-
1
-
-
0242498488
-
An analysis of four missing data treatment methods for supervised learning
-
doi:10.1080/713827181
-
Batista, G., & Monrad, M. C. (2003). An analysis of four missing data treatment methods for supervised learning. Applied Artificial Intelligence, 17(5-6), 519-533. doi:10.1080/713827181
-
(2003)
Applied Artificial Intelligence
, vol.17
, Issue.5-6
, pp. 519-533
-
-
Batista, G.1
Monrad, M.C.2
-
2
-
-
61349133540
-
Feature selection for high-dimensional data - A Pearson redundancy based filter
-
doi:10.1007/978-3-540-75175-5-30
-
Biesiada, J., & Duch, W. (2008). Feature selection for high-dimensional data-a Pearson redundancy based filter. Advances in Soft Computing, 45, 242-249. doi:10.1007/978-3-540-75175-5-30
-
(2008)
Advances in Soft Computing
, vol.45
, pp. 242-249
-
-
Biesiada, J.1
Duch, W.2
-
3
-
-
0002823280
-
On changing continuous attributes into ordered discrete attributes into ordered discrete attributes
-
Y. Kodratoff (Ed.), Berlin, Germany: Springer-Verlag
-
Catlett, J. (1991). On changing continuous attributes into ordered discrete attributes into ordered discrete attributes. In Y. Kodratoff (Ed.), Proceedings of the European Working Session on Learning (pp. 164- 178). Berlin, Germany: Springer-Verlag.
-
(1991)
Proceedings of the European Working Session on Learning
, pp. 164-178
-
-
Catlett, J.1
-
4
-
-
78650802610
-
Rough set approach to feature based on power set tree
-
doi:10.1016/j.knosys.2010.09.004
-
Chen, Y., Miao, D., Wang, R., & Wu, K. (2011). Rough set approach to feature based on power set tree. Knowledge-Based Systems, 24(2), 275-281. doi:10.1016/j.knosys.2010.09.004
-
(2011)
Knowledge-Based Systems
, vol.24
, Issue.2
, pp. 275-281
-
-
Chen, Y.1
Miao, D.2
Wang, R.3
Wu, K.4
-
5
-
-
84951575968
-
Information synthesis based on hierarchical entropy discretization
-
doi:10.1080/09528139008953718
-
Chiu, D. K. Y., Cheun, B., & Wong, A. K. C. (1990). Information synthesis based on hierarchical entropy discretization. Journal of Experimental & Theoretical Artificial Intelligence, 2, 117-129. doi:10.1080/ 09528139008953718
-
(1990)
Journal of Experimental & Theoretical Artificial Intelligence
, vol.2
, pp. 117-129
-
-
Chiu, D.K.Y.1
Cheun, B.2
Wong, A.K.C.3
-
6
-
-
0036756222
-
Uniqueness of medical data mining
-
DOI 10.1016/S0933-3657(02)00049-0, PII S0933365702000490
-
Cios, K. J., & Mooree, G. W. (2002). Uniqueness of medical data mining. Artificial Intelligence in Medicine, 26(1-2), 1-24. doi:10.1016/S0933- 3657(02)00049-0 PMID:12234714 (Pubitemid 35299395)
-
(2002)
Artificial Intelligence in Medicine
, vol.26
, Issue.1-2
, pp. 1-24
-
-
Cios, K.J.1
William Moore, G.2
-
7
-
-
0001311153
-
Data mining methods for knowledge discovery
-
Cios, K. J., Pedrycz, W., & Swiniarki, R. W. (1998). Data mining methods for knowledge discovery. Neural Networks. IEEE Transactions, 9(6), 1533-1534.
