메뉴 건너뛰기




Volumn 47, Issue 3, 2009, Pages 239-261

Adapted variable precision rough set approach for EEG analysis

Author keywords

Anesthesia; Classification with decision rules; Electroencephalogram; Feature selection based on rough sets; Inconsistent data; Noisy data; Variable precision rough set model

Indexed keywords

ANESTHESIA; CLASSIFICATION WITH DECISION RULES; ELECTROENCEPHALOGRAM; FEATURE SELECTION BASED ON ROUGH SETS; INCONSISTENT DATA; NOISY DATA; VARIABLE PRECISION ROUGH SET MODEL;

EID: 70350738361     PISSN: 09333657     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.artmed.2009.07.004     Document Type: Article
Times cited : (54)

References (45)
  • 3
    • 0034234307 scopus 로고    scopus 로고
    • Automated discovery of positive and negative knowledge in clinical databases
    • Tsumoto S. Automated discovery of positive and negative knowledge in clinical databases. IEEE Engineering in Medicine and Biology 19 4 (2000) 56-62
    • (2000) IEEE Engineering in Medicine and Biology , vol.19 , Issue.4 , pp. 56-62
    • Tsumoto, S.1
  • 4
    • 0012617764 scopus 로고    scopus 로고
    • Medical information systems-problems with analysis and way of solution
    • Pal S.K., and Skowron A. (Eds), Springer, Singapore
    • Slowinski K., and Stefanowski J. Medical information systems-problems with analysis and way of solution. In: Pal S.K., and Skowron A. (Eds). Rough fuzzy hybridization: a new trend in decision making (1999), Springer, Singapore 301-315
    • (1999) Rough fuzzy hybridization: a new trend in decision making , pp. 301-315
    • Slowinski, K.1    Stefanowski, J.2
  • 5
    • 0033956372 scopus 로고    scopus 로고
    • Rough sets: a knowledge discovery technique for multifactorial medical outcomes
    • Ohrn A., and Rowland T. Rough sets: a knowledge discovery technique for multifactorial medical outcomes. American Journal of Physical Medicine & Rehabilitation 79 1 (2000) 100-108
    • (2000) American Journal of Physical Medicine & Rehabilitation , vol.79 , Issue.1 , pp. 100-108
    • Ohrn, A.1    Rowland, T.2
  • 6
    • 0033084127 scopus 로고    scopus 로고
    • Modelling prognostic power of cardiac tests using rough sets
    • Komorowski J., and Ohrn A. Modelling prognostic power of cardiac tests using rough sets. Artificial Intelligence in Medicine 15 2 (1999) 167-191
    • (1999) Artificial Intelligence in Medicine , vol.15 , Issue.2 , pp. 167-191
    • Komorowski, J.1    Ohrn, A.2
  • 8
    • 0036948440 scopus 로고    scopus 로고
    • Application of rule induction and rough sets to verification of magnetic resonance diagnosis
    • Slowinski K., Stefanowski J., and Siwiñski D. Application of rule induction and rough sets to verification of magnetic resonance diagnosis. Fundamenta Informaticae 53 3/4 (2002) 345-363
    • (2002) Fundamenta Informaticae , vol.53 , Issue.3-4 , pp. 345-363
    • Slowinski, K.1    Stefanowski, J.2    Siwiñski, D.3
  • 9
    • 84947812634 scopus 로고    scopus 로고
    • Wavelets, rough sets and artificial neural networks in EEG analysis
    • Polkowski L., and Skowron A. (Eds), Springer, Berlin
    • Wojdyllo P. Wavelets, rough sets and artificial neural networks in EEG analysis. In: Polkowski L., and Skowron A. (Eds). Rough sets and current trends in computing, 1st international conference, RSCTC1998 (1998), Springer, Berlin 444-449
    • (1998) Rough sets and current trends in computing, 1st international conference, RSCTC1998 , pp. 444-449
    • Wojdyllo, P.1
  • 10
    • 0034496854 scopus 로고    scopus 로고
    • Neuro-wavelet classifiers for EEG signals based on rough set methods
    • Szczuka M., and WojdyIlo P. Neuro-wavelet classifiers for EEG signals based on rough set methods. Neurocomputing 36 1-4 (2001) 103-122
    • (2001) Neurocomputing , vol.36 , Issue.1-4 , pp. 103-122
    • Szczuka, M.1    WojdyIlo, P.2
  • 11
    • 9444229364 scopus 로고    scopus 로고
    • Rough set-based classification of EEG-signals to detect intraoperative awareness: A comparison of fuzzy and crisp discretization of real value attributes
    • Tsumoto S., Slowinski R., Komorowski J., and Grzymala-Busse J.W. (Eds), Springer, Berlin
