-
1
-
-
27544453325
-
Intrusion detection systems
-
U S Department of Defence, 31 November 2001
-
Bace, R. and Mell, P. (2001) Intrusion Detection Systems. NIST Special Publications SP 800, U S Department of Defence, 31 November 2001
-
(2001)
NIST Special Publications SP 800
-
-
Bace, R.1
Mell, P.2
-
2
-
-
85084163349
-
Data mining approaches for intrusion detection
-
San Antonio, TX, USA, January 6-6. USENIX
-
Lee, W. and Stolfo, S.J. (1998) Data Mining Approaches for Intrusion Detection. Proc. 7th Conf. USENIX Security Symp., Vol. 7, San Antonio, TX, USA, January, pp. 6-6. USENIX
-
(1998)
Proc. 7th Conf. USENIX Security Symp
, vol.7
-
-
Lee, W.1
Stolfo, S.J.2
-
3
-
-
85090433665
-
Snort-lightweight intrusion detection for networks
-
Seattle,WA, USA, November USENIX
-
Roesch, M. (1999) Snort-Lightweight Intrusion Detection for Networks. Proc. 13th USENIX Conf. System Administration, Seattle,WA, USA, November, pp. 229-238. USENIX
-
(1999)
Proc. 13th USENIX Conf. System Administration
, pp. 229-238
-
-
Roesch, M.1
-
4
-
-
0038663185
-
Intrusion detection with unlabeled data using clustering
-
Philadelphia PA, USA, November 8 ACM
-
Portnoy, L., Eskin, E. and Stolfo, S.J. (2001) Intrusion Detection with Unlabeled Data Using Clustering. Proc.ACMCSSWorkshop DMSA-2001, Philadelphia PA, USA, November 8, pp. 5-8.ACM
-
(2001)
Proc.ACMCSSWorkshop DMSA-2001
, pp. 5-8
-
-
Portnoy, L.1
Eskin, E.2
Stolfo, S.J.3
-
5
-
-
77950657888
-
A mixed unsupervised clustering-based intrusion detection
-
Gulin, China, October IEEE Computer Society
-
Zhang, C., Zhang, G. and Sun, S. (2009) A Mixed Unsupervised Clustering-Based Intrusion Detection. Proc. 3rd Int. Conf. Genetic and Evolutionary Computing, WGEC 2009, Gulin, China, October 14-17. IEEE Computer Society
-
(2009)
Proc. 3rd Int. Conf. Genetic and Evolutionary Computing, WGEC 2009
, pp. 14-17
-
-
Zhang, C.1
Zhang, G.2
Sun, S.3
-
6
-
-
80051571493
-
Multi-density clustering algorithm for anomaly detection using kdd?99 dataset
-
Kochi, India, July 22-24, Communications in Computer and Information Science (CCIS Springer, Berlin
-
Kumar, S., Kumar, S. and Nandi, S. (2011) Multi-Density Clustering Algorithm for Anomaly Detection Using KDD?99 Dataset. Proc. 1st Int. Conf. Advances in Computing and Communications (ACC 2011), Kochi, India, July 22-24, Communications in Computer and Information Science (CCIS) 190, pp. 619-630. Springer, Berlin
-
(2011)
Proc. 1st Int. Conf. Advances in Computing and Communications (ACC 2011
, vol.190
, pp. 619-630
-
-
Kumar, S.1
Kumar, S.2
Nandi, S.3
-
7
-
-
79953811849
-
A survey of outlier detection methods in network anomaly identification
-
Gogoi, P., Bhattacharyya, D.K., Borah, B. and Kalita, J.K. (2011) A survey of outlier detection methods in network anomaly identification. Comput. J., 54, 570-588
-
(2011)
Comput. J.