-
(1998)
Neural Networks. IEEE Transactions
, vol.9
, Issue.6
, pp. 1533-1534
-
-
Cios, K.J.1
Pedrycz, W.2
Swiniarki, R.W.3
-
8
-
-
68949149397
-
Feature subset selection for blood pressure classification using orthogonal forward selection
-
Colak, S., & Isik, C. (2003). Feature subset selection for blood pressure classification using orthogonal forward selection. In Proceedings of 2003 IEEE 29th Annual Bioengineering Conference (pp. 122-123).
-
(2003)
Proceedings of 2003 IEEE 29th Annual Bioengineering Conference
, pp. 122-123
-
-
Colak, S.1
Isik, C.2
-
9
-
-
0035452299
-
Backward sequential elimination for sparse vector subset selection
-
DOI 10.1016/S0165-1684(01)00064-0, PII S0165168401000640
-
Cotter, S. F., Kreutz-Delgado, K., & Rao, B. D. (2001). Backward sequential elimination for sparse vector selection. Signal Processing, 81(9), 1849-1864. doi:10.1016/S0165-1684(01)00064-0 (Pubitemid 32723681)
-
(2001)
Signal Processing
, vol.81
, Issue.9
, pp. 1849-1864
-
-
Cotter, S.F.1
Kreutz-Delgado, K.2
Rao, B.D.3
-
10
-
-
0342561563
-
Rough sets in hybrid methods for pattern recognition
-
DOI 10.1002/1098-111X(200102)16:2<149::AID-INT10>3.0.CO;2-S
-
Cyran, K. A., & Mrózek, A. (2001). Rough sets in hybrid methods for pattern recognition. International Journal of Intelligent Systems, 16(2), 149-168. doi:10.1002/1098-111X(200102)16:2<149::AID-INT10>3.0.CO;2- S (Pubitemid 32168477)
-
(2001)
International Journal of Intelligent Systems
, vol.16
, Issue.2
, pp. 149-168
-
-
Cyran, K.A.1
Mrozek, A.2
-
11
-
-
0013326060
-
Feature selection for classification
-
doi:10.1016/S1088-467X(97)00008-5
-
Dash, M., & Liu, H. (1997). Feature selection for classification. Intelligent Data Analysis, 1(3), 131-156. doi:10.1016/S1088-467X(97)00008-5
-
(1997)
Intelligent Data Analysis
, vol.1
, Issue.3
, pp. 131-156
-
-
Dash, M.1
Liu, H.2
-
12
-
-
0242302657
-
Consistency-based search in feature selection
-
doi:10.1016/S0004-3702(03)00079-1
-
Dash, M., & Liu, H. (2003). Consistency-based search in feature selection. Artificial Intelligence, 151(1-2), 155-176. doi:10.1016/S0004- 3702(03)00079-1
-
(2003)
Artificial Intelligence
, vol.151
, Issue.1-2
, pp. 155-176
-
-
Dash, M.1
Liu, H.2
-
13
-
-
84873391122
-
Rough sets and genetic algorithms: A hybrid approach to breast cancer classification
-
Elshazly, H. I., Ghali, N. I., Korany, A. M. E., Hassanien, A. E. (2012). Rough sets and genetic algorithms: A hybrid approach to breast cancer classification. Information and Communication Technologies (WICT), 260-265.
-
(2012)
Information and Communication Technologies (WICT), 260-265
-
-
Elshazly, H.I.1
Ghali, N.I.2
Korany, A.M.E.3
Hassanien, A.E.4
-
15
-
-
79951581216
-
-
ACM Press
-
Esseghir, M., Liu, H., Motoda, H., Setiono, R., & Zhao, Z. (2010). Effective wrapper-filter hybridization through GRASP schemata. ACM Press, 10, 45-54.
