메뉴 건너뛰기




Volumn 12, Issue , 2011, Pages 1923-1953

Dirichlet process mixtures of generalized linear models

Author keywords

Bayesian nonparametrics; Generalized linear models; Posterior consistency

Indexed keywords

BAYESIAN NONPARAMETRICS; CLASS OF METHODS; DATA SETS; DENSITY ESTIMATES; DIRICHLET PROCESS MIXTURE; GENERALIZED LINEAR MODEL; GLOBAL MODELS; JOINT DISTRIBUTIONS; NON-PARAMETRIC REGRESSION; POINTWISE CONSISTENCY; POSTERIOR CONSISTENCY; REGRESSION ESTIMATES; WEAK CONSISTENCY;

EID: 79960116366     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (128)

References (48)
  • 2
    • 1842610336 scopus 로고    scopus 로고
    • Posterior consistency for semi-parametric regression problems
    • DOI 10.3150/bj/1068128979
    • M. Amewou-Atisso, S. Ghosal, J. K. Ghosh, and R. V. Ramamoorthi. Posterior consistency for semi-parametric regression problems. Bernoulli, 9(2):291-312, 2003. (Pubitemid 44242731)
    • (2003) Bernoulli , vol.9 , Issue.2 , pp. 291-312
    • Amewou-Atisso, M.1    Ghosal, S.2    Ghosh, J.K.3    Ramamoorthi, R.V.4
  • 3
    • 0000708831 scopus 로고
    • Mixtures of dirichlet processes with applications to bayesian nonparametric problems
    • C. E. Antoniak. Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. The Annals of Statistics, 2(6):1152-1174, 1974.
    • (1974) The Annals of Statistics , vol.2 , Issue.6 , pp. 1152-1174
    • Antoniak, C.E.1
  • 4
    • 0033438067 scopus 로고    scopus 로고
    • The consistency of posterior distributions in nonparametric problems
    • A. Barron, M. J. Schervish, and L. Wasserman. The consistency of posterior distributions in nonparametric problems. The Annals of Statistics, 27(2):536-561, 1999.
    • (1999) The Annals of Statistics , vol.27 , Issue.2 , pp. 536-561
    • Barron, A.1    Schervish, M.J.2    Wasserman, L.3
  • 6
    • 0002617436 scopus 로고
    • Ferguson distributions via Polya urn schemes
    • D. Blackwell and J. B. MacQueen. Ferguson distributions via Polya urn schemes. The Annals Statistics, 1(2):353-355, 1973.
    • (1973) The Annals Statistics , vol.1 , Issue.2 , pp. 353-355
    • Blackwell, D.1    MacQueen, J.B.2
  • 7
    • 84867186048 scopus 로고    scopus 로고
    • Variational inference for dirichlet process mixtures
    • D.M. Blei andM. I. Jordan. Variational inference for Dirichlet process mixtures. Bayesian Analysis, 1(1):121-144, 2006.
    • (2006) Bayesian Analysis , vol.1 , Issue.1 , pp. 121-144
    • Blei, D.M.1    Jordan, M.I.2
  • 12
    • 0036643083 scopus 로고    scopus 로고
    • Bayesian treed models
    • DOI 10.1023/A:1013916107446
    • H. A. Chipman, E. I. George, and R. E. McCulloch. Bayesian treed models. Machine Learning, 48 (1):299-320, 2002. (Pubitemid 34247582)
    • (2002) Machine Learning , vol.48 , Issue.1-3 , pp. 299-320
    • Chipman, H.A.1    George, E.I.2    McCulloch, R.E.3
  • 14
    • 37549057387 scopus 로고    scopus 로고
    • Generalized spatial dirichlet process models
    • J. A. Duan, M. Guindani, and A. E. Gelfand. Generalized spatial Dirichlet process models. Biometrika, 94(4):809-825, 2007.
    • (2007) Biometrika , vol.94 , Issue.4 , pp. 809-825
    • Duan, J.A.1    Guindani, M.2    Gelfand, A.E.3
  • 16
    • 21344479762 scopus 로고
    • Estimating normal means with a Dirichlet process prior
    • M. D. Escobar. Estimating normal means with a Dirichlet process prior. Journal of the American Statistical Association, 89(425):268-277, 1994.
    • (1994) Journal of the American Statistical Association , vol.89 , Issue.425 , pp. 268-277