, vol.54
, pp. 570-588
-
-
Gogoi, P.1
Bhattacharyya, D.K.2
Borah, B.3
Kalita, J.K.4
-
8
-
-
84892838433
-
Catsub: A technique for clustering categorical data based on subspace
-
Borah, B. and Bhattacharyya, D.K. (2008) Catsub: A technique for clustering categorical data based on subspace. ICFAI J. Comput. Sci., II, 7-20
-
(2008)
ICFAI J. Comput. Sci
, vol.2
, pp. 7-20
-
-
Borah, B.1
Bhattacharyya, D.K.2
-
9
-
-
84868283151
-
Network anomaly detection using unsupervised model
-
Gogoi, P., Borah, B. and Bhattacharyya, D.K. (2011) Network anomaly detection using unsupervised model. Int. J. Comput. Appl. Spec. Issue Netw. Secur. Cryptogr., NSC(1), 19-30
-
(2011)
Int. J. Comput. Appl. Spec. Issue Netw. Secur. Cryptogr., NSC
, vol.1
, pp. 19-30
-
-
Gogoi, P.1
Borah, B.2
Bhattacharyya, D.K.3
-
10
-
-
84962260018
-
Evaluating intrusion detection systems: The 1998 darpa off-line intrusion detection evaluation
-
Los Alamitos, CA, USA IEEE Computer Society Press
-
Lippmann, R. et al. (2000) Evaluating Intrusion Detection Systems: The 1998 DARPA Off-Line Intrusion Detection Evaluation. Proc. DARPA Information Survivability Conf. and Exposition (DISCEX) 2000, Los Alamitos, CA, USA, pp. 12-26. IEEE Computer Society Press
-
(2000)
Proc. DARPA Information Survivability Conf. and Exposition (DISCEX 2000
, pp. 12-26
-
-
Lippmann, R.1
-
11
-
-
0142253852
-
ADAM: A testbed for exploring the use of data mining in intrusion detection
-
Daniel, B., Julia, C., Sushil, J. and Ningning,W. (2001)ADAM: A testbed for exploring the use of data mining in intrusion detection. SIGMOD Rec., 30, 15-24
-
(2001)
SIGMOD Rec
, vol.30
, pp. 15-24
-
-
Daniel, B.1
Julia, C.2
Sushil, J.3
Ningning, W.4
-
12
-
-
24944591774
-
Adwice- Anomaly detection with real-Time incremental clustering
-
Berlin, Germany, May Springer, Berlin
-
Burbeck, K. and Nadjm-Tehrani, S. (2005) ADWICE- Anomaly Detection with Real-Time Incremental Clustering. Proc. Information Security and Cryptology-ICISC 2004, Berlin, Germany, May, pp. 407-424. Springer, Berlin
-
(2005)
Proc. Information Security and Cryptology-ICISC 2004
, pp. 407-424
-
-
Burbeck, K.1
Nadjm-Tehrani, S.2
-
13
-
-
35648969617
-
A denial of service detector based on maximum likelihood detection and the random
-
Oke, G. and Loukas, G. (2007) A denial of service detector based on maximum likelihood detection and the random neural network. Comput. J., 50, 717-727
-
(2007)
Neural Network. Comput. J.
, vol.50
, pp. 717-727
-
-
Oke, G.1
Loukas, G.2
-
14
-
-
57849130705
-
Anomaly-based network intrusion detection: Techniques
-
Garcia-Teodoro, P., Diaz-Verdejo, J., Macia-Fernandez, G. and Vazquez, E. (2009) Anomaly-based network intrusion detection: Techniques, systems and challenges. Comput. Secur., 28, 18-28
-
(2009)
Systems And Challenges. Comput. Secur
, vol.28
, pp. 18-28
-
-
Garcia-Teodoro, P.1
Diaz-Verdejo, J.2
Macia-Fernandez, G.3
Vazquez, E.4
-
15
-
-
77955469676
-
An overview of IP flow-based intrusion detection
-
Sperotto, A., Schaffrath, G., Sadre, R., Morariu, C., Pras, A. and Stiller, B. (2010) An overview of IP flow-based intrusion detection. IEEE Commun. Surv. Tutor., 12, 343-356
-
(2010)
IEEE Commun. Surv. Tutor
, vol.12
, pp. 343-356
-
-
Sperotto, A.1
Schaffrath, G.2
Sadre, R.3
Morariu, C.4
Pras, A.5
Stiller, B.6
-
16
-
-
80053510589
-
Surveying port scans and their detection methodologies
-
Bhuyan, M.H., Bhattacharyya, D.K. and Kalita, J.K. (2011) Surveying port scans and their detection methodologies. Comput. J., 54, 1-17
-
(2011)
Comput. J.