-
(2010)
Effective Wrapper-filter Hybridization Through GRASP Schemata
, vol.10
, pp. 45-54
-
-
Esseghir, M.1
Liu, H.2
Motoda, H.3
Setiono, R.4
Zhao, Z.5
-
17
-
-
38349111002
-
Evolutionary algorithms for data mining
-
O. Maimon, & L. Rokach (Eds.), Springer. doi:10.1007/0-387-25465-X-20
-
Freitas, A. A. (2005). Evolutionary algorithms for data mining. In O. Maimon, & L. Rokach (Eds.), The data mining and knowledge discovery handbook (pp. 435-467). Springer. doi:10.1007/0-387-25465-X-20
-
(2005)
The Data Mining and Knowledge Discovery Handbook
, pp. 435-467
-
-
Freitas, A.A.1
-
18
-
-
33745891586
-
-
Springer-Verlag Berlin Heidelberg. doi:10.1007/978-3-540-35488-8
-
Guyon, I., Gunn, S., Nikravesh, M., & Zadeh, L. A. (2006). Feature extraction foundations and applications. Springer-Verlag Berlin Heidelberg. doi:10.1007/978-3-540-35488-8
-
(2006)
Feature Extraction Foundations and Applications
-
-
Guyon, I.1
Gunn, S.2
Nikravesh, M.3
Zadeh, L.A.4
-
20
-
-
84885228263
-
Rough sets in medical informatics applications
-
doi:10.1007/978-3-540-89619-7-3
-
Hassanien, A. E., Abraham, A., Peters, J. F., & Schaefer, G. (2009). Rough sets in medical informatics applications. Applications of Soft Computing Advances in Intelligent and Soft Computing, 58, 23-30. doi:10.1007/978-3-540- 89619-7-3
-
(2009)
Applications of Soft Computing Advances in Intelligent and Soft Computing
, vol.58
, pp. 23-30
-
-
Hassanien, A.E.1
Abraham, A.2
Peters, J.F.3
Schaefer, G.4
-
21
-
-
9444268164
-
Detection of Spiculated Masses in Mammograms Based on Fuzzy Image Processing
-
Artificial Intelligence and Soft Computing - ICAISC 2004
-
Hassanien, A. E., Ali, J. M., & Hajime, N. (2004). Detection of spiculated masses in mammograms based on fuzzy image processing. In Proceedings of the 7th Int. Conference on Artificial Intelligence and Soft Computing, 3070, 1002-1007. (Pubitemid 38835952)
-
(2004)
Lecture Notes in Computer Science
, Issue.3070
, pp. 1002-1007
-
-
Hassanien, A.E.1
Ali, J.M.2
Nobuhara, H.3
-
22
-
-
80052819488
-
-
IGI Global
-
Hassanien, A. E., Suraj, Z., Slezak, D., & Lingras, P. (2008). Rough computing: theories, technologies and applications. IGI Global.
-
(2008)
Rough Computing: Theories, Technologies and Applications
-
-
Hassanien, A.E.1
Suraj, Z.2
Slezak, D.3
Lingras, P.4
-
23
-
-
38049045604
-
Visualization of rough set decision rules for medical diagnosis systems
-
Ilczuk, G., & Wakulicz-Deja, A. (2007). Visualization of rough set decision rules for medical diagnosis systems. Rough Sets, Fuzzy Sets, Data Mining and Granular Computing Lecture Notes in Computer Science, 4482, 371-378.