    • Ningler M., Stockmanns G., Schneider G., Dressler O., and Kochs E.F. Rough set-based classification of EEG-signals to detect intraoperative awareness: A comparison of fuzzy and crisp discretization of real value attributes. In: Tsumoto S., Slowinski R., Komorowski J., and Grzymala-Busse J.W. (Eds). Rough sets and current trends in computing, 4th international conference, RSCTC2004 (2004), Springer, Berlin 825-834
    • (2004) Rough sets and current trends in computing, 4th international conference, RSCTC2004 , pp. 825-834
    • Ningler, M.1    Stockmanns, G.2    Schneider, G.3    Dressler, O.4    Kochs, E.F.5
  • 12
    • 1642525195 scopus 로고    scopus 로고
    • Approaches to knowledge reduction based on variable precision rough set model
    • Mi J.-S., Wu W.-Z., and Zhang W.-X. Approaches to knowledge reduction based on variable precision rough set model. Information Sciences 159 3-4 (2004) 255-272
    • (2004) Information Sciences , vol.159 , Issue.3-4 , pp. 255-272
    • Mi, J.-S.1    Wu, W.-Z.2    Zhang, W.-X.3
  • 13
    • 26944493770 scopus 로고    scopus 로고
    • Several approaches to attribute reduction in variable precision rough set model
    • Torra V., Narukawa Y., and Miyamoto S. (Eds), Springer, Berlin
    • Inuiguchi M. Several approaches to attribute reduction in variable precision rough set model. In: Torra V., Narukawa Y., and Miyamoto S. (Eds). Modeling decisions for artificial intelligence, 2nd international conference, MDAI (2005), Springer, Berlin 215-226
    • (2005) Modeling decisions for artificial intelligence, 2nd international conference, MDAI , pp. 215-226
    • Inuiguchi, M.1
  • 14
    • 0030141552 scopus 로고    scopus 로고
    • A method for computing all maximally general rules in attribute-value systems
    • Ziarko W., and Shan N. A method for computing all maximally general rules in attribute-value systems. Computational Intelligence 12 2 (1996) 223-234
    • (1996) Computational Intelligence , vol.12 , Issue.2 , pp. 223-234
    • Ziarko, W.1    Shan, N.2
  • 15
  • 17
    • 0036833247 scopus 로고    scopus 로고
    • A rough-fuzzy approach for generating classification rules
    • Shen Q., and Chouchoulas A. A rough-fuzzy approach for generating classification rules. Pattern Recognition Letters 35 11 (2002) 2425-2438
    • (2002) Pattern Recognition Letters , vol.35 , Issue.11 , pp. 2425-2438
    • Shen, Q.1    Chouchoulas, A.2
  • 18
    • 28844458731 scopus 로고    scopus 로고
    • Rough set approaches for discovery of rules and attribute dependencies
    • Klosgen W., and Zytkow J. (Eds), University Press, Oxford
    • Ziarko W. Rough set approaches for discovery of rules and attribute dependencies. In: Klosgen W., and Zytkow J. (Eds). Handbook of data mining and knowledge discovery (2002), University Press, Oxford 328-338
    • (2002) Handbook of data mining and knowledge discovery , pp. 328-338
    • Ziarko, W.1
  • 19
    • 0033362341 scopus 로고    scopus 로고
    • Combining rough sets and data-driven fuzzy learning for generation of classification rules
    • Shen Q., and Chouchoulas A. Combining rough sets and data-driven fuzzy learning for generation of classification rules. Pattern Recognition 32 12 (1999) 2073-2076
    • (1999) Pattern Recognition , vol.32 , Issue.12 , pp. 2073-2076
    • Shen, Q.1    Chouchoulas, A.2
  • 20
    • 40649117648 scopus 로고    scopus 로고
    • Converse approximation and rule extracting from decision tables in rough set theory
    • Qian Y., Liang J., and Dang C. Converse approximation and rule extracting from decision tables in rough set theory. Computers & Mathematics with Applications 55 (2008) 1754-1765
    • (2008) Computers & Mathematics with Applications , vol.55 , pp. 1754-1765
    • Qian, Y.1    Liang, J.2    Dang, C.3
  • 22
    • 0242384171 scopus 로고    scopus 로고
    • Acquisition of hierarchy-structured probabilistic decision tables and rules from data
    • Ziarko W. Acquisition of hierarchy-structured probabilistic decision tables and rules from data. Expert Systems 20 5 (2003) 305-310
    • (2003) Expert Systems , vol.20 , Issue.5 , pp. 305-310
