메뉴 건너뛰기




Volumn 3, Issue 4, 2013, Pages 31-46

Hybrid system based on rough sets and genetic algorithms for medical data classifications

Author keywords

Biomedical classification; Data mining; Discretization; Entropy gain information (EI); Feature selection (FS); Genetic algorithm (GA); Machine learning (ML); Rough set (RS)

Indexed keywords

BIOINFORMATICS; DATA MINING; DIAGNOSIS; ENTROPY; FEATURE EXTRACTION; GENETIC ALGORITHMS; HYBRID SYSTEMS; INTELLIGENT COMPUTING; MACHINE LEARNING; MEDICAL APPLICATIONS; MEDICAL COMPUTING; MEDICAL IMAGING; ROUGH SET THEORY;

EID: 84897542211     PISSN: 2156177X     EISSN: 21561761     Source Type: Journal    
DOI: 10.4018/ijfsa.2013100103     Document Type: Article
Times cited : (29)

References (62)
  • 1
    • 0242498488 scopus 로고    scopus 로고
    • An analysis of four missing data treatment methods for supervised learning
    • doi:10.1080/713827181
    • Batista, G., & Monrad, M. C. (2003). An analysis of four missing data treatment methods for supervised learning. Applied Artificial Intelligence, 17(5-6), 519-533. doi:10.1080/713827181
    • (2003) Applied Artificial Intelligence , vol.17 , Issue.5-6 , pp. 519-533
    • Batista, G.1    Monrad, M.C.2
  • 2
    • 61349133540 scopus 로고    scopus 로고
    • Feature selection for high-dimensional data - A Pearson redundancy based filter
    • doi:10.1007/978-3-540-75175-5-30
    • Biesiada, J., & Duch, W. (2008). Feature selection for high-dimensional data-a Pearson redundancy based filter. Advances in Soft Computing, 45, 242-249. doi:10.1007/978-3-540-75175-5-30
    • (2008) Advances in Soft Computing , vol.45 , pp. 242-249
    • Biesiada, J.1    Duch, W.2
  • 3
    • 0002823280 scopus 로고
    • On changing continuous attributes into ordered discrete attributes into ordered discrete attributes
    • Y. Kodratoff (Ed.), Berlin, Germany: Springer-Verlag
    • Catlett, J. (1991). On changing continuous attributes into ordered discrete attributes into ordered discrete attributes. In Y. Kodratoff (Ed.), Proceedings of the European Working Session on Learning (pp. 164- 178). Berlin, Germany: Springer-Verlag.
    • (1991) Proceedings of the European Working Session on Learning , pp. 164-178
    • Catlett, J.1
  • 4
    • 78650802610 scopus 로고    scopus 로고
    • Rough set approach to feature based on power set tree
    • doi:10.1016/j.knosys.2010.09.004
    • Chen, Y., Miao, D., Wang, R., & Wu, K. (2011). Rough set approach to feature based on power set tree. Knowledge-Based Systems, 24(2), 275-281. doi:10.1016/j.knosys.2010.09.004
    • (2011) Knowledge-Based Systems , vol.24 , Issue.2 , pp. 275-281
    • Chen, Y.1    Miao, D.2    Wang, R.3    Wu, K.4
  • 6
    • 0036756222 scopus 로고    scopus 로고
    • Uniqueness of medical data mining
    • DOI 10.1016/S0933-3657(02)00049-0, PII S0933365702000490
    • Cios, K. J., & Mooree, G. W. (2002). Uniqueness of medical data mining. Artificial Intelligence in Medicine, 26(1-2), 1-24. doi:10.1016/S0933- 3657(02)00049-0 PMID:12234714 (Pubitemid 35299395)
    • (2002) Artificial Intelligence in Medicine , vol.26 , Issue.1-2 , pp. 1-24
    • Cios, K.J.1    William Moore, G.2
  • 8
    • 68949149397 scopus 로고    scopus 로고
    • Feature subset selection for blood pressure classification using orthogonal forward selection
    • Colak, S., & Isik, C. (2003). Feature subset selection for blood pressure classification using orthogonal forward selection. In Proceedings of 2003 IEEE 29th Annual Bioengineering Conference (pp. 122-123).