-
(2007)
Rough Sets, Fuzzy Sets, Data Mining and Granular Computing Lecture Notes in Computer Science
, vol.4482
, pp. 371-378
-
-
Ilczuk, G.1
Wakulicz-Deja, A.2
-
24
-
-
84887826239
-
Supervised hybrid feature selection based on PSO and rough sets for medical diagnosis
-
doi:10.1016/j.cmpb.2013.10.007 PMID:24210167
-
Inbarani, H. H., Azar, A. T., & Jothi, G. (2014). Supervised hybrid feature selection based on PSO and rough sets for medical diagnosis. Computer Methods and Programs in Biomedicine, 113(1), 175-185. doi:10.1016/j.cmpb.2013. 10.007 PMID:24210167
-
(2014)
Computer Methods and Programs in Biomedicine
, vol.113
, Issue.1
, pp. 175-185
-
-
Inbarani, H.H.1
Azar, A.T.2
Jothi, G.3
-
25
-
-
33745771538
-
Machine learning techniques and chi-square feature selection for cancer classification using SAGE gene expression profiles
-
DOI 10.1007/11691730-11, Data Mining for Biomedical Applications - PAKDD 2006 Workshop, BioDM 2006, Proceedings LNBI
-
Jin, X., Xu, A., Bie, R., & Guo, P. (2006). Machine learning techniques and chi-square feature selection for cancer classification using SAGE gene expression profiles. Lecture Notes in Computer Science, 3916, 106-115. doi:10.1007/11691730-11 (Pubitemid 44021369)
-
(2006)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
, vol.3916
, pp. 106-115
-
-
Jin, X.1
Xu, A.2
Bie, R.3
Guo, P.4
-
26
-
-
79955585005
-
Feature subset selection using differential evolution and a statistical repair mechanism
-
doi:10.1016/j.eswa.2011.03.028
-
Khushaba, R., Al-Ani, A., & Al-Jumaily, A. (2011). Feature subset selection using differential evolution and a statistical repair mechanism. Expert Systems with Applications, 38(9), 11515-11526. doi:10.1016/j.eswa.2011. 03.028
-
(2011)
Expert Systems with Applications
, vol.38
, Issue.9
, pp. 11515-11526
-
-
Khushaba, R.1
Al-Ani, A.2
Al-Jumaily, A.3
-
27
-
-
32844468138
-
Rough sets based medical image segmentation with connectedness
-
Image Processing, Biomedicine, Multimedia, Financial Engineering and Manufacturing - International Forum on Multimedia Image Processing, IFMIP - Proceedings of the Sixth Biannual World Automation Cong
-
Kobashi, S., Kondo, K., & Hata, Y. (2004). Rough sets based medical image segmentation with connectedness. In Proceedings of the 5th Int. Forum on Multimedia and Image Processing (pp. 197-202). (Pubitemid 43252383)
-
(2004)
Image Processing, Biomedicine, Multimedia, Financial Engineering and Manufacturing - Proceedings of the Sixth Biannual World Automation Congress
, pp. 197-202
-
-
Kobashi, S.1
Kondo, K.2
Hata, Y.3
-
28
-
-
0031381525
-
Wrappers for feature subset selection
-
PII S000437029700043X
-
Kohavi, R., & John, G. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97(1-2), 273-324. doi:10.1016/S0004-3702(97)00043-X (Pubitemid 127401107)
-
(1997)
Artificial Intelligence
, vol.97
, Issue.1-2
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
29
-
-
0034922742
-
Machine learning for medical diagnosis: History, state of the art and perspective
-
DOI 10.1016/S0933-3657(01)00077-X, PII S093336570100077X
-
Kononenko, I. (2001). Machine learning for medical diagnosis: History, state of the art and perspective. Artificial Intelligence in Medicine, 23(1), 89-109. doi:10.1016/S0933-3657(01)00077-X PMID:11470218 (Pubitemid 32677979)
-
(2001)
Artificial Intelligence in Medicine
, vol.23
, Issue.1
, pp. 89-109
-
-
Kononenko, I.1
-
30
-
-
36749047332
-
Supervised machine learning: A review of classification techniques
-
Kotsiantis, S. B. (2007). Supervised machine learning: A review of classification techniques. Informatica, 31(3), 249-268. (Pubitemid 350208045)
-
(2007)
Informatica (Ljubljana)
, vol.31
, Issue.3
, pp. 249-268
-
-
Kotsiantis, S.B.1
-
31
-
-
84874373575
-
Feature selection methods and algorithms
-
Ladha, L., & Deepa, T. (2011). Feature selection methods and algorithms. Int. [IJCSE]. Journal on Computer Science and Engineering, 3(5), 1787-1797.
