메뉴 건너뛰기




Volumn , Issue PART 2, 2013, Pages 1173-1181

Learning multiple behaviors from unlabeled demonstrations in a latent controller space

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; SOFTWARE ENGINEERING;

EID: 84897494932     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (6)

References (26)
  • 2
    • 36248962568 scopus 로고    scopus 로고
    • Learning a potential function from a trajectory
    • DOI 10.1109/LSP.2007.900032
    • Brillinger, D.R. Learning a potential function from a trajectory. Signal Processing Letters, IEEE, 14(11): 867-870, 2007. (Pubitemid 350130782)
    • (2007) IEEE Signal Processing Letters , vol.14 , Issue.11 , pp. 867-870
    • Brillinger, D.R.1
  • 3
    • 4344639816 scopus 로고    scopus 로고
    • Image moments: A general and useful set of features for visual servoing
    • Chaumette, F. Image moments: a general and useful set of features for visual servoing. Robotics, IEEE Transactions on, 20(4):713-723, 2004.
    • (2004) Robotics, IEEE Transactions on , vol.20 , Issue.4 , pp. 713-723
    • Chaumette, F.1
  • 5
    • 84877772241 scopus 로고    scopus 로고
    • Nonparametric bayesian inverse reinforcement learning for multiple reward functions
    • Choi, Jaedeug and Kim, Kee-Eung. Nonparametric bayesian inverse reinforcement learning for multiple reward functions. In Neural Information Processing Systems (NIPS), 2012.
    • (2012) Neural Information Processing Systems (NIPS)
    • Choi, J.1    Kim, K.-E.2
  • 8
    • 0001120413 scopus 로고
    • A bayesian analysis of some nonparametric problems
    • Ferguson, T. A bayesian analysis of some nonparametric problems. The annals of statistics, 1:209-230, 1973.
    • (1973) The Annals of Statistics , vol.1 , pp. 209-230
    • Ferguson, T.1
  • 10
    • 79960116366 scopus 로고    scopus 로고
    • Dirichlet process mixtures of generalized linear models
    • July
    • Hannah, Lauren A., Blei, David M., and Powell, Warren B. Dirichlet process mixtures of generalized linear models. J. Mach. Learn. Res., pp. 1923-1953, July 2011.
    • (2011) J. Mach. Learn. Res. , pp. 1923-1953
    • Hannah, L.A.1    Blei, D.M.2    Powell, W.B.3
  • 15
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • University of California Press
    • Macqueen, J. B. Some methods for classification and analysis of multivariate observations. In Berkeley Symposium on Math, Statistics, and Probability. University of California Press, 1967.
    • (1967) Berkeley Symposium on Math, Statistics, and Probability
    • Macqueen, J.B.1
  • 17
    • 77950032550 scopus 로고    scopus 로고
    • Markov chain sampling methods for dirichlet process mixture models
    • Neal, R. Markov chain sampling methods for dirichlet process mixture models. Journal of computational and graphical statistics, 9:249-265, 2000.
    • (2000) Journal of Computational and Graphical Statistics , vol.9 , pp. 249-265
    • Neal, R.1
  • 18
    • 49549105778 scopus 로고    scopus 로고
    • The Bayesian Lasso
    • June ISSN 0162-1459
    • Park, T. and Casella, G. The Bayesian Lasso. J. Am. Stat. Assoc., 103(482):681-686, June 2008. ISSN 0162-1459.
    • (2008) J. Am. Stat. Assoc. , vol.103 , Issue.482 , pp. 681-686
    • Park, T.1    Casella, G.2
  • 22
    • 0001108227 scopus 로고    scopus 로고
    • Constructive Incremental Learning from only Local Information
    • Schaal, S. and Atkeson, C. G. Constructive incremental learning from only local information. Neural Comput., 10(8):2047-2084, 1998. (Pubitemid 128464295)
    • (1998) Neural Computation , vol.10 , Issue.8 , pp. 2047-2084
    • Schaal, S.1    Atkeson, C.G.2
  • 23
    • 70349425847 scopus 로고    scopus 로고
    • Nonlinear models using dirichlet process mixtures
    • August
    • Shahbaba, Babak and Neal, Radford. Nonlinear models using dirichlet process mixtures. J. Mach. Learn. Res., pp. 1829-1850, August 2009.
    • (2009) J. Mach. Learn. Res. , pp. 1829-1850
    • Shahbaba, B.1    Neal, R.2
  • 26
    • 79958700388 scopus 로고    scopus 로고
    • Hierarchical bayesian non-parametric mixture models for clustering with variable relevance determination
    • Yau, C. and Holmes, C. Hierarchical bayesian non-parametric mixture models for clustering with variable relevance determination. Bayesian Anal, 6:329-352, 2011.
    • (2011) Bayesian Anal , vol.6 , pp. 329-352
    • Yau, C.1    Holmes, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.