    • (2003) Proceedings of 2003 IEEE 29th Annual Bioengineering Conference , pp. 122-123
    • Colak, S.1    Isik, C.2
  • 9
    • 0035452299 scopus 로고    scopus 로고
    • Backward sequential elimination for sparse vector subset selection
    • DOI 10.1016/S0165-1684(01)00064-0, PII S0165168401000640
    • Cotter, S. F., Kreutz-Delgado, K., & Rao, B. D. (2001). Backward sequential elimination for sparse vector selection. Signal Processing, 81(9), 1849-1864. doi:10.1016/S0165-1684(01)00064-0 (Pubitemid 32723681)
    • (2001) Signal Processing , vol.81 , Issue.9 , pp. 1849-1864
    • Cotter, S.F.1    Kreutz-Delgado, K.2    Rao, B.D.3
  • 10
    • 0342561563 scopus 로고    scopus 로고
    • Rough sets in hybrid methods for pattern recognition
    • DOI 10.1002/1098-111X(200102)16:2<149::AID-INT10>3.0.CO;2-S
    • Cyran, K. A., & Mrózek, A. (2001). Rough sets in hybrid methods for pattern recognition. International Journal of Intelligent Systems, 16(2), 149-168. doi:10.1002/1098-111X(200102)16:2<149::AID-INT10>3.0.CO;2- S (Pubitemid 32168477)
    • (2001) International Journal of Intelligent Systems , vol.16 , Issue.2 , pp. 149-168
    • Cyran, K.A.1    Mrozek, A.2
  • 11
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • doi:10.1016/S1088-467X(97)00008-5
    • Dash, M., & Liu, H. (1997). Feature selection for classification. Intelligent Data Analysis, 1(3), 131-156. doi:10.1016/S1088-467X(97)00008-5
    • (1997) Intelligent Data Analysis , vol.1 , Issue.3 , pp. 131-156
    • Dash, M.1    Liu, H.2
  • 12
    • 0242302657 scopus 로고    scopus 로고
    • Consistency-based search in feature selection
    • doi:10.1016/S0004-3702(03)00079-1
    • Dash, M., & Liu, H. (2003). Consistency-based search in feature selection. Artificial Intelligence, 151(1-2), 155-176. doi:10.1016/S0004- 3702(03)00079-1
    • (2003) Artificial Intelligence , vol.151 , Issue.1-2 , pp. 155-176
    • Dash, M.1    Liu, H.2
  • 17
    • 38349111002 scopus 로고    scopus 로고
    • Evolutionary algorithms for data mining
    • O. Maimon, & L. Rokach (Eds.), Springer. doi:10.1007/0-387-25465-X-20
    • Freitas, A. A. (2005). Evolutionary algorithms for data mining. In O. Maimon, & L. Rokach (Eds.), The data mining and knowledge discovery handbook (pp. 435-467). Springer. doi:10.1007/0-387-25465-X-20
    • (2005) The Data Mining and Knowledge Discovery Handbook , pp. 435-467
    • Freitas, A.A.1
  • 21
    • 9444268164 scopus 로고    scopus 로고
    • Detection of Spiculated Masses in Mammograms Based on Fuzzy Image Processing
    • Artificial Intelligence and Soft Computing - ICAISC 2004
    • Hassanien, A. E., Ali, J. M., & Hajime, N. (2004). Detection of spiculated masses in mammograms based on fuzzy image processing. In Proceedings of the 7th Int. Conference on Artificial Intelligence and Soft Computing, 3070, 1002-1007. (Pubitemid 38835952)
    • (2004) Lecture Notes in Computer Science , Issue.3070 , pp. 1002-1007
    • Hassanien, A.E.1    Ali, J.M.2    Nobuhara, H.3
  • 24
    • 84887826239 scopus 로고    scopus 로고
    • Supervised hybrid feature selection based on PSO and rough sets for medical diagnosis
    • doi:10.1016/j.cmpb.2013.10.007 PMID:24210167