-
(2011)
Int. [IJCSE]. Journal on Computer Science and Engineering
, vol.3
, Issue.5
, pp. 1787-1797
-
-
Ladha, L.1
Deepa, T.2
-
32
-
-
0032895111
-
Selected techniques for data mining in medicine
-
DOI 10.1016/S0933-3657(98)00062-1, PII S0933365798000621
-
Lavrac, N. (1999). Selected techniques for data mining in medicine. Artificial Intelligence in Medicine, 16(1), 3-23. doi:10.1016/S0933-3657(98) 00062-1 PMID:10225344 (Pubitemid 29166882)
-
(1999)
Artificial Intelligence in Medicine
, vol.16
, Issue.1
, pp. 3-23
-
-
Lavrac, N.1
-
33
-
-
38349055168
-
Gene selection using Wilcoxon rank sum test and support vector machine for cancer
-
doi:10.1007/978-3-540-74377-4-7
-
Liao, C., Li, S., & Luo, Z. (2007). Gene selection using Wilcoxon rank sum test and support vector machine for cancer. Lecture Notes in Computer Science, 4456, 57-66. doi:10.1007/978-3-540-74377-4-7
-
(2007)
Lecture Notes in Computer Science
, vol.4456
, pp. 57-66
-
-
Liao, C.1
Li, S.2
Luo, Z.3
-
34
-
-
84861200365
-
Data mining techniques and applications - A decade review from 2000 to 2011
-
doi:10.1016/j. eswa.2012.02.063
-
Liao, S.-H., Chu, P.-H., & Hsiao, P.-Y. (2011). Data mining techniques and applications - A decade review from 2000 to 2011. Expert Systems with Applications, 39(12), 11303-1131. doi:10.1016/j. eswa.2012.02.063
-
(2011)
Expert Systems with Applications
, vol.39
, Issue.12
, pp. 11303-21131
-
-
Liao, S.-H.1
Chu, P.-H.2
Hsiao, P.-Y.3
-
36
-
-
33947319315
-
A rough-set-based inference engine for ECG classification
-
DOI 10.1109/TIM.2006.884279
-
Mitra, S., Mitra, M., & Chaudhuri, B. B. (2006). A rough-set-based inference engine for ECG classification. IEEE Transactions on Instrumentation and Measurement, 55(6), 2198-2206. doi:10.1109/ TIM.2006.884279 (Pubitemid 46438204)
-
(2006)
IEEE Transactions on Instrumentation and Measurement
, vol.55
, Issue.6
, pp. 2198-2206
-
-
Mitra, S.1
Mitra, M.2
Chaudhuri, B.B.3
-
38
-
-
70350738361
-
Adapted variable precision rough set approach for EEG analysis
-
doi:10.1016/j. artmed.2009.07.004 PMID:19729288
-
Ningler, M., Stockmanns, G., Schneider, G., Kochs, H. D., & Kochs, E. (2009). Adapted variable precision rough set approach for EEG analysis. Artificial Intelligence in Medicine, 47(3), 239-261. doi:10.1016/j. artmed.2009.07.004 PMID:19729288
-
(2009)
Artificial Intelligence in Medicine
, vol.47
, Issue.3
, pp. 239-261
-
-
Ningler, M.1
Stockmanns, G.2
Schneider, G.3
Kochs, H.D.4
Kochs, E.5
-
39
-
-
0003858954
-
-
Unpublished doctoral dissertation, Department of Computer and Information Science, Norwegian University of Science and Technology
-
Ohrn, A. (1999). Discernibility and rough sets in medicine: Tools and applications. Unpublished doctoral dissertation, Department of Computer and Information Science, Norwegian University of Science and Technology.
-
(1999)
Discernibility and Rough Sets in Medicine: Tools and Applications
-
-
Ohrn, A.1
-
41
-
-
0004174560
-
-
Theoretical aspects of reasoning about data. Kluwer
-
Pawlak, Z. (1991). Rough sets. Theoretical aspects of reasoning about data. Kluwer.