, vol.54
, pp. 1-17
-
-
Bhuyan, M.H.1
Bhattacharyya, D.K.2
Kalita, J.K.3
-
17
-
-
84897420454
-
Anomaly detection and prevention in network traffic based on statistical approach and a- stable model
-
Bhange, A. and Utareja, S. (2012) Anomaly detection and prevention in network traffic based on statistical approach and a- stable model. Int. J. Adv. Res. Comput. Eng. Technol., 1, 690-698
-
(2012)
Int. J. Adv. Res. Comput. Eng. Technol
, vol.1
, pp. 690-698
-
-
Bhange, A.1
Utareja, S.2
-
18
-
-
84897451634
-
Anomaly detection in network using data mining techniques
-
Chaturvedi, S.K., Richariya, V. and Tiwari, N. (2012) Anomaly detection in network using data mining techniques. Int. J. Emerging Technol. Adv. Eng., 2, 2250-2459
-
(2012)
Int. J. Emerging Technol. Adv. Eng
, vol.2
, pp. 2250-2459
-
-
Chaturvedi, S.K.1
Richariya, V.2
Tiwari, N.3
-
19
-
-
0030157145
-
Birch: An efficient data clustering method forvery large databases
-
Montreal, Quebec, Canada, June 4-6 ACM Press
-
Zhang, T., Ramakrishnan, R. and Livny, M. (1996) Birch: An Efficient Data Clustering Method forVery Large Databases. Proc. 1996 ACM SIGMOD, Montreal, Quebec, Canada, June 4-6, pp. 103-114. ACM Press
-
(1996)
Proc. 1996 ACM SIGMOD
, pp. 103-114
-
-
Zhang, T.1
Ramakrishnan, R.2
Livny, M.3
-
20
-
-
84868695480
-
Unsupervised anomaly detection in network intrusion detection using clusters
-
Newcastle, NSW, Australia, January/February Australian Computer Society, Inc. Darlinghurst
-
Leung, K. and Leckie, C. (2005) Unsupervised Anomaly Detection in Network Intrusion Detection Using Clusters. Proc. 28th Australasian Conf. Computer Science, Vol. 38, Newcastle, NSW, Australia, January/February, pp. 333-342. Australian Computer Society, Inc. Darlinghurst
-
(2005)
Proc. 28th Australasian Conf. Computer Science
, vol.38
, pp. 333-342
-
-
Leung, K.1
Leckie, C.2
-
21
-
-
79956035662
-
Unada: Unsupervised network anomaly detection using sub-space outliers ranking
-
Heidelberg, Germany Springer, Berlin
-
Casas, P., Mazel, J. and Owezarski, P. (2011) UNADA: Unsupervised Network Anomaly Detection Using Sub-Space Outliers Ranking. Proc. 10th Int. IFIP TC 6 Conf. Networking- Volume Part I (NETWORKING?11), Heidelberg, Germany, pp. 40-51. Springer, Berlin
-
(2011)
Proc 10th Int IFIP TC 6 Conf. Networking- Volume Part I (NETWORKING?11
, pp. 40-51
-
-
Casas, P.1
Mazel, J.2
Owezarski, P.3
-
22
-
-
84994158589
-
Sting:A statistical information grid approach to spatial data mining
-
San Francisco, CA, USA Morgan Kaufmann
-
Wang,W.,Yang, J. and Muntz, R.R. (1997) STING:A Statistical Information Grid Approach to Spatial Data Mining. In Proc. of 23rd Int. Conf. on Very Large Databases, San Francisco, CA, USA, pp. 186-195. Morgan Kaufmann
-
(1997)
Proc. of 23rd Int. Conf. on Very Large Databases
, pp. 186-195
-
-
WangW.Yang, J.1
Muntz, R.R.2
-
23
-
-
84949487685
-
