-
1
-
-
76749137632
-
Local causal and markov blanket induction for causal discovery and feature selection for classification
-
Aliferis, Constantin F., Statnikov, Alexander, Tsamardinos, Ioannis, Mani, Subramani, and Koutsoukos, Xenofon D. Local causal and markov blanket induction for causal discovery and feature selection for classification. J. Mach. Learn. Res., 11:171-234, 2010.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 171-234
-
-
Aliferis, C.F.1
Statnikov, A.2
Tsamardinos, I.3
Mani, S.4
Koutsoukos, X.D.5
-
2
-
-
11844293410
-
Partial correlation and conditional correlation as measures of conditional independence
-
Baba, Kunihiro, Shibata, Ritei, and Sibuya, Masaaki. Partial correlation and conditional correlation as measures of conditional independence. Australian & New Zealand Journal of Statistics, 46(4):657-664, 2004.
-
(2004)
Australian & New Zealand Journal of Statistics
, vol.46
, Issue.4
, pp. 657-664
-
-
Baba, K.1
Shibata, R.2
Sibuya, M.3
-
3
-
-
61749085851
-
Improving the reliability of causal discovery from small data sets using argumentation
-
Bromberg, Facundo and Margaritis, Dimitris. Improving the reliability of causal discovery from small data sets using argumentation. J. Mach. Learn. Res., 10:301-340, 2009.
-
(2009)
J. Mach. Learn. Res.
, vol.10
, pp. 301-340
-
-
Bromberg, F.1
Margaritis, D.2
-
4
-
-
78650273789
-
Bassum: A bayesian semi-supervised method for classification feature selection
-
Cai, Ruichu, Zhang, Zhenjie, and Hao, Zhifeng. Bassum: A bayesian semi-supervised method for classification feature selection. Pattern Recognition, 44 (4):811-820, 2011.
-
(2011)
Pattern Recognition
, vol.44
, Issue.4
, pp. 811-820
-
-
Cai, R.1
Zhang, Z.2
Hao, Z.3
-
5
-
-
84875241812
-
Causal gene identification using combinatorial v-structure search
-
doi: 10.1016/j.neunet.2013.01.025
-
Cai, Ruichu, Zhang, Zhenjie, and Hao, Zhifeng. Causal gene identification using combinatorial v-structure search. Neural Networks, 2013. doi: 10.1016/j.neunet.2013.01.025.
-
(2013)
Neural Networks
-
-
Cai, R.1
Zhang, Z.2
Hao, Z.3
-
6
-
-
0033691754
-
Using bayesian networks to analyze expression data
-
Friedman, Nir, Linial, Michal, Nachman, Iftach, and Pe'er, Dana. Using bayesian networks to analyze expression data. In RECOMB, pp. 127-135, 2000.
-
(2000)
RECOMB
, pp. 127-135
-
-
Friedman, N.1
Linial, M.2
Nachman, I.3
Pe'er, D.4
-
7
-
-
57249084023
-
Active learning of causal networks with intervention experiments and optimal designs
-
He, Y. and Geng, Z. Active learning of causal networks with intervention experiments and optimal designs. J. Mach. Learn. Res., 9:2523C2547, 2008.
-
(2008)
J. Mach. Learn. Res.
, vol.9
-
-
He, Y.1
Geng, Z.2
-
8
-
-
84858789485
-
Nonlinear causal discovery with additive noise models
-
Hoyer, Patrik O., Janzing, Dominik, Mooij, Joris M., Peters, Jonas, and Schölkopf, Bernhard. Nonlinear causal discovery with additive noise models. In NIPS, pp. 689-696, 2008.
-
(2008)
NIPS
, pp. 689-696
-
-
Hoyer, P.O.1
Janzing, D.2
Mooij, J.M.3
Peters, J.4
Schölkopf, B.5
-
9
-
-
84857129458
-
Information-geometric approach to inferring causal directions
-
Janzing, Dominik, Mooij, Joris M., Zhang, Kun, Lemeire, Jan, Zscheischler, Jakob, Daniusis, Povilas, Steudel, Bastian, and Schölkopf, Bernhard. Information-geometric approach to inferring causal directions. Artif. Intell., 182-183:1-31, 2012.
-
(2012)
Artif. Intell.
, vol.182-183
, pp. 1-31
-
-
Janzing, D.1
Mooij, J.M.2
Zhang, K.3
Lemeire, J.4
Zscheischler, J.5
Daniusis, P.6
Steudel, B.7
Schölkopf, B.8
-
10
-
-
33947524259
-
Estimating high-dimensional directed acyclic graphs with the PC-algorithm
-
Kalisch, M. and Bühlmann, P. Estimating high-dimensional directed acyclic graphs with the pc-algorithm. The J. Mach. Learn. Res., 8:613-636, 2007. (Pubitemid 46473523)
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 613-636
-
-
Kalisch, M.1
Buhlmann, P.2
-
11
-
-
3042738945
-
Dynamic bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data
-
Kim, Sunyong, Imoto, Seiya, and Miyano, Satoru. Dynamic bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data. Biosystems, 75(1-3):57-65, 2004.