-
(1991)
Rough Sets
-
-
Pawlak, Z.1
-
42
-
-
0029405527
-
Rough sets
-
doi:10.1145/219717.219791
-
Pawlak, Z., Grzymala-Busse, J., Slowinski, R., & Ziarko, W. (1995). Rough sets. Communications of the ACM, 38(11), 89-95. doi:10.1145/219717.219791
-
(1995)
Communications of the ACM
, vol.38
, Issue.11
, pp. 89-95
-
-
Pawlak, Z.1
Grzymala-Busse, J.2
Slowinski, R.3
Ziarko, W.4
-
43
-
-
24344458137
-
Feature selection based on mutual information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy
-
DOI 10.1109/TPAMI.2005.159
-
Peng, H., Long, F., & Ding, C. (2005). Feature selection based on mutual information criteria of max-dependency, max-relevance, and min redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(8), 1226-1238. doi:10.1109/ TPAMI.2005.159 PMID:16119262 (Pubitemid 41245053)
-
(2005)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.27
, Issue.8
, pp. 1226-1238
-
-
Peng, H.1
Long, F.2
Ding, C.3
-
44
-
-
74649087307
-
A novel feature selection approach for biomedical data classification
-
doi:10.1016/j.jbi.2009.07.008 PMID:19647098
-
Peng, Y., Wu, Z., & Jiang, J. (2010). A novel feature selection approach for biomedical data classification. Journal of Biomedical Informatics, 43(1), 15-23. doi:10.1016/j.jbi.2009.07.008 PMID:19647098
-
(2010)
Journal of Biomedical Informatics
, vol.43
, Issue.1
, pp. 15-23
-
-
Peng, Y.1
Wu, Z.2
Jiang, J.3
-
45
-
-
1642351915
-
-
Mathematical foundations. Physica-Verlag/A Springer-Verlag Company
-
Polkowski, L. (2003). Rough sets. Mathematical foundations. Physica-Verlag/A Springer-Verlag Company.
-
(2003)
Rough Sets
-
-
Polkowski, L.1
-
46
-
-
1042280280
-
Feature selection of stabilometric parameters based on principal component analysis
-
DOI 10.1007/BF02351013
-
Rocchi, L., Chiari, L., & Cappello, A. (2004). Feature selection of stabilometric parameters based on principal component analysis. Medical & Biological Engineering & Computing, 42(1), 71-79. doi:10.1007/BF02351013 PMID:14977225 (Pubitemid 38196280)
-
(2004)
Medical and Biological Engineering and Computing
, vol.42
, Issue.1
, pp. 71-79
-
-
Rocchi, L.1
Chiari, L.2
Cappello, A.3
-
47
-
-
31144448615
-
Using simulated annealing to optimize feature selection problem in marketing applications
-
doi:10.1016/j. ejor.2004.09.010
-
Ronen, M., & Jacob, Z. (2006). Using simulated annealing to optimize feature selection problem in marketing applications. European Journal of Operational Research, 171(3), 842-858. doi:10.1016/j. ejor.2004.09.010
-
(2006)
European Journal of Operational Research
, vol.171
, Issue.3
, pp. 842-858
-
-
Ronen, M.1
Jacob, Z.2
-
48
-
-
84861186437
-
Fast feature selection aimed at high-dimensional data via hybrid-sequential-ranked searches
-
doi:10.1016/j.eswa.2012.03.061
-
Ruiz, R., Riquelme, J. C., Aguilar-Ruiz, J. S., & Garcia-Torres, M. (2012). Fast feature selection aimed at high-dimensional data via hybrid-sequential-ranked searches. Expert Systems with Applications, 39(12), 11094-11102. doi:10.1016/j.eswa.2012.03.061
-
(2012)
Expert Systems with Applications
, vol.39
, Issue.12
, pp. 11094-11102
-
-
Ruiz, R.1
Riquelme, J.C.2
Aguilar-Ruiz, J.S.3
Garcia-Torres, M.4
-
49
-
-
79953272930
-
A novel set reduct algorithm for medical domain based on bee colony optimization
-
Suguna, N., & Thanushkodi, K. (2010). A novel set reduct algorithm for medical domain based on bee colony optimization. Journal Of Computing, 2(6), 49-54.
