-
3
-
-
0034234307
-
Automated discovery of positive and negative knowledge in clinical databases
-
Tsumoto S. Automated discovery of positive and negative knowledge in clinical databases. IEEE Engineering in Medicine and Biology 19 4 (2000) 56-62
-
(2000)
IEEE Engineering in Medicine and Biology
, vol.19
, Issue.4
, pp. 56-62
-
-
Tsumoto, S.1
-
4
-
-
0012617764
-
Medical information systems-problems with analysis and way of solution
-
Pal S.K., and Skowron A. (Eds), Springer, Singapore
-
Slowinski K., and Stefanowski J. Medical information systems-problems with analysis and way of solution. In: Pal S.K., and Skowron A. (Eds). Rough fuzzy hybridization: a new trend in decision making (1999), Springer, Singapore 301-315
-
(1999)
Rough fuzzy hybridization: a new trend in decision making
, pp. 301-315
-
-
Slowinski, K.1
Stefanowski, J.2
-
5
-
-
0033956372
-
Rough sets: a knowledge discovery technique for multifactorial medical outcomes
-
Ohrn A., and Rowland T. Rough sets: a knowledge discovery technique for multifactorial medical outcomes. American Journal of Physical Medicine & Rehabilitation 79 1 (2000) 100-108
-
(2000)
American Journal of Physical Medicine & Rehabilitation
, vol.79
, Issue.1
, pp. 100-108
-
-
Ohrn, A.1
Rowland, T.2
-
6
-
-
0033084127
-
Modelling prognostic power of cardiac tests using rough sets
-
Komorowski J., and Ohrn A. Modelling prognostic power of cardiac tests using rough sets. Artificial Intelligence in Medicine 15 2 (1999) 167-191
-
(1999)
Artificial Intelligence in Medicine
, vol.15
, Issue.2
, pp. 167-191
-
-
Komorowski, J.1
Ohrn, A.2
-
7
-
-
0036874602
-
Learning rough set classifiers from gene expressions and clinical data
-
Midelfart H., Komorowski J., Nørsett K., Yadetie F., Sandvik A.K., and Lægreid A. Learning rough set classifiers from gene expressions and clinical data. Fundamenta Informaticae 53 (2002) 155-183
-
(2002)
Fundamenta Informaticae
, vol.53
, pp. 155-183
-
-
Midelfart, H.1
Komorowski, J.2
Nørsett, K.3
Yadetie, F.4
Sandvik, A.K.5
Lægreid, A.6
-
8
-
-
0036948440
-
Application of rule induction and rough sets to verification of magnetic resonance diagnosis
-
Slowinski K., Stefanowski J., and Siwiñski D. Application of rule induction and rough sets to verification of magnetic resonance diagnosis. Fundamenta Informaticae 53 3/4 (2002) 345-363
-
(2002)
Fundamenta Informaticae
, vol.53
, Issue.3-4
, pp. 345-363
-
-
Slowinski, K.1
Stefanowski, J.2
Siwiñski, D.3
-
9
-
-
84947812634
-
Wavelets, rough sets and artificial neural networks in EEG analysis
-
Polkowski L., and Skowron A. (Eds), Springer, Berlin
-
Wojdyllo P. Wavelets, rough sets and artificial neural networks in EEG analysis. In: Polkowski L., and Skowron A. (Eds). Rough sets and current trends in computing, 1st international conference, RSCTC1998 (1998), Springer, Berlin 444-449
-
(1998)
Rough sets and current trends in computing, 1st international conference, RSCTC1998
, pp. 444-449
-
-
Wojdyllo, P.1
-
10
-
-
0034496854
-
Neuro-wavelet classifiers for EEG signals based on rough set methods
-
Szczuka M., and WojdyIlo P. Neuro-wavelet classifiers for EEG signals based on rough set methods. Neurocomputing 36 1-4 (2001) 103-122
-
(2001)
Neurocomputing
, vol.36