    • Inbarani, H. H., Azar, A. T., & Jothi, G. (2014). Supervised hybrid feature selection based on PSO and rough sets for medical diagnosis. Computer Methods and Programs in Biomedicine, 113(1), 175-185. doi:10.1016/j.cmpb.2013. 10.007 PMID:24210167
    • (2014) Computer Methods and Programs in Biomedicine , vol.113 , Issue.1 , pp. 175-185
    • Inbarani, H.H.1    Azar, A.T.2    Jothi, G.3
  • 26
    • 79955585005 scopus 로고    scopus 로고
    • Feature subset selection using differential evolution and a statistical repair mechanism
    • doi:10.1016/j.eswa.2011.03.028
    • Khushaba, R., Al-Ani, A., & Al-Jumaily, A. (2011). Feature subset selection using differential evolution and a statistical repair mechanism. Expert Systems with Applications, 38(9), 11515-11526. doi:10.1016/j.eswa.2011. 03.028
    • (2011) Expert Systems with Applications , vol.38 , Issue.9 , pp. 11515-11526
    • Khushaba, R.1    Al-Ani, A.2    Al-Jumaily, A.3
  • 28
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • PII S000437029700043X
    • Kohavi, R., & John, G. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97(1-2), 273-324. doi:10.1016/S0004-3702(97)00043-X (Pubitemid 127401107)
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 29
    • 0034922742 scopus 로고    scopus 로고
    • Machine learning for medical diagnosis: History, state of the art and perspective
    • DOI 10.1016/S0933-3657(01)00077-X, PII S093336570100077X
    • Kononenko, I. (2001). Machine learning for medical diagnosis: History, state of the art and perspective. Artificial Intelligence in Medicine, 23(1), 89-109. doi:10.1016/S0933-3657(01)00077-X PMID:11470218 (Pubitemid 32677979)
    • (2001) Artificial Intelligence in Medicine , vol.23 , Issue.1 , pp. 89-109
    • Kononenko, I.1
  • 30
    • 36749047332 scopus 로고    scopus 로고
    • Supervised machine learning: A review of classification techniques
    • Kotsiantis, S. B. (2007). Supervised machine learning: A review of classification techniques. Informatica, 31(3), 249-268. (Pubitemid 350208045)
    • (2007) Informatica (Ljubljana) , vol.31 , Issue.3 , pp. 249-268
    • Kotsiantis, S.B.1
  • 32
    • 0032895111 scopus 로고    scopus 로고
    • Selected techniques for data mining in medicine
    • DOI 10.1016/S0933-3657(98)00062-1, PII S0933365798000621
    • Lavrac, N. (1999). Selected techniques for data mining in medicine. Artificial Intelligence in Medicine, 16(1), 3-23. doi:10.1016/S0933-3657(98) 00062-1 PMID:10225344 (Pubitemid 29166882)
    • (1999) Artificial Intelligence in Medicine , vol.16 , Issue.1 , pp. 3-23
    • Lavrac, N.1
  • 33
    • 38349055168 scopus 로고    scopus 로고
    • Gene selection using Wilcoxon rank sum test and support vector machine for cancer
    • doi:10.1007/978-3-540-74377-4-7
    • Liao, C., Li, S., & Luo, Z. (2007). Gene selection using Wilcoxon rank sum test and support vector machine for cancer. Lecture Notes in Computer Science, 4456, 57-66. doi:10.1007/978-3-540-74377-4-7
    • (2007) Lecture Notes in Computer Science , vol.4456 , pp. 57-66
    • Liao, C.1    Li, S.2    Luo, Z.3
  • 34
    • 84861200365 scopus 로고    scopus 로고
    • Data mining techniques and applications - A decade review from 2000 to 2011
    • doi:10.1016/j. eswa.2012.02.063
