-
1
-
-
80053440459
-
Apprenticeship learning about multiple intentions
-
Babes, M., Marivate, V., Littman, M., and Subramanian, K. Apprenticeship learning about multiple intentions. ICML, 2011.
-
(2011)
ICML
-
-
Babes, M.1
Marivate, V.2
Littman, M.3
Subramanian, K.4
-
2
-
-
36248962568
-
Learning a potential function from a trajectory
-
DOI 10.1109/LSP.2007.900032
-
Brillinger, D.R. Learning a potential function from a trajectory. Signal Processing Letters, IEEE, 14(11): 867-870, 2007. (Pubitemid 350130782)
-
(2007)
IEEE Signal Processing Letters
, vol.14
, Issue.11
, pp. 867-870
-
-
Brillinger, D.R.1
-
3
-
-
4344639816
-
Image moments: A general and useful set of features for visual servoing
-
Chaumette, F. Image moments: a general and useful set of features for visual servoing. Robotics, IEEE Transactions on, 20(4):713-723, 2004.
-
(2004)
Robotics, IEEE Transactions on
, vol.20
, Issue.4
, pp. 713-723
-
-
Chaumette, F.1
-
5
-
-
84877772241
-
Nonparametric bayesian inverse reinforcement learning for multiple reward functions
-
Choi, Jaedeug and Kim, Kee-Eung. Nonparametric bayesian inverse reinforcement learning for multiple reward functions. In Neural Information Processing Systems (NIPS), 2012.
-
(2012)
Neural Information Processing Systems (NIPS)
-
-
Choi, J.1
Kim, K.-E.2
-
7
-
-
85162013390
-
Nonparametric Bayesian Policy Priors for Reinforcement Learning
-
Doshi-Velez, Finale, Wingate, David, Roy, Nicholas, and Tenenbaum, Joshua. Nonparametric Bayesian Policy Priors for Reinforcement Learning. In Neural Information Processing Systems (NIPS), 2010.
-
(2010)
Neural Information Processing Systems (NIPS)
-
-
Doshi-Velez, F.1
Wingate, D.2
Roy, N.3
Tenenbaum, J.4
-
8
-
-
0001120413
-
A bayesian analysis of some nonparametric problems
-
Ferguson, T. A bayesian analysis of some nonparametric problems. The annals of statistics, 1:209-230, 1973.
-
(1973)
The Annals of Statistics
, vol.1
, pp. 209-230
-
-
Ferguson, T.1
-
9
-
-
84858766922
-
Nonparametric bayesian learning of switching linear dynamical systems
-
Fox, E.B., Sudderth, E.B., Jordan, M.I., and Willsky, A.S. Nonparametric bayesian learning of switching linear dynamical systems. Advances in Neural Information Processing Systems, 21:457-464, 2008.
-
(2008)
Advances in Neural Information Processing Systems
, vol.21
, pp. 457-464
-
-
Fox, E.B.1
Sudderth, E.B.2
Jordan, M.I.3
Willsky, A.S.4
-
10
-
-
79960116366
-
Dirichlet process mixtures of generalized linear models
-
July
-
Hannah, Lauren A., Blei, David M., and Powell, Warren B. Dirichlet process mixtures of generalized linear models. J. Mach. Learn. Res., pp. 1923-1953, July 2011.
-
(2011)
J. Mach. Learn. Res.
, pp. 1923-1953
-
-
Hannah, L.A.1
Blei, D.M.2
Powell, W.B.3
-
11
-
-
70349330652
-
A novel method for learning policies from variable constraint data
-
Howard, M., Klanke, S., Gienger, M., Goerick, C., and Vijayakumar, S. A novel method for learning policies from variable constraint data. Autonomous Robots, 27:105-121, 2009.
-
(2009)
Autonomous Robots
, vol.27
, pp. 105-121
-
-
Howard, M.1
Klanke, S.2
Gienger, M.3
Goerick, C.4
Vijayakumar, S.5
-
12
-
-
84899019754
-
Learning attractor landscapes for learning motor primitives
-
NIPS, Cambridge, MA
-
Ijspeert, A. J., Nakanishi, J., and Schaal, S. Learning attractor landscapes for learning motor primitives. In Neural Information Processing Systems (NIPS), Cambridge, MA, 2003.