, Issue.1-4
, pp. 103-122
-
-
Szczuka, M.1
WojdyIlo, P.2
-
11
-
-
9444229364
-
Rough set-based classification of EEG-signals to detect intraoperative awareness: A comparison of fuzzy and crisp discretization of real value attributes
-
Tsumoto S., Slowinski R., Komorowski J., and Grzymala-Busse J.W. (Eds), Springer, Berlin
-
Ningler M., Stockmanns G., Schneider G., Dressler O., and Kochs E.F. Rough set-based classification of EEG-signals to detect intraoperative awareness: A comparison of fuzzy and crisp discretization of real value attributes. In: Tsumoto S., Slowinski R., Komorowski J., and Grzymala-Busse J.W. (Eds). Rough sets and current trends in computing, 4th international conference, RSCTC2004 (2004), Springer, Berlin 825-834
-
(2004)
Rough sets and current trends in computing, 4th international conference, RSCTC2004
, pp. 825-834
-
-
Ningler, M.1
Stockmanns, G.2
Schneider, G.3
Dressler, O.4
Kochs, E.F.5
-
12
-
-
1642525195
-
Approaches to knowledge reduction based on variable precision rough set model
-
Mi J.-S., Wu W.-Z., and Zhang W.-X. Approaches to knowledge reduction based on variable precision rough set model. Information Sciences 159 3-4 (2004) 255-272
-
(2004)
Information Sciences
, vol.159
, Issue.3-4
, pp. 255-272
-
-
Mi, J.-S.1
Wu, W.-Z.2
Zhang, W.-X.3
-
13
-
-
26944493770
-
Several approaches to attribute reduction in variable precision rough set model
-
Torra V., Narukawa Y., and Miyamoto S. (Eds), Springer, Berlin
-
Inuiguchi M. Several approaches to attribute reduction in variable precision rough set model. In: Torra V., Narukawa Y., and Miyamoto S. (Eds). Modeling decisions for artificial intelligence, 2nd international conference, MDAI (2005), Springer, Berlin 215-226
-
(2005)
Modeling decisions for artificial intelligence, 2nd international conference, MDAI
, pp. 215-226
-
-
Inuiguchi, M.1
-
14
-
-
0030141552
-
A method for computing all maximally general rules in attribute-value systems
-
Ziarko W., and Shan N. A method for computing all maximally general rules in attribute-value systems. Computational Intelligence 12 2 (1996) 223-234
-
(1996)
Computational Intelligence
, vol.12
, Issue.2
, pp. 223-234
-
-
Ziarko, W.1
Shan, N.2
-
16
-
-
33749964974
-
Using rough sets as tools for knowledge discovery
-
Fayyad U.M. (Ed), AAAI Press, Menlo Park
-
Shan N., Ziarko W., Hamilton H.J., and Cercone N. Using rough sets as tools for knowledge discovery. In: Fayyad U.M. (Ed). Proceedings of the 1st international conference on knowledge discovery & data mining, KDD-95 (1995), AAAI Press, Menlo Park 263-268
-
(1995)
Proceedings of the 1st international conference on knowledge discovery & data mining, KDD-95
, pp. 263-268
-
-
Shan, N.1
Ziarko, W.2
Hamilton, H.J.3
Cercone, N.4
-
17
-
-
0036833247
-
A rough-fuzzy approach for generating classification rules
-
Shen Q., and Chouchoulas A. A rough-fuzzy approach for generating classification rules. Pattern Recognition Letters 35 11 (2002) 2425-2438
-
(2002)
Pattern Recognition Letters
, vol.35
, Issue.11
, pp. 2425-2438
-
-
Shen, Q.1
Chouchoulas, A.2
-
18
-
-
28844458731
-
Rough set approaches for discovery of rules and attribute dependencies
-
Klosgen W., and Zytkow J. (Eds), University Press, Oxford
-