A scalable parallel subspace clustering algorithm for massive data sets
-
Toronto, Canada, August 21-24 IEEE Computer Society
-
Nagesh, H.S., Goil, S. and Choudhary, A.N. (2000) A Scalable Parallel Subspace Clustering Algorithm for Massive Data Sets. Proc. ICPP 2000, Toronto, Canada, August 21-24, p. 477. IEEE Computer Society
-
(2000)
Proc. ICPP 2000
, pp. 477
-
-
Nagesh, H.S.1
Goil, S.2
Choudhary, A.N.3
-
24
-
-
1542285202
-
Hybrid neural network and c4.5 for misuse detection
-
Wan IEEE Computer Society
-
Pan, Z.S., Chen, S.C., Hu, G.B. and Zhang, D.Q. (2003) Hybrid Neural Network and C4.5 for Misuse Detection. Proc. 2003 Int. Conf. Machine Learning and Cybernetics,Wan, pp. 2463-2467. IEEE Computer Society
-
(2003)
Proc. 2003 Int. Conf. Machine Learning and Cybernetics
, pp. 2463-2467
-
-
Pan, Z.S.1
Chen, S.C.2
Hu, G.B.3
Zhang, D.Q.4
-
25
-
-
25844491810
-
An intelligent intrusion detection system (IDS) for anomaly and misuse detection in computer networks
-
Depren, O., Topllar, M., Anarim, E. and Ciliz, M.K. (2005) An intelligent intrusion detection system (IDS) for anomaly and misuse detection in computer networks. Expert Syst. Appl., 29, 713-722
-
(2005)
Expert Syst. Appl
, vol.29
, pp. 713-722
-
-
Depren, O.1
Topllar, M.2
Anarim, E.3
Ciliz, M.K.4
-
26
-
-
33750955638
-
A hybrid network intrusion detection technique using random forests
-
Reliability and Security, ARES 2006, Vienna, Austria IEEE Xplore
-
Zhang, J. and Zulkernine, M. (2006)A Hybrid Network Intrusion Detection Technique Using Random Forests. Proc. 1st Int. Conf. Availability, Reliability and Security, ARES 2006, Vienna, Austria, pp. 262-269. IEEE Xplore
-
(2006)
Proc. 1st Int. Conf. Availability
, pp. 262-269
-
-
Zhang, J.1
Zulkernine, M.2
-
27
-
-
33847743856
-
Hybrid intrusion detection with weighted signature generation over anomalous internet episodes
-
Hwang, K., Cai, M., Chen,Y. and Qin, M. (2007) Hybrid intrusion detection with weighted signature generation over anomalous internet episodes. IEEE Trans. Dependable Secur. Comput., 4, 41-55
-
(2007)
IEEE Trans. Dependable Secur. Comput
, vol.4
, pp. 41-55
-
-
Hwang, K.1
Cai, M.2
Chen, Y.3
Qin, M.4
-
28
-
-
62249168871
-
A hybrid intrusion detection system design for computer network security
-
Aydyn, M.A., Zaim, A.H. and Ceylan, K.G. (2009) A hybrid intrusion detection system design for computer network security. Comput. Electr. Eng., 35, 517-526
-
(2009)
Comput. Electr. Eng
, vol.35
, pp. 517-526
-
-
Aydyn, M.A.1
Zaim, A.H.2
Ceylan, K.G.3
-
29
-
-
11244249796
-
Design of multiple- level tree classifiers for intrusion detection system
-
Singapore, December IEEE Xplore
-
Xiang, C., Chong, M.Y. and Zhu, H.L. (2004) Design of Multiple- Level Tree Classifiers for Intrusion Detection System. Proc. 2004 IEEE Conf. Cybernetics and Intelligent Systems, Singapore, December, pp. 872-877. IEEE Xplore
-
(2004)