-
(2003)
Neural Information Processing Systems
-
-
Ijspeert, A.J.1
Nakanishi, J.2
Schaal, S.3
-
15
-
-
0001457509
-
Some methods for classification and analysis of multivariate observations
-
University of California Press
-
Macqueen, J. B. Some methods for classification and analysis of multivariate observations. In Berkeley Symposium on Math, Statistics, and Probability. University of California Press, 1967.
-
(1967)
Berkeley Symposium on Math, Statistics, and Probability
-
-
Macqueen, J.B.1
-
17
-
-
77950032550
-
Markov chain sampling methods for dirichlet process mixture models
-
Neal, R. Markov chain sampling methods for dirichlet process mixture models. Journal of computational and graphical statistics, 9:249-265, 2000.
-
(2000)
Journal of Computational and Graphical Statistics
, vol.9
, pp. 249-265
-
-
Neal, R.1
-
18
-
-
49549105778
-
The Bayesian Lasso
-
June ISSN 0162-1459
-
Park, T. and Casella, G. The Bayesian Lasso. J. Am. Stat. Assoc., 103(482):681-686, June 2008. ISSN 0162-1459.
-
(2008)
J. Am. Stat. Assoc.
, vol.103
, Issue.482
, pp. 681-686
-
-
Park, T.1
Casella, G.2
-
19
-
-
56449105690
-
Multi-task compressive sensing with dirichlet process priors
-
Qi, Y., Liu, D., Dunson, D., and Carin, L. Multi-task compressive sensing with dirichlet process priors. In International conference on Machine learning, pp. 768-775, 2008.
-
(2008)
International Conference on Machine Learning
, pp. 768-775
-
-
Qi, Y.1
Liu, D.2
Dunson, D.3
Carin, L.4
-
22
-
-
0001108227
-
Constructive Incremental Learning from only Local Information
-
Schaal, S. and Atkeson, C. G. Constructive incremental learning from only local information. Neural Comput., 10(8):2047-2084, 1998. (Pubitemid 128464295)
-
(1998)
Neural Computation
, vol.10
, Issue.8
, pp. 2047-2084
-
-
Schaal, S.1
Atkeson, C.G.2
-
23
-
-
70349425847
-
Nonlinear models using dirichlet process mixtures
-
August
-
Shahbaba, Babak and Neal, Radford. Nonlinear models using dirichlet process mixtures. J. Mach. Learn. Res., pp. 1829-1850, August 2009.
-
(2009)
J. Mach. Learn. Res.
, pp. 1829-1850
-
-
Shahbaba, B.1
Neal, R.2
-
24
-
-
84864026688
-
Modeling human motion using binary latent variables
-
Taylor, G.W., Hinton, G.E., and Roweis, S.T. Modeling human motion using binary latent variables. Advances in neural information processing systems, 19:1345, 2007.
-
(2007)
Advances in Neural Information Processing Systems
, vol.19
, pp. 1345
-
-
Taylor, G.W.1
Hinton, G.E.2
Roweis, S.T.3
-
25
-
-
74049149538
-
-
Wood, F., Grollman, D. H., Heller, K. A., Jenkins, O. C., and Black, M. Incremental nonparametric bayesian regression, 2008.
-
(2008)
Incremental Nonparametric Bayesian Regression
-
-
Wood, F.1
Grollman, D.H.2
Heller, K.A.3
Jenkins, O.C.4
Black, M.5
-
26
-
-
79958700388
-
Hierarchical bayesian non-parametric mixture models for clustering with variable relevance determination
-
Yau, C. and Holmes, C. Hierarchical bayesian non-parametric mixture models for clustering with variable relevance determination. Bayesian Anal, 6:329-352, 2011.
-
(2011)
Bayesian Anal
, vol.6
, pp. 329-352
-
-
Yau, C.1
Holmes, C.2
|