Ziarko W. Rough set approaches for discovery of rules and attribute dependencies. In: Klosgen W., and Zytkow J. (Eds). Handbook of data mining and knowledge discovery (2002), University Press, Oxford 328-338
-
(2002)
Handbook of data mining and knowledge discovery
, pp. 328-338
-
-
Ziarko, W.1
-
19
-
-
0033362341
-
Combining rough sets and data-driven fuzzy learning for generation of classification rules
-
Shen Q., and Chouchoulas A. Combining rough sets and data-driven fuzzy learning for generation of classification rules. Pattern Recognition 32 12 (1999) 2073-2076
-
(1999)
Pattern Recognition
, vol.32
, Issue.12
, pp. 2073-2076
-
-
Shen, Q.1
Chouchoulas, A.2
-
20
-
-
40649117648
-
Converse approximation and rule extracting from decision tables in rough set theory
-
Qian Y., Liang J., and Dang C. Converse approximation and rule extracting from decision tables in rough set theory. Computers & Mathematics with Applications 55 (2008) 1754-1765
-
(2008)
Computers & Mathematics with Applications
, vol.55
, pp. 1754-1765
-
-
Qian, Y.1
Liang, J.2
Dang, C.3
-
22
-
-
0242384171
-
Acquisition of hierarchy-structured probabilistic decision tables and rules from data
-
Ziarko W. Acquisition of hierarchy-structured probabilistic decision tables and rules from data. Expert Systems 20 5 (2003) 305-310
-
(2003)
Expert Systems
, vol.20
, Issue.5
, pp. 305-310
-
-
Ziarko, W.1
-
23
-
-
18944404537
-
Attribute reduction in the Bayesian version of variable precision rough set model
-
Slezak D., and Ziarko W. Attribute reduction in the Bayesian version of variable precision rough set model. Electronic Notes in Theoretical Computer Science 82 4 (2003) 1-11
-
(2003)
Electronic Notes in Theoretical Computer Science
, vol.82
, Issue.4
, pp. 1-11
-
-
Slezak, D.1
Ziarko, W.2
-
24
-
-
70350744467
-
Application of variable precision rough set approach to car driver assessment
-
Kantradzic, and Zurada (Eds), John Wiley & Sons, Hoboken, NJ
-
Aryeetey K., Ziarko W., and Quaye K. Application of variable precision rough set approach to car driver assessment. In: Kantradzic, and Zurada (Eds). Next generation of data-mining applications (2005), John Wiley & Sons, Hoboken, NJ
-
(2005)
Next generation of data-mining applications
-
-
Aryeetey, K.1
Ziarko, W.2
Quaye, K.3
-
25
-
-
0043234660
-
Variable precision rough set theory and data discretisation: an application to corporate failure prediction
-
Beynon M.J., and Peel M.J. Variable precision rough set theory and data discretisation: an application to corporate failure prediction. Omega 29 6 (2001) 561-576
-
(2001)
Omega
, vol.29
, Issue.6
, pp. 561-576
-
-
Beynon, M.J.1
Peel, M.J.2
-
26
-
-
70350713423
-
Incremental learning of probabilistic rules from clinical databases based on rough set theory
-
Lu H., Motoda H., and Liu H. (Eds), World Scientific, Singapore
-
Tsumoto S., and Tanaka H. Incremental learning of probabilistic rules from clinical databases based on rough set theory. In: Lu H., Motoda H., and Liu H. (Eds). KDD: techniques and applications (1997), World Scientific, Singapore 152-165
-
(1997)
KDD: techniques and applications
, pp. 152-165
-
-
Tsumoto, S.1
Tanaka, H.2
-
27
-
-
79956275341
-
Experiments with rough sets approach to speech recognition