    • Liao, S.-H., Chu, P.-H., & Hsiao, P.-Y. (2011). Data mining techniques and applications - A decade review from 2000 to 2011. Expert Systems with Applications, 39(12), 11303-1131. doi:10.1016/j. eswa.2012.02.063
    • (2011) Expert Systems with Applications , vol.39 , Issue.12 , pp. 11303-21131
    • Liao, S.-H.1    Chu, P.-H.2    Hsiao, P.-Y.3
  • 36
    • 33947319315 scopus 로고    scopus 로고
    • A rough-set-based inference engine for ECG classification
    • DOI 10.1109/TIM.2006.884279
    • Mitra, S., Mitra, M., & Chaudhuri, B. B. (2006). A rough-set-based inference engine for ECG classification. IEEE Transactions on Instrumentation and Measurement, 55(6), 2198-2206. doi:10.1109/ TIM.2006.884279 (Pubitemid 46438204)
    • (2006) IEEE Transactions on Instrumentation and Measurement , vol.55 , Issue.6 , pp. 2198-2206
    • Mitra, S.1    Mitra, M.2    Chaudhuri, B.B.3
  • 38
    • 70350738361 scopus 로고    scopus 로고
    • Adapted variable precision rough set approach for EEG analysis
    • doi:10.1016/j. artmed.2009.07.004 PMID:19729288
    • Ningler, M., Stockmanns, G., Schneider, G., Kochs, H. D., & Kochs, E. (2009). Adapted variable precision rough set approach for EEG analysis. Artificial Intelligence in Medicine, 47(3), 239-261. doi:10.1016/j. artmed.2009.07.004 PMID:19729288
    • (2009) Artificial Intelligence in Medicine , vol.47 , Issue.3 , pp. 239-261
    • Ningler, M.1    Stockmanns, G.2    Schneider, G.3    Kochs, H.D.4    Kochs, E.5
  • 39
    • 0003858954 scopus 로고    scopus 로고
    • Unpublished doctoral dissertation, Department of Computer and Information Science, Norwegian University of Science and Technology
    • Ohrn, A. (1999). Discernibility and rough sets in medicine: Tools and applications. Unpublished doctoral dissertation, Department of Computer and Information Science, Norwegian University of Science and Technology.
    • (1999) Discernibility and Rough Sets in Medicine: Tools and Applications
    • Ohrn, A.1
  • 41
    • 0004174560 scopus 로고
    • Theoretical aspects of reasoning about data. Kluwer
    • Pawlak, Z. (1991). Rough sets. Theoretical aspects of reasoning about data. Kluwer.
    • (1991) Rough Sets
    • Pawlak, Z.1
  • 43
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy
    • DOI 10.1109/TPAMI.2005.159
    • Peng, H., Long, F., & Ding, C. (2005). Feature selection based on mutual information criteria of max-dependency, max-relevance, and min redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(8), 1226-1238. doi:10.1109/ TPAMI.2005.159 PMID:16119262 (Pubitemid 41245053)
    • (2005) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 44
    • 74649087307 scopus 로고    scopus 로고
    • A novel feature selection approach for biomedical data classification
    • doi:10.1016/j.jbi.2009.07.008 PMID:19647098
    • Peng, Y., Wu, Z., & Jiang, J. (2010). A novel feature selection approach for biomedical data classification. Journal of Biomedical Informatics, 43(1), 15-23. doi:10.1016/j.jbi.2009.07.008 PMID:19647098
    • (2010) Journal of Biomedical Informatics , vol.43 , Issue.1 , pp. 15-23
    • Peng, Y.1    Wu, Z.2    Jiang, J.3
  • 45
    • 1642351915 scopus 로고    scopus 로고
    • Mathematical foundations. Physica-Verlag/A Springer-Verlag Company
    • Polkowski, L. (2003). Rough sets. Mathematical foundations. Physica-Verlag/A Springer-Verlag Company.