-
(2004)
Biosystems
, vol.75
, Issue.1-3
, pp. 57-65
-
-
Kim, S.1
Imoto, S.2
Miyano, S.3
-
13
-
-
71149096052
-
Regression by dependence minimization and its application to causal inference in additive noise models
-
Mooij, Joris M., Janzing, Dominik, Peters, Jonas, and Schölkopf, Bernhard. Regression by dependence minimization and its application to causal inference in additive noise models. In ICML, pp. 94, 2009.
-
(2009)
ICML
, pp. 94
-
-
Mooij, J.M.1
Janzing, D.2
Peters, J.3
Schölkopf, B.4
-
16
-
-
84862292888
-
Identifying cause and effect on discrete data using additive noise models
-
Peters, Jonas, Janzing, Dominik, and Schölkopf, Bernhard. Identifying cause and effect on discrete data using additive noise models. In AIStats, pp. 597-604, 2010.
-
(2010)
AIStats
, pp. 597-604
-
-
Peters, J.1
Janzing, D.2
Schölkopf, B.3
-
17
-
-
80053158210
-
Causal inference on discrete data using additive noise models
-
Peters, Jonas, Janzing, Dominik, and Schölkopf, Bernhard. Causal inference on discrete data using additive noise models. IEEE Trans. Pattern Anal. Mach. Intell., 33(12):2436-2450, 2011.
-
(2011)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.33
, Issue.12
, pp. 2436-2450
-
-
Peters, J.1
Janzing, D.2
Schölkopf, B.3
-
18
-
-
33749326177
-
A linear non-gaussian acyclic model for causal discovery
-
Shimizu, Shohei, Hoyer, Patrik O., Hyvärinen, Aapo, and Kerminen, Antti J. A linear non-gaussian acyclic model for causal discovery. J. Mach. Learn. Res., 7:2003-2030, 2006.
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 2003-2030
-
-
Shimizu, S.1
Hoyer, P.O.2
Hyvärinen, A.3
Kerminen, A.J.4
-
19
-
-
79955829373
-
Directlingam: A direct method for learning a linear non-gaussian structural equation model
-
Shimizu, Shohei, Inazumi, Takanori, Sogawa, Yasuhiro, Hyvärinen, Aapo, Kawahara, Yoshinobu, Washio, Takashi, Hoyer, Patrik O., and Bollen, Kenneth. Directlingam: A direct method for learning a linear non-gaussian structural equation model. J. Mach. Learn. Res., 12:1225-1248, 2011.
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 1225-1248
-
-
Shimizu, S.1
Inazumi, T.2
Sogawa, Y.3
Hyvärinen, A.4
Kawahara, Y.5
Washio, T.6
Hoyer, P.O.7
Bollen, K.8
-
20
-
-
0003614273
-
-
The MIT Press, 2 edition
-
Spirtes, Peter, Glymour, Clark, and Scheines, Richard. Causation, Prediction, and Search. The MIT Press, 2 edition, 2001.
-
(2001)
Causation, Prediction, and Search
-
-
Spirtes, P.1
Glymour, C.2
Scheines, R.3
-
21
-
-
84921654250
-
Kernel-based conditional independence test and application in causal discovery
-
abs/1202.3775
-
Zhang, Kun, Peters, Jonas, Janzing, Dominik, and Schölkopf, Bernhard. Kernel-based conditional independence test and application in causal discovery. CoRR, abs/1202.3775, 2012.
-
(2012)
CoRR
-
-
Zhang, K.1
Peters, J.2
Janzing, D.3
Schölkopf, B.4
-
22
-
-
34250896121
-
Markov blanket-embedded genetic algorithm for gene selection
-
DOI 10.1016/j.patcog.2007.02.007, PII S0031320307000945
-
Zhu, Z., Ong, Y.S., and Dash, M. Markov blanket-embedded genetic algorithm for gene selection. Pattern Recognition, 40(11):3236-3248, 2007. (Pubitemid 46990428)
-
(2007)
Pattern Recognition
, vol.40
, Issue.11
, pp. 3236-3248
-
-
Zhu, Z.1
Ong, Y.-S.2
Dash, M.3
-
23
-
-
85014570652
-
Testing whether linear equations are causal: A free probability theory approach
-
abs/1202.3779
-
Zscheischler, Jakob, Janzing, Dominik, and Zhang, Kun. Testing whether linear equations are causal: A free probability theory approach. CoRR, abs/1202.3779, 2012.
-
(2012)
CoRR
-
-
Zscheischler, J.1
Janzing, D.2
Zhang, K.3
|