-
Ras Z.W., and Skowron A. (Eds), Springer, Berlin/Heidelberg/New York
-
Brindle D., and Ziarko W. Experiments with rough sets approach to speech recognition. In: Ras Z.W., and Skowron A. (Eds). Foundations of intelligent systems, 11th international symposium, ISMIS'99 (1999), Springer, Berlin/Heidelberg/New York 376-384
-
(1999)
Foundations of intelligent systems, 11th international symposium, ISMIS'99
, pp. 376-384
-
-
Brindle, D.1
Ziarko, W.2
-
28
-
-
84957810222
-
An algorithm for induction of decision rules consistent with the dominance principle
-
Ziarko W., and Yao Y.Y. (Eds), Springer, Berlin
-
Greco S., Matarazzo B., Slowinski R., and Stefanowski J. An algorithm for induction of decision rules consistent with the dominance principle. In: Ziarko W., and Yao Y.Y. (Eds). Rough sets and current trends in computing, 2nd international conference, RSCTC2000 (2000), Springer, Berlin 304-313
-
(2000)
Rough sets and current trends in computing, 2nd international conference, RSCTC2000
, pp. 304-313
-
-
Greco, S.1
Matarazzo, B.2
Slowinski, R.3
Stefanowski, J.4
-
29
-
-
49249131573
-
Induction of decision rules and classification in the valued tolerance
-
Alpgini J., Peters J.F., Skowron A., and Zhong N. (Eds), Spinger, Berlin
-
Stefanowski J., and Tsoukias A. Induction of decision rules and classification in the valued tolerance. In: Alpgini J., Peters J.F., Skowron A., and Zhong N. (Eds). Rough sets and current trends in computing, 3rd international conference, RSCTC2002 (2002), Spinger, Berlin 271-278
-
(2002)
Rough sets and current trends in computing, 3rd international conference, RSCTC2002
, pp. 271-278
-
-
Stefanowski, J.1
Tsoukias, A.2
-
30
-
-
0037316513
-
Automated extraction of hierarchical decision rules from clinical databases using rough set model
-
Tsumoto S. Automated extraction of hierarchical decision rules from clinical databases using rough set model. Expert Systems with Applications 24 2 (2003) 189-197
-
(2003)
Expert Systems with Applications
, vol.24
, Issue.2
, pp. 189-197
-
-
Tsumoto, S.1
-
31
-
-
0037621960
-
Reduction and axiomization of covering generalized rough sets
-
Zhu W., and Wang F.-Y. Reduction and axiomization of covering generalized rough sets. Information Sciences 152 (2003) 217-230
-
(2003)
Information Sciences
, vol.152
, pp. 217-230
-
-
Zhu, W.1
Wang, F.-Y.2
-
32
-
-
0037332841
-
Rough set methods in feature selection and recognition
-
Swiniarski R., and Skowron A. Rough set methods in feature selection and recognition. Pattern Recognition Letters 24 6 (2003) 833-849
-
(2003)
Pattern Recognition Letters
, vol.24
, Issue.6
, pp. 833-849
-
-
Swiniarski, R.1
Skowron, A.2
-
33
-
-
17444379002
-
On fuzzy-rough sets approach to feature selection
-
Bhatt R.B., and Gopal M. On fuzzy-rough sets approach to feature selection. Pattern Recognition Letters 26 7 (2005) 965-975
-
(2005)
Pattern Recognition Letters
, vol.26
, Issue.7
, pp. 965-975
-
-
Bhatt, R.B.1
Gopal, M.2
-
34
-
-
0033640901
-
Comparison of algorithms that select features for pattern classifiers
-
Kudo M., and Sklansky J. Comparison of algorithms that select features for pattern classifiers. Pattern Recognition 33 1 (2000) 25-41
-
(2000)
Pattern Recognition
, vol.33