-
(2010)
Journal of Computing
, vol.2
, Issue.6
, pp. 49-54
-
-
Suguna, N.1
Thanushkodi, K.2
-
50
-
-
0037332841
-
Rough set methods in feature selection and recognition
-
DOI 10.1016/S0167-8655(02)00196-4, PII S0167865502001964
-
Swiniarski, R. , & Skowron, A. (2003). Rough set methods in feature selection and recognition. Pattern Recognition Letters, 24, 833-849. doi:10.1016/ S0167-8655(02)00196-4 (Pubitemid 35391801)
-
(2003)
Pattern Recognition Letters
, vol.24
, Issue.6
, pp. 833-849
-
-
Swiniarski, R.W.1
Skowron, A.2
-
51
-
-
70449371070
-
Independent component analysis, princpal component analysis and rough sets in hybrid mammogram classification
-
Las Vegas, NV
-
Swiniarski, R. W., Lim, H. J., Shin, Y. H., & Skowron, A. (2006). Independent component analysis, princpal component analysis and rough sets in hybrid mammogram classification. In Proceedings of the International Conference on Image Processing, Computer Vision, and Pattern Recognition (IPCV '06), Las Vegas, NV (Vol. 2, pp. 640-645).
-
(2006)
Proceedings of the International Conference on Image Processing, Computer Vision, and Pattern Recognition (IPCV '06)
, vol.2
, pp. 640-645
-
-
Swiniarski, R.W.1
Lim, H.J.2
Shin, Y.H.3
Skowron, A.4
-
52
-
-
59349101361
-
Feature selection in bankruptcy prediction
-
doi:10.1016/j.knosys.2008.08.002
-
Tsai, C.-F. (2009). Feature selection in bankruptcy prediction. Knowledge-Based Systems, 22(2), 120-127. doi:10.1016/j.knosys.2008.08.002
-
(2009)
Knowledge-Based Systems
, vol.22
, Issue.2
, pp. 120-127
-
-
Tsai, C.-F.1
-
53
-
-
2342616187
-
Mining diagnostic rules from clinical databases using rough sets and medical diagnostic model
-
Tsumoto, S. (2004). Mining diagnostic rules from clinical databases using rough sets and medical diagnostic model. Information Sciences, an International Journal, 162(2), 65-80.
-
(2004)
Information Sciences, An International Journal
, vol.162
, Issue.2
, pp. 65-80
-
-
Tsumoto, S.1
-
54
-
-
79851508432
-
A sparse nearest mean classifier for high dimensional multi-class problems
-
doi:10.1016/j.patrec.2011.01.011
-
Veenman, C., & Bolck, A. (2011). A sparse nearest mean classifier for high dimensional multi-class problems. Pattern Recognition Letters, 32(6), 854-859. doi:10.1016/j.patrec.2011.01.011
-
(2011)
Pattern Recognition Letters
, vol.32
, Issue.6
, pp. 854-859
-
-
Veenman, C.1
Bolck, A.2
-
55
-
-
37249055074
-
Ant colony optimization applied to feature selection in fuzzy classifiers
-
Foundations of Fuzzy Logic and Soft Computing - 12th International Fuzzy Systems Association World Congress, IFSA 2007, Proceedings LNAI
-
Vieira, S. M., Sousa, M. C., & Runkler, T. A. (2007). Ant colony optimization applied to feature selection in fuzzy classifiers. Lecture Notes in Computer Science, 4529, 778-788. doi:10.1007/978-3-540- 72950-1-76 (Pubitemid 350270032)
-
(2007)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
, vol.4529
, pp. 778-788
-
-
Vieira, S.M.1
Sousa, J.M.C.2