Proc. 2004 IEEE Conf. Cybernetics and Intelligent Systems
, pp. 872-877
-
-
Xiang, C.1
Chong, M.Y.2
Zhu, H.L.3
-
30
-
-
33748100382
-
RT-UNNID: A practical solution to real-Time network-based intrusion detection using unsupervised neural networks
-
Amini, M., Jalili, R. and Shahriari, H.R. (2006) RT-UNNID: A practical solution to real-Time network-based intrusion detection using unsupervised neural networks. Comput. Secur., 25, 459-468
-
(2006)
Comput. Secur
, vol.25
, pp. 459-468
-
-
Amini, M.1
Jalili, R.2
Shahriari, H.R.3
-
32
-
-
84883271942
-
Selecting features for intrusion detection: A feature relevance analysis on kdd 99 intrusion detection datasets
-
Security and Trust, Halifax, NS, Canada, October. Dalhousie University
-
Kayacik, H.G., Heywood, A.N.Z. and Heywood, M.I. (2005) Selecting Features for Intrusion Detection: A Feature Relevance Analysis on KDD 99 Intrusion Detection Datasets. Proc. 3rd Annual Conf. Privacy, Security and Trust, Halifax, NS, Canada, October. Dalhousie University
-
(2005)
Proc. 3rd Annual Conf. Privacy
-
-
Kayacik, H.G.1
Heywood, A.N.Z.2
Heywood, M.I.3
-
33
-
-
84941155240
-
Well separated clusters and optimal fuzzy partitions
-
Dunn, J. (1974) Well separated clusters and optimal fuzzy partitions. J. Cybern., 4, 95-104
-
(1974)
J. Cybern
, vol.4
, pp. 95-104
-
-
Dunn, J.1
-
34
-
-
85004899658
-
Quadratic assignment as a general data analysis strategy
-
Huberi, L. and Schultz, J. (1976) Quadratic assignment as a general data analysis strategy. Br. J. Math. Stat. Psychol., 29, 190-241
-
(1976)
Br. J. Math. Stat. Psychol
, vol.29
, pp. 190-241
-
-
Huberi, L.1
Schultz, J.2
-
36
-
-
0023453329
-
Silhouettes: A graphical aid to the interpretation and validation of cluster analysis
-
Rousseeuw, P.J. (1987) Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math., 20, 53-65
-
(1987)
J. Comput. Appl. Math
, vol.20
, pp. 53-65
-
-
Rousseeuw, P.J.1
-
38
-
-
78649411182
-
Feature selection based on rough set and modified genetic algorithm for intrusion detection
-
Hefei, China, August 24-27I EEEXplore
-
Guo,Y. et al. (2010) Feature Selection Based on Rough Set and Modified Genetic Algorithm for Intrusion Detection. Proc. 5th Int. Conf. Computer Science &Education, Hefei, China, August 24-27, pp. 1441-1446. IEEEXplore
-
(2010)
Proc. 5th Int. Conf. Computer Science &Education
, pp. 1441-1446
-
-
Guo, Y.1
-
39
-
-
33745772192
-
Ranking outliers using symmetric neighborhood relationship
-
Advances in Knowledge Discovery and Data Mining (PAKDD Singapore
-
Jin, W., Tung, A.K.H., Han, J. and Wang, W. (2006) Ranking Outliers Using Symmetric Neighborhood Relationship. Proc. 10th Pacific-Asia Conf. Advances in Knowledge Discovery and Data Mining (PAKDD), Singapore, pp. 577-593
-
(2006)
Proc. 10th Pacific-Asia Conf
, pp. 577-593
-
-
Jin, W.1
Tung, A.K.H.2
Han, J.3
Wang, W.4
-
40
-
-
0031162081
-
The sr-Tree: An index structure for high-dimensional nearest neighbor queries