    • Ziarko, W.1
  • 23
    • 18944404537 scopus 로고    scopus 로고
    • Attribute reduction in the Bayesian version of variable precision rough set model
    • Slezak D., and Ziarko W. Attribute reduction in the Bayesian version of variable precision rough set model. Electronic Notes in Theoretical Computer Science 82 4 (2003) 1-11
    • (2003) Electronic Notes in Theoretical Computer Science , vol.82 , Issue.4 , pp. 1-11
    • Slezak, D.1    Ziarko, W.2
  • 24
    • 70350744467 scopus 로고    scopus 로고
    • Application of variable precision rough set approach to car driver assessment
    • Kantradzic, and Zurada (Eds), John Wiley & Sons, Hoboken, NJ
    • Aryeetey K., Ziarko W., and Quaye K. Application of variable precision rough set approach to car driver assessment. In: Kantradzic, and Zurada (Eds). Next generation of data-mining applications (2005), John Wiley & Sons, Hoboken, NJ
    • (2005) Next generation of data-mining applications
    • Aryeetey, K.1    Ziarko, W.2    Quaye, K.3
  • 25
    • 0043234660 scopus 로고    scopus 로고
    • Variable precision rough set theory and data discretisation: an application to corporate failure prediction
    • Beynon M.J., and Peel M.J. Variable precision rough set theory and data discretisation: an application to corporate failure prediction. Omega 29 6 (2001) 561-576
    • (2001) Omega , vol.29 , Issue.6 , pp. 561-576
    • Beynon, M.J.1    Peel, M.J.2
  • 26
    • 70350713423 scopus 로고    scopus 로고
    • Incremental learning of probabilistic rules from clinical databases based on rough set theory
    • Lu H., Motoda H., and Liu H. (Eds), World Scientific, Singapore
    • Tsumoto S., and Tanaka H. Incremental learning of probabilistic rules from clinical databases based on rough set theory. In: Lu H., Motoda H., and Liu H. (Eds). KDD: techniques and applications (1997), World Scientific, Singapore 152-165
    • (1997) KDD: techniques and applications , pp. 152-165
    • Tsumoto, S.1    Tanaka, H.2
  • 27
    • 79956275341 scopus 로고    scopus 로고
    • Experiments with rough sets approach to speech recognition
    • Ras Z.W., and Skowron A. (Eds), Springer, Berlin/Heidelberg/New York
    • Brindle D., and Ziarko W. Experiments with rough sets approach to speech recognition. In: Ras Z.W., and Skowron A. (Eds). Foundations of intelligent systems, 11th international symposium, ISMIS'99 (1999), Springer, Berlin/Heidelberg/New York 376-384
    • (1999) Foundations of intelligent systems, 11th international symposium, ISMIS'99 , pp. 376-384
    • Brindle, D.1    Ziarko, W.2
  • 29
    • 49249131573 scopus 로고    scopus 로고
    • Induction of decision rules and classification in the valued tolerance
    • Alpgini J., Peters J.F., Skowron A., and Zhong N. (Eds), Spinger, Berlin
    • Stefanowski J., and Tsoukias A. Induction of decision rules and classification in the valued tolerance. In: Alpgini J., Peters J.F., Skowron A., and Zhong N. (Eds). Rough sets and current trends in computing, 3rd international conference, RSCTC2002 (2002), Spinger, Berlin 271-278
    • (2002) Rough sets and current trends in computing, 3rd international conference, RSCTC2002 , pp. 271-278
    • Stefanowski, J.1    Tsoukias, A.2
  • 30
    • 0037316513 scopus 로고    scopus 로고
    • Automated extraction of hierarchical decision rules from clinical databases using rough set model
    • Tsumoto S. Automated extraction of hierarchical decision rules from clinical databases using rough set model. Expert Systems with Applications 24 2 (2003) 189-197
    • (2003) Expert Systems with Applications , vol.24 , Issue.2 , pp. 189-197
    • Tsumoto, S.1
  • 31
    • 0037621960 scopus 로고    scopus 로고
    • Reduction and axiomization of covering generalized rough sets
    • Zhu W., and Wang F.-Y. Reduction and axiomization of covering generalized rough sets. Information Sciences 152 (2003) 217-230
    • (2003) Information Sciences , vol.152 , pp. 217-230
    • Zhu, W.1    Wang, F.-Y.2
  • 32
    • 0037332841 scopus 로고    scopus 로고
    • Rough set methods in feature selection and recognition