, Issue.1
, pp. 25-41
-
-
Kudo, M.1
Sklansky, J.2
-
35
-
-
0037403098
-
Feature selection based on a modified fuzzy C-means algorithm with supervision
-
Marcelloni F. Feature selection based on a modified fuzzy C-means algorithm with supervision. Information Sciences 151 (2003) 201-226
-
(2003)
Information Sciences
, vol.151
, pp. 201-226
-
-
Marcelloni, F.1
-
36
-
-
0038329332
-
An improved branch and bound algorithm for feature selection
-
Chen X.-W. An improved branch and bound algorithm for feature selection. Pattern Recognition Letters 24 12 (2003) 1925-1933
-
(2003)
Pattern Recognition Letters
, vol.24
, Issue.12
, pp. 1925-1933
-
-
Chen, X.-W.1
-
38
-
-
0031657514
-
A primer for EEG signal processing in anesthesia
-
Rampil I.J. A primer for EEG signal processing in anesthesia. Anesthesiology 89 4 (1998) 980-1002
-
(1998)
Anesthesiology
, vol.89
, Issue.4
, pp. 980-1002
-
-
Rampil, I.J.1
-
39
-
-
27644462974
-
Detection of consciousness by electroencephalogram and auditory evoked potentials
-
Schneider G., Hollweck R., Ningler M., Stockmanns G., and Kochs E.F. Detection of consciousness by electroencephalogram and auditory evoked potentials. Anesthesiology 103 5 (2005) 934-943
-
(2005)
Anesthesiology
, vol.103
, Issue.5
, pp. 934-943
-
-
Schneider, G.1
Hollweck, R.2
Ningler, M.3
Stockmanns, G.4
Kochs, E.F.5
-
40
-
-
0141688369
-
Discretization: an enabling technique
-
Liu H., Hussain F., Tan C.L., and Dash M. Discretization: an enabling technique. Data Mining and Knowledge Discovery 6 4 (2002) 393-423
-
(2002)
Data Mining and Knowledge Discovery
, vol.6
, Issue.4
, pp. 393-423
-
-
Liu, H.1
Hussain, F.2
Tan, C.L.3
Dash, M.4
-
41
-
-
34948842036
-
Measures for evaluating the decision performance of a decision table in rough set theory
-
Qian Y., Liang J., Li D., Zhang H., and Dang C. Measures for evaluating the decision performance of a decision table in rough set theory. Information Sciences 178 1 (2008) 181-202
-
(2008)
Information Sciences
, vol.178
, Issue.1
, pp. 181-202
-
-
Qian, Y.1
Liang, J.2
Li, D.3
Zhang, H.4
Dang, C.5
-
42
-
-
0004612013
-
VLSI fuzzy chip and inference accelerator board systems
-
Zadeh L.A., and Kacprzyk J. (Eds), John Wiley & Sons, Inc, New York
-
Watanabe H., and Detloff W.D. VLSI fuzzy chip and inference accelerator board systems. In: Zadeh L.A., and Kacprzyk J. (Eds). Fuzzy logic for the management of uncertainty (1992), John Wiley & Sons, Inc, New York 211-243
-
(1992)
Fuzzy logic for the management of uncertainty
, pp. 211-243
-
-
Watanabe, H.1
Detloff, W.D.2
-
43
-
-
0003408496
-
-
CA: University of California, Department of Information and Computer Science;
-
Murphy PM, Aha DW. UCI repository of machine learning databases. http://www.ics.uci.edu/∼mlearn/MLRepository.html. Irvine, CA: University of California, Department of Information and Computer Science; 1994.
-
(1994)
UCI repository of machine learning databases
-
-
Murphy, P.M.1
Aha, D.W.2
-
45
-
-
0030217431
-
Variable precision extension of rough sets
-
Katzberg J.D., and Ziarko W. Variable precision extension of rough sets. Fundamenta Informaticae 27 2/3 (1996) 155-168
-
(1996)
Fundamenta Informaticae
, vol.27
, Issue.2-3
, pp. 155-168
-
-
Katzberg, J.D.1
Ziarko, W.2
|