    • Escobar, M.D.1
  • 18
    • 0001120413 scopus 로고
    • A Bayesian analysis of some nonparametric problems
    • T. S. Ferguson. A Bayesian analysis of some nonparametric problems. The Annals of Statistics, 1 (2):209-230, 1973.
    • (1973) The Annals of Statistics , vol.1 , Issue.2 , pp. 209-230
    • Ferguson, T.S.1
  • 19
    • 24644441776 scopus 로고    scopus 로고
    • Bayesian nonparametric spatial modeling with dirichlet process mixing
    • DOI 10.1198/016214504000002078
    • A. E. Gelfand, A. Kottas, and S. N. MacEachern. Bayesian nonparametric spatial modeling with Dirichlet process mixing. Journal of the American Statistical Association, 100(471):1021-1035, 2005. (Pubitemid 41276346)
    • (2005) Journal of the American Statistical Association , vol.100 , Issue.471 , pp. 1021-1035
    • Gelfand, A.E.1    Kottas, A.2    Maceachern, S.N.3
  • 21
    • 0033074585 scopus 로고    scopus 로고
    • Posterior consistency of dirichlet mixtures in density estimation
    • S. Ghosal, J. K. Ghosh, and R. V. Ramamoorthi. Posterior consistency of Dirichlet mixtures in density estimation. The Annals of Statistics, 27(1):143-158, 1999.
    • (1999) The Annals of Statistics , vol.27 , Issue.1 , pp. 143-158
    • Ghosal, S.1    Ghosh, J.K.2    Ramamoorthi, R.V.3
  • 23
    • 54949111733 scopus 로고    scopus 로고
    • Bayesian treed Gaussian process models with an application to computer modeling
    • R. B. Gramacy and H. K. H. Lee. Bayesian treed Gaussian process models with an application to computer modeling. Journal of the American Statistical Association, 103(483):1119-1130, 2008.
    • (2008) Journal of the American Statistical Association , vol.103 , Issue.483 , pp. 1119-1130
    • Gramacy, R.B.1    Lee, H.K.H.2
  • 24
    • 33645509944 scopus 로고    scopus 로고
    • Order-based dependent dirichlet processes
    • DOI 10.1198/016214505000000727
    • J. E. Griffin and M. F. J. Steel. Order-based dependent Dirichlet processes. Journal of the American Statistical Association, 101(473):179-194, 2006. (Pubitemid 43500034)
    • (2006) Journal of the American Statistical Association , vol.101 , Issue.473 , pp. 179-194
    • Griffin, J.E.1    Steel, M.F.J.2
  • 25
    • 78349248992 scopus 로고    scopus 로고
    • Bayesian nonparametric modelling with the Dirichlet process regression smoother
    • J. E. Griffin and M. F. J. Steel. Bayesian nonparametric modelling with the Dirichlet process regression smoother. Statistica Sinica, 20(4):1507-1527, 2010.
    • (2010) Statistica Sinica , vol.20 , Issue.4 , pp. 1507-1527
    • Griffin, J.E.1    Steel, M.F.J.2
  • 27
    • 84972808999 scopus 로고
    • Estimating normal means with a conjugate style dirichlet process prior
    • S. N. MacEachern. Estimating normal means with a conjugate style Dirichlet process prior. Communications in Statistics-Simulation and Computation, 23(3):727-741, 1994.
    • (1994) Communications in Statistics-Simulation and Computation , vol.23 , Issue.3 , pp. 727-741
    • MacEachern, S.N.1
  • 31
    • 0002881872 scopus 로고    scopus 로고
    • Bayesian curve fitting using multivariate normal mixtures
    • P. Müller, A. Erkanli, and M. West. Bayesian curve fitting using multivariate normal mixtures. Biometrika, 83(1):67-79, 1996.
    • (1996) Biometrika , vol.83 , Issue.1 , pp. 67-79
    • Müller, P.1    Erkanli, A.2    West, M.3
  • 33
    • 77950032550 scopus 로고    scopus 로고
    • Markov chain sampling methods for Dirichlet process mixture models