-
SIGMOD ?97, NY, USA, June. ACM, NewYork
-
Katayama, N. and Satoh, S. (1997) The SR-Tree: An Index Structure for High-dimensional Nearest Neighbor Queries. Proc. 1997 ACM SIGMOD Int. Conf. Management of data, SIGMOD ?97, NY, USA, June. ACM, NewYork
-
(1997)
Proc. 1997 ACM SIGMOD Int. Conf. Management of data
-
-
Katayama, N.1
Satoh, S.2
-
41
-
-
84868286263
-
Packet and flow based network intrusion dataset
-
Noida, India, August 6-8, Communications in Computer and Information Science (CCIS Springer, Berlin
-
Gogoi, P., Bhuyan, M.H., Bhattacharyya, D.K. and Kalita, J.K. (2012) Packet and Flow Based Network Intrusion Dataset. Proc. 5th Int. Conf. Contemporary Computing (IC3-2012), Noida, India, August 6-8, Communications in Computer and Information Science (CCIS) 306, pp. 322-334. Springer, Berlin
-
(2012)
Proc. 5th Int. Conf. Contemporary Computing (IC3-2012
, vol.306
, pp. 322-334
-
-
Gogoi, P.1
Bhuyan, M.H.2
Bhattacharyya, D.K.3
Kalita, J.K.4
-
42
-
-
0003704318
-
-
CA University of California, Department of Information and Computer Science
-
Hettich, S. and Bay, S.D. (1999) The UCI KDD archive. Irvine, CA: University of California, Department of Information and Computer Science. http://kdd.ics.uci.edu
-
(1999)
The UCI KDD archive. Irvine
-
-
Hettich, S.1
Bay, S.D.2
-
43
-
-
84869006945
-
-
Tavallaee, M., Bagheri, E., Lu, W. and Ghorbani, A.A. (2009) A detailed analysis of the KDD CUP 99 data set. http://nsl.cs.unb.ca/NSL-KDD/
-
(2009)
A detailed analysis of the KDD CUP 99 data set
-
-
Tavallaee, M.1
Bagheri, E.2
Lu, W.3
Ghorbani, A.A.4
-
46
-
-
84897406417
-
-
2009). http://www.wireshark.org/
-
(2009)
-
-
-
47
-
-
84897372595
-
Rfc 3917: Requirements for IP flow information export: IPFIX
-
Quittek, J., Zseby, T., Claise, B. and Zender, S. (2004) Rfc 3917: Requirements for IP flow information export: IPFIX, Hawthorn Victoria. http://www.ietf.org/rfc/rfc3917.txt
-
(2004)
Hawthorn Victoria
-
-
Quittek, J.1
Zseby, T.2
Claise, B.3
Zender, S.4
-
53
-
-
0026992322
-
An analysis of bayesian classifiers
-
San Jose, CA, USA, July 12-16 AAAI Press
-
Langley, P., Iba, W. and Thomas, K. (1992) An Analysis of Bayesian Classifiers. Proc. 10th National Conf. Artificial Intelligence, San Jose, CA, USA, July 12-16, pp. 223-228.AAAI Press
-
(1992)
Proc. 10th National Conf. Artificial Intelligence
, pp. 223-228
-
-
Langley, P.1
Iba, W.2
Thomas, K.3
-
54
-
-
11244260106
-
-
University of Waikato
-
University of Waikato (1999) Weka 3: Data Mining Software in Java. http://www.cs.waikato.ac.nz/ml/weka
-
(1999)
Weka 3: Data Mining Software in Java
-
-
-
55
-
-
77949593871
-
Three-level hybrid intrusion detection system
-
ICIECS 2009, Shanghai, China, December 19-20 IEEE
-
Lu, H. and Xu, J. (2009) Three-Level Hybrid Intrusion Detection System. Proc. Int. Conf. Information Engineering and Computer Science, ICIECS 2009, Shanghai, China, December 19-20, pp. 1-4. IEEE