    • Swiniarski R., and Skowron A. Rough set methods in feature selection and recognition. Pattern Recognition Letters 24 6 (2003) 833-849
    • (2003) Pattern Recognition Letters , vol.24 , Issue.6 , pp. 833-849
    • Swiniarski, R.1    Skowron, A.2
  • 33
    • 17444379002 scopus 로고    scopus 로고
    • On fuzzy-rough sets approach to feature selection
    • Bhatt R.B., and Gopal M. On fuzzy-rough sets approach to feature selection. Pattern Recognition Letters 26 7 (2005) 965-975
    • (2005) Pattern Recognition Letters , vol.26 , Issue.7 , pp. 965-975
    • Bhatt, R.B.1    Gopal, M.2
  • 34
    • 0033640901 scopus 로고    scopus 로고
    • Comparison of algorithms that select features for pattern classifiers
    • Kudo M., and Sklansky J. Comparison of algorithms that select features for pattern classifiers. Pattern Recognition 33 1 (2000) 25-41
    • (2000) Pattern Recognition , vol.33 , Issue.1 , pp. 25-41
    • Kudo, M.1    Sklansky, J.2
  • 35
    • 0037403098 scopus 로고    scopus 로고
    • Feature selection based on a modified fuzzy C-means algorithm with supervision
    • Marcelloni F. Feature selection based on a modified fuzzy C-means algorithm with supervision. Information Sciences 151 (2003) 201-226
    • (2003) Information Sciences , vol.151 , pp. 201-226
    • Marcelloni, F.1
  • 36
    • 0038329332 scopus 로고    scopus 로고
    • An improved branch and bound algorithm for feature selection
    • Chen X.-W. An improved branch and bound algorithm for feature selection. Pattern Recognition Letters 24 12 (2003) 1925-1933
    • (2003) Pattern Recognition Letters , vol.24 , Issue.12 , pp. 1925-1933
    • Chen, X.-W.1
  • 38
    • 0031657514 scopus 로고    scopus 로고
    • A primer for EEG signal processing in anesthesia
    • Rampil I.J. A primer for EEG signal processing in anesthesia. Anesthesiology 89 4 (1998) 980-1002
    • (1998) Anesthesiology , vol.89 , Issue.4 , pp. 980-1002
    • Rampil, I.J.1
  • 39
    • 27644462974 scopus 로고    scopus 로고
    • Detection of consciousness by electroencephalogram and auditory evoked potentials
    • Schneider G., Hollweck R., Ningler M., Stockmanns G., and Kochs E.F. Detection of consciousness by electroencephalogram and auditory evoked potentials. Anesthesiology 103 5 (2005) 934-943
    • (2005) Anesthesiology , vol.103 , Issue.5 , pp. 934-943
    • Schneider, G.1    Hollweck, R.2    Ningler, M.3    Stockmanns, G.4    Kochs, E.F.5
  • 41
    • 34948842036 scopus 로고    scopus 로고
    • Measures for evaluating the decision performance of a decision table in rough set theory
    • Qian Y., Liang J., Li D., Zhang H., and Dang C. Measures for evaluating the decision performance of a decision table in rough set theory. Information Sciences 178 1 (2008) 181-202
    • (2008) Information Sciences , vol.178 , Issue.1 , pp. 181-202
    • Qian, Y.1    Liang, J.2    Li, D.3    Zhang, H.4    Dang, C.5
  • 42
    • 0004612013 scopus 로고
    • VLSI fuzzy chip and inference accelerator board systems
    • Zadeh L.A., and Kacprzyk J. (Eds), John Wiley & Sons, Inc, New York
    • Watanabe H., and Detloff W.D. VLSI fuzzy chip and inference accelerator board systems. In: Zadeh L.A., and Kacprzyk J. (Eds). Fuzzy logic for the management of uncertainty (1992), John Wiley & Sons, Inc, New York 211-243
    • (1992) Fuzzy logic for the management of uncertainty , pp. 211-243
    • Watanabe, H.1    Detloff, W.D.2
  • 43
    • 0003408496 scopus 로고
    • CA: University of California, Department of Information and Computer Science;
    • Murphy PM, Aha DW. UCI repository of machine learning databases. http://www.ics.uci.edu/∼mlearn/MLRepository.html. Irvine, CA: University of California, Department of Information and Computer Science; 1994.
    • (1994) UCI repository of machine learning databases
    • Murphy, P.M.1    Aha, D.W.2
  • 45
    • 0030217431 scopus 로고    scopus 로고
    • Variable precision extension of rough sets
    • Katzberg J.D., and Ziarko W. Variable precision extension of rough sets. Fundamenta Informaticae 27 2/3 (1996) 155-168
    • (1996) Fundamenta Informaticae , vol.27 , Issue.2-3 , pp. 155-168
    • Katzberg, J.D.1    Ziarko, W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.