solutions," IEEE Trans. Knowledge and Data Eng., vol. 9, no. 5, pp. 697-708, Sept./Oct. 1997. (Pubitemid 127773153)
    • (1997) IEEE Transactions on Knowledge and Data Engineering , vol.9 , Issue.5 , pp. 697-708
    • Atluri, V.1    Jajodia, S.2    Bertino, E.3
  • 63
    • 34547101458 scopus 로고    scopus 로고
    • The kernel common vector method: A novel nonlinear subspace classifier for pattern recognition
    • DOI 10.1109/TSMCB.2007.896011
    • H. Cevikalp, M. Neamtu, and A. Barkana, "The Kernel Common Vector Method: A Novel Nonlinear Subspace Classifier for Pattern Recognition," IEEE Trans. Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 37, no. 4, pp. 937-951, Aug. 2007. (Pubitemid 47103944)
    • (2007) IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics , vol.37 , Issue.4 , pp. 937-951
    • Cevikalp, H.1    Neamtu, M.2    Barkana, A.3
  • 65
    • 44649117948 scopus 로고    scopus 로고
    • Cluster kernels: Resource-aware kernel density estimators over streaming data
    • July
    • C. Heinz and B. Seeger, "Cluster Kernels: Resource-Aware Kernel Density Estimators over Streaming Data," IEEE Trans. Knowledge and Data Eng., vol. 20, no. 7, pp. 880-893, July 2008.
    • (2008) IEEE Trans. Knowledge and Data Eng. , vol.20 , Issue.7 , pp. 880-893
    • Heinz, C.1    Seeger, B.2
  • 66
    • 0032786569 scopus 로고    scopus 로고
    • Improving support vector machine classifiers by modifying kernel functions
    • DOI 10.1016/S0893-6080(99)00032-5, PII S0893608099000325
    • S. Amari and S. Wu, "Improving Support Vector Machine Classifiers by Modifying Kernel Functions," Neural Network, vol. 12, no. 6, pp. 783-789, 1999. (Pubitemid 29359218)
    • (1999) Neural Networks , vol.12 , Issue.6 , pp. 783-789
    • Amari, S.1    Wu, S.2
  • 67
    • 2142643698 scopus 로고    scopus 로고
    • A support vector machine with a hybrid kernel and minimal vapnik-chervonenkis dimension
    • Apr
    • Y. Tan and J. Wang, "A Support Vector Machine with a Hybrid Kernel and Minimal Vapnik-Chervonenkis Dimension," IEEE Trans. Knowledge and Data Eng., vol. 16, no. 4, pp. 385-395, Apr. 2004.
    • (2004) IEEE Trans. Knowledge and Data Eng. , vol.16 , Issue.4 , pp. 385-395
    • Tan, Y.1    Wang, J.2
  • 70
    • 0037382208 scopus 로고    scopus 로고
    • Evaluation of simple performance measures for tuning SVM hyperparameters
    • DOI 10.1016/S0925-2312(02)00601-X, PII S092523120200601X
    • K. Duan, S.S. Keerthi, and A.N. Poo, "Evaluation of Simple Performance Measures for Tuning SVM Hyperparameters," Neurocomputing, vol. 51, pp. 41-59, Apr. 2003. (Pubitemid 36367224)
    • (2003) Neurocomputing , vol.51 , pp. 41-59
    • Duan, K.1    Keerthi, S.S.2    Poo, A.N.3
  • 74
    • 0034264380 scopus 로고    scopus 로고
    • Bounds on error expectation for support vector machines
    • Sept
    • V. Vapnik and O. Chapelle, "Bounds on Error Expectation for Support Vector Machines," Neural Computation, vol. 12, no. 9, pp. 2013-2036, Sept. 2000.
    • (2000) Neural Computation , vol.12 , Issue.9 , pp. 2013-2036
    • Vapnik, V.1    Chapelle, O.2
  • 75
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • DOI 10.1023/A:1012450327387
    • O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee, "Choosing Multiple Parameters for Support Vector Machines," Machine Learning, vol. 46, pp. 131-159, 2002. (Pubitemid 34129966)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 76
    • 0141430928 scopus 로고    scopus 로고
    • Radius Margin Bounds for Support Vector Machines with the RBF Kernel
    • DOI 10.1162/089976603322385108
    • K.M. Chung, W.C. Kao, C.-L. Sun, L.-L. Wang, and C.J. Lin, "Radius Margin Bounds for Support Vector Machines with the RBF Kernel," Neural Computation, vol. 15, no. 11, pp. 2643-2681, Nov. 2003. (Pubitemid 37206930)
    • (2003) Neural Computation , vol.15 , Issue.11 , pp. 2643-2681
    • Chung, K.-M.1    Kao, W.-C.2    Sun, C.-L.3    Wang, L.-L.4    Lin, C.-J.5
  • 77
    • 4544340625 scopus 로고    scopus 로고
    • Essence of kernel fisher discriminant: Kpca plus lda
    • J. Yang, Z. Jin, J.Y. Yang, D. Zhang, and A.F. Frangi, "Essence of Kernel Fisher Discriminant: KPCA Plus LDA," Pattern Recognition, vol. 37, pp. 2097-2100, 2004.
    • (2004) Pattern Recognition , vol.37 , pp. 2097-2100
    • Yang, J.1    Jin, Z.2    Yang, J.Y.3    Zhang, D.4    Frangi, A.F.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.