-
(2009)
Proc. Int. Conf. Information Engineering and Computer Science
, pp. 1-4
-
-
Lu, H.1
Xu, J.2
-
56
-
-
40849099949
-
Design of multiplelevel hybrid classifier for intrusion detection system using Bayesian clustering and decision trees
-
Xiang, C.,Yong, P.C. and Meng, L.S. (2008) Design of multiplelevel hybrid classifier for intrusion detection system using Bayesian clustering and decision trees. Pattern Recognit. Lett., 29, 918-924
-
(2008)
Pattern Recognit. Lett
, vol.29
, pp. 918-924
-
-
Xiang C.Yong, P.C.1
Meng, L.S.2
-
57
-
-
77956613687
-
Novel intrusion detection system based on hierarchical clustering and support vector machines
-
Horng, S-J., Su, M-Y., Chen,Y-H., Kao, T-W., Chen, R-J., Lai, J-L. and Perkasa, C.D. (2011)Anovel intrusion detection system based on hierarchical clustering and support vector machines. Expert Syst. Appl., 38, 306-313
-
(2011)
Expert Syst. Appl
, vol.38
, pp. 306-313
-
-
Horng, S.-J.1
Su M.-Y., ChenY.-H.2
Kao, T.-W.3
Chen, R.-J.4
Lai, J.-L.5
Perkasa, C.D.6
-
59
-
-
2442537609
-
Nsom:A tool to detect denial of service attacks using self-organizing maps
-
University of California, Davis, CA, USA
-
Labib, K. andVemuri, R. (2002) NSOM:A Tool to Detect Denial of Service Attacks Using Self-Organizing Maps. Technical Report. Department of Applied Science University of California, Davis, CA, USA
-
(2002)
Technical Report. Department of Applied Science
-
-
Labib, K.1
Vemuri, R.2
-
60
-
-
33745441630
-
The minds-minnesota intrusion detection system
-
MIT Press, Boston
-
ErtÖz, L., Eilertson, E., Lazarevic, A., Ning Tan, P., Kumar, V. and Srivastava, J. (2004) The MINDS-Minnesota Intrusion Detection System. Next Generation Data Mining. MIT Press, Boston
-
(2004)
Next Generation Data Mining
-
-
Ertöz, L.1
Eilertson, E.2
Lazarevic, A.3
Ning Tan, P.4
Kumar, V.5
Srivastava, J.6
-
61
-
-
34250167266
-
Flow- based statistical aggregation schemes for network anomaly detection
-
Sensing, Florida, USA, April 23-25 IEEE
-
Song, S., Ling, L. and Manikopoulo, C.N. (2006) Flow- Based Statistical Aggregation Schemes for Network Anomaly Detection. Proc. IEEE Int. Conf. Networking, Sensing, Florida, USA, April 23-25, pp. 786-791. IEEE
-
(2006)
Proc. IEEE Int. Conf. Networking
, pp. 786-791
-
-
Song, S.1
Ling, L.2
Manikopoulo, C.N.3
-
62
-
-
27544490151
-
Nfids: A neuro-fuzzy intrusion detection system
-
Circuits and Systems(ICECS) Iran, December IEEE Xplore
-
Mohajerani, M., Moeini, A. and Kianie, M. (2003) NFIDS: A Neuro-Fuzzy Intrusion Detection System. Proc. 10th IEEE Int. Conf. Electronics, Circuits and Systems(ICECS), Iran, December, pp. 348-351. IEEE Xplore
-
(2003)
Proc. 10th IEEE Int. Conf. Electronics
, pp. 348-351
-
-
Mohajerani, M.1
Moeini, A.2
Kianie, M.3
-
63
-
-
0141464248
-
Hide: A hierarchical network intrusion detection system using statistical preprocessing and neural network classification