    • R. M. Neal. Markov chain sampling methods for Dirichlet process mixture models. Journal of Computational and Graphical Statistics, 9(2):249-265, 2000.
    • (2000) Journal of Computational and Graphical Statistics , vol.9 , Issue.2 , pp. 249-265
    • Neal, R.M.1
  • 35
    • 55149088117 scopus 로고    scopus 로고
    • Gaussian process models for computer experiments with qualitative and quantitative factors
    • P. Z. G. Qian, H. Wu, and C. F. J. Wu. Gaussian process models for computer experiments with qualitative and quantitative factors. Technometrics, 50(3):383-396, 2008.
    • (2008) Technometrics , vol.50 , Issue.3 , pp. 383-396
    • Qian, P.Z.G.1    Wu, H.2    Wu, C.F.J.3
  • 39
    • 60449108968 scopus 로고    scopus 로고
    • Bayesian nonparametric functional data analysis through density estimation
    • A. Rodriguez, D. B. Dunson, and A. E. Gelfand. Bayesian nonparametric functional data analysis through density estimation. Biometrika, 96(1):149-162, 2009.
    • (2009) Biometrika , vol.96 , Issue.1 , pp. 149-162
    • Rodriguez, A.1    Dunson, D.B.2    Gelfand, A.E.3
  • 40
    • 0000147488 scopus 로고    scopus 로고
    • Online model selection based on the variational Bayes
    • M. A. Sato. Online model selection based on the variational Bayes. Neural Computation, 13(7): 1649-1681, 2001.
    • (2001) Neural Computation , vol.13 , Issue.7 , pp. 1649-1681
    • Sato, M.A.1
  • 43
    • 33751551247 scopus 로고    scopus 로고
    • Posterior consistency of dirichlet location-scale mixture of normals in density estimation and regression
    • S. Tokdar. Posterior consistency of Dirichlet location-scale mixture of normals in density estimation and regression. Sankhyā: The Indian Journal of Statistics, 67:90-110, 2006. (Pubitemid 44830382)
    • (2006) Sankhyā: The Indian Journal of Statistics , vol.68 , Issue.1 , pp. 90-110
    • Tokdar, S.T.1
  • 44
    • 4043073169 scopus 로고    scopus 로고
    • New approaches to Bayesian consistency
    • DOI 10.1214/009053604000000409
    • S. Walker. New approaches to Bayesian consistency. The Annals of Statistics, 32(5):2028-2043, 2004. (Pubitemid 41250258)
    • (2004) Annals of Statistics , vol.32 , Issue.5 , pp. 2028-2043
    • Walker, S.1
  • 45
    • 34548274912 scopus 로고    scopus 로고
    • On rates of convergence for posterior distributions in infinitedimensional models
    • S. G.Walker, A. Lijoi, and I. Prunster. On rates of convergence for posterior distributions in infinitedimensional models. Annals of Statistics, 35(2):738, 2007.
    • (2007) Annals of Statistics , vol.35 , Issue.2 , pp. 738
    • Walker, S.G.1    Lijoi, A.2    Prunster, I.3
  • 47
    • 0002612391 scopus 로고
    • Hierarchical priors and mixture models, with application in regression and density estimation
    • M. West, P. Muller, and M. D. Escobar. Hierarchical priors and mixture models, with application in regression and density estimation. In Aspects of Uncertainty: A Tribute to DV Lindley, pages 363-386. 1994.
    • (1994) Aspects of Uncertainty: A Tribute to DV Lindley , pp. 363-386
    • West, M.1    Muller, P.2    Escobar, M.D.3
  • 48
    • 0032295215 scopus 로고    scopus 로고
    • Modeling of strength of high-performance concrete using artificial neural networks
    • I. C. Yeh. Modeling of strength of high-performance concrete using artificial neural networks. Cement and Concrete Research, 28(12):1797-1808, 1998.
    • (1998) Cement and Concrete Research , vol.28 , Issue.12 , pp. 1797-1808
    • Yeh, I.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.