    • (2003) Rough Sets
    • Polkowski, L.1
  • 46
    • 1042280280 scopus 로고    scopus 로고
    • Feature selection of stabilometric parameters based on principal component analysis
    • DOI 10.1007/BF02351013
    • Rocchi, L., Chiari, L., & Cappello, A. (2004). Feature selection of stabilometric parameters based on principal component analysis. Medical & Biological Engineering & Computing, 42(1), 71-79. doi:10.1007/BF02351013 PMID:14977225 (Pubitemid 38196280)
    • (2004) Medical and Biological Engineering and Computing , vol.42 , Issue.1 , pp. 71-79
    • Rocchi, L.1    Chiari, L.2    Cappello, A.3
  • 47
    • 31144448615 scopus 로고    scopus 로고
    • Using simulated annealing to optimize feature selection problem in marketing applications
    • doi:10.1016/j. ejor.2004.09.010
    • Ronen, M., & Jacob, Z. (2006). Using simulated annealing to optimize feature selection problem in marketing applications. European Journal of Operational Research, 171(3), 842-858. doi:10.1016/j. ejor.2004.09.010
    • (2006) European Journal of Operational Research , vol.171 , Issue.3 , pp. 842-858
    • Ronen, M.1    Jacob, Z.2
  • 48
    • 84861186437 scopus 로고    scopus 로고
    • Fast feature selection aimed at high-dimensional data via hybrid-sequential-ranked searches
    • doi:10.1016/j.eswa.2012.03.061
    • Ruiz, R., Riquelme, J. C., Aguilar-Ruiz, J. S., & Garcia-Torres, M. (2012). Fast feature selection aimed at high-dimensional data via hybrid-sequential-ranked searches. Expert Systems with Applications, 39(12), 11094-11102. doi:10.1016/j.eswa.2012.03.061
    • (2012) Expert Systems with Applications , vol.39 , Issue.12 , pp. 11094-11102
    • Ruiz, R.1    Riquelme, J.C.2    Aguilar-Ruiz, J.S.3    Garcia-Torres, M.4
  • 49
    • 79953272930 scopus 로고    scopus 로고
    • A novel set reduct algorithm for medical domain based on bee colony optimization
    • Suguna, N., & Thanushkodi, K. (2010). A novel set reduct algorithm for medical domain based on bee colony optimization. Journal Of Computing, 2(6), 49-54.
    • (2010) Journal of Computing , vol.2 , Issue.6 , pp. 49-54
    • Suguna, N.1    Thanushkodi, K.2
  • 50
    • 0037332841 scopus 로고    scopus 로고
    • Rough set methods in feature selection and recognition
    • DOI 10.1016/S0167-8655(02)00196-4, PII S0167865502001964
    • Swiniarski, R. , & Skowron, A. (2003). Rough set methods in feature selection and recognition. Pattern Recognition Letters, 24, 833-849. doi:10.1016/ S0167-8655(02)00196-4 (Pubitemid 35391801)
    • (2003) Pattern Recognition Letters , vol.24 , Issue.6 , pp. 833-849
    • Swiniarski, R.W.1    Skowron, A.2
  • 52
    • 59349101361 scopus 로고    scopus 로고
    • Feature selection in bankruptcy prediction
    • doi:10.1016/j.knosys.2008.08.002
    • Tsai, C.-F. (2009). Feature selection in bankruptcy prediction. Knowledge-Based Systems, 22(2), 120-127. doi:10.1016/j.knosys.2008.08.002
    • (2009) Knowledge-Based Systems , vol.22 , Issue.2 , pp. 120-127
    • Tsai, C.-F.1
  • 53
    • 2342616187 scopus 로고    scopus 로고
    • Mining diagnostic rules from clinical databases using rough sets and medical diagnostic model
    • Tsumoto, S. (2004). Mining diagnostic rules from clinical databases using rough sets and medical diagnostic model. Information Sciences, an International Journal, 162(2), 65-80.