Runkler, T.A.3
-
56
-
-
33845523839
-
Feature selection based on rough sets and particle swarm optimization
-
DOI 10.1016/j.patrec.2006.09.003, PII S0167865506002327
-
Wang, X., Yang, J., Teng, X., Xia, W., & Richard, J. (2007). Feature selection based on rough sets and particle swarm optimization. Pattern Recognition Letters, 28(4), 459-471. doi:10.1016/j. patrec.2006.09.003 (Pubitemid 44920436)
-
(2007)
Pattern Recognition Letters
, vol.28
, Issue.4
, pp. 459-471
-
-
Wang, X.1
Yang, J.2
Teng, X.3
Xia, W.4
Jensen, R.5
-
57
-
-
9244223065
-
A GA-based methodology to determine an optimal curriculum for schools
-
doi:10.1016/j.eswa.2004.08.015
-
Wang, Y. Z. (2005). A GA-based methodology to determine an optimal curriculum for schools. Expert Systems with Applications, 28(1), 163-174. doi:10.1016/j.eswa.2004.08.015
-
(2005)
Expert Systems with Applications
, vol.28
, Issue.1
, pp. 163-174
-
-
Wang, Y.Z.1
-
58
-
-
22144450689
-
Targeting customers via discovery knowledge for the insurance industry
-
DOI 10.1016/j.eswa.2005.04.002, PII S0957417405000552
-
Wu, C.-H., Kao, S.-C., Su, Y.-Y., & Wu, C.-C. (2005). Targeting customers via discovery knowledge for the insurance industry. Expert Systems with Applications. Expert Systems with Applications, 29(2), 291-299. doi:10.1016/j.eswa.2005.04.002 (Pubitemid 40970639)
-
(2005)
Expert Systems with Applications
, vol.29
, Issue.2
, pp. 291-299
-
-
Wu, C.-H.1
Kao, S.-C.2
Su, Y.-Y.3
Wu, C.-C.4
-
59
-
-
0032028297
-
Feature subset selection using a genetic algorithm
-
Yang, J., & Honavar, V. (1998). Feature subset selection using a genetic algorithm. IEEE Intelligent Systems and their Applications, 13(2), 44-49.
-
(1998)
IEEE Intelligent Systems and Their Applications
, vol.13
, Issue.2
, pp. 44-49
-
-
Yang, J.1
Honavar, V.2
-
60
-
-
25144492516
-
Efficient feature selection via analysis of relevance and redundancy
-
Yu, L., & Liu, H. (2004). Efficient feature selection via analysis of relevance and redundancy. Journal of Machine Learning Research, 5, 1205-1224.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 1205-1224
-
-
Yu, L.1
Liu, H.2
-
61
-
-
60849139385
-
A rough set-based multiple criteria linear programming approach for the medical diagnosis and prognosis
-
doi:10.1016/j.eswa.2008.11.007
-
Zhang, Z., Shi, Y., & Gao, G. (2009). A rough set-based multiple criteria linear programming approach for the medical diagnosis and prognosis. Expert Systems with Applications, 36, 8932-8937. doi:10.1016/j.eswa.2008.11.007
-
(2009)
Expert Systems with Applications
, vol.36
, pp. 8932-8937
-
-
Zhang, Z.1
Shi, Y.2
Gao, G.3
-
62
-
-
44649111202
-
Locality sensitive semi-supervised feature selection
-
doi:10.1016/j.neucom.2007.06.014
-
Zhao, J., Lu, K., & He, X. (2008). Locality sensitive semi-supervised feature selection. Neurocomputing, 71(10-12), 1842-1849. doi:10.1016/j.neucom. 2007.06.014
-
(2008)
Neurocomputing
, vol.71
, Issue.10-12
, pp. 1842-1849
-
-
Zhao, J.1
Lu, K.2
He, X.3
|