    • (2004) Information Sciences, An International Journal , vol.162 , Issue.2 , pp. 65-80
    • Tsumoto, S.1
  • 54
    • 79851508432 scopus 로고    scopus 로고
    • A sparse nearest mean classifier for high dimensional multi-class problems
    • doi:10.1016/j.patrec.2011.01.011
    • Veenman, C., & Bolck, A. (2011). A sparse nearest mean classifier for high dimensional multi-class problems. Pattern Recognition Letters, 32(6), 854-859. doi:10.1016/j.patrec.2011.01.011
    • (2011) Pattern Recognition Letters , vol.32 , Issue.6 , pp. 854-859
    • Veenman, C.1    Bolck, A.2
  • 56
    • 33845523839 scopus 로고    scopus 로고
    • Feature selection based on rough sets and particle swarm optimization
    • DOI 10.1016/j.patrec.2006.09.003, PII S0167865506002327
    • Wang, X., Yang, J., Teng, X., Xia, W., & Richard, J. (2007). Feature selection based on rough sets and particle swarm optimization. Pattern Recognition Letters, 28(4), 459-471. doi:10.1016/j. patrec.2006.09.003 (Pubitemid 44920436)
    • (2007) Pattern Recognition Letters , vol.28 , Issue.4 , pp. 459-471
    • Wang, X.1    Yang, J.2    Teng, X.3    Xia, W.4    Jensen, R.5
  • 57
    • 9244223065 scopus 로고    scopus 로고
    • A GA-based methodology to determine an optimal curriculum for schools
    • doi:10.1016/j.eswa.2004.08.015
    • Wang, Y. Z. (2005). A GA-based methodology to determine an optimal curriculum for schools. Expert Systems with Applications, 28(1), 163-174. doi:10.1016/j.eswa.2004.08.015
    • (2005) Expert Systems with Applications , vol.28 , Issue.1 , pp. 163-174
    • Wang, Y.Z.1
  • 58
    • 22144450689 scopus 로고    scopus 로고
    • Targeting customers via discovery knowledge for the insurance industry
    • DOI 10.1016/j.eswa.2005.04.002, PII S0957417405000552
    • Wu, C.-H., Kao, S.-C., Su, Y.-Y., & Wu, C.-C. (2005). Targeting customers via discovery knowledge for the insurance industry. Expert Systems with Applications. Expert Systems with Applications, 29(2), 291-299. doi:10.1016/j.eswa.2005.04.002 (Pubitemid 40970639)
    • (2005) Expert Systems with Applications , vol.29 , Issue.2 , pp. 291-299
    • Wu, C.-H.1    Kao, S.-C.2    Su, Y.-Y.3    Wu, C.-C.4
  • 60
    • 25144492516 scopus 로고    scopus 로고
    • Efficient feature selection via analysis of relevance and redundancy
    • Yu, L., & Liu, H. (2004). Efficient feature selection via analysis of relevance and redundancy. Journal of Machine Learning Research, 5, 1205-1224.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 1205-1224
    • Yu, L.1    Liu, H.2
  • 61
    • 60849139385 scopus 로고    scopus 로고
    • A rough set-based multiple criteria linear programming approach for the medical diagnosis and prognosis
    • doi:10.1016/j.eswa.2008.11.007
    • Zhang, Z., Shi, Y., & Gao, G. (2009). A rough set-based multiple criteria linear programming approach for the medical diagnosis and prognosis. Expert Systems with Applications, 36, 8932-8937. doi:10.1016/j.eswa.2008.11.007
    • (2009) Expert Systems with Applications , vol.36 , pp. 8932-8937
    • Zhang, Z.1    Shi, Y.2    Gao, G.3
  • 62
    • 44649111202 scopus 로고    scopus 로고
    • Locality sensitive semi-supervised feature selection
    • doi:10.1016/j.neucom.2007.06.014
    • Zhao, J., Lu, K., & He, X. (2008). Locality sensitive semi-supervised feature selection. Neurocomputing, 71(10-12), 1842-1849. doi:10.1016/j.neucom. 2007.06.014
    • (2008) Neurocomputing , vol.71 , Issue.10-12 , pp. 1842-1849
    • Zhao, J.1    Lu, K.2    He, X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.