-
Workshop, Seattle, WA, USA, April IEEE Xplore
-
Zhang, Z., Li, J., Manikopoulos, C.N., Jorgenson, J. and Ucles, J. (2001) HIDE: A Hierarchical Network Intrusion Detection System Using Statistical Preprocessing and Neural Network Classification. Proc. 2001 IEEE Man Systems and Cybernetics Information Assurance Workshop, Seattle, WA, USA, April, pp. 85-90. IEEE Xplore
-
(2001)
Proc. 2001 IEEE Man Systems and Cybernetics Information Assurance
, pp. 85-90
-
-
Zhang, Z.1
Li, J.2
Manikopoulos, C.N.3
Jorgenson, J.4
Ucles, J.5
-
64
-
-
0242456797
-
Admit: Anomaly-based data mining for intrusions
-
Edmonton, Alberta, Canada ACM Press
-
Sequeira, K. and Zaki, M. (2002) ADMIT: Anomaly-Based Data Mining for Intrusions. Proc. 8th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, Edmonton, Alberta, Canada, pp. 386-395. ACM Press
-
(2002)
Proc. 8th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining
, pp. 386-395
-
-
Sequeira, K.1
Zaki, M.2
-
65
-
-
33646835092
-
Development of a comprehensive intrusion detection system- challenges and approaches
-
Kolkata, India, Lecture Notes in Computer Science 3803 Springer
-
Subramoniam, N., Pawar, P.S., Bhatnagar, M., Khedekar, N.S., Guntupalli, S., Satyanarayana, N., Vijayakumar, V.A., Ampatt, P.K., Ranjan, R. and Pandit, P.S. (2005) Development of a Comprehensive Intrusion Detection System- Challenges and Approaches. Proc. 1st Int. Conf. Information Systems Security (ICISS 2005),Kolkata, India, Lecture Notes in Computer Science 3803, pp. 332-335. Springer
-
(2005)
Proc. 1st Int. Conf. Information Systems Security (ICISS 2005
, pp. 332-335
-
-
Subramoniam, N.1
Pawar, P.S.2
Bhatnagar, M.3
Khedekar, N.S.4
Guntupalli, S.5
Satyanarayana, N.6
Vijayakumar, V.A.7
Ampatt, P.K.8
Ranjan, R.9
Pandit, P.S.10
-
66
-
-
49049103451
-
Dnids: A dependable network intrusion detection system using the csi-knn algorithm master?s
-
Ontario, Canada
-
Kuang, L.V. (2007) DNIDS: A dependable network intrusion detection system using the CSI-KNN algorithm. Master?s Thesis, Queen?s University Kingston, Ontario, Canada
-
(2007)
Thesis Queen?s University Ki6ngston
-
-
Kuang, L.V.1
-
67
-
-
0039253819
-
Lof: Identifying density-based local outliers
-
Dallas, TX, USA, May 16-18 ACM
-
Breunig, M.M., Kriegel, H.P., Ng, R.T. and Sander, J. (2000) LOF: Identifying Density-Based Local Outliers. Proc. 2000ACM SIGMOD Int. Conf. Management of Data, Dallas, TX, USA, May 16-18, Vol. 29, pp. 93-104, ACM
-
(2000)
Proc. 2000ACM SIGMOD Int. Conf. Management of Data
, vol.29
, pp. 93-104
-
-
Breunig, M.M.1
Kriegel, H.P.2
Ng, R.T.3
Sander, J.4
-
68
-
-
25844450147
-
Outlier detection algorithms in data mining systems
-
Petrovskiy, M.I. (2003) Outlier detection algorithms in data mining systems. Program. Comput. Softw., 29, 228-237
-
(2003)
Program. Comput. Softw
, vol.29
, pp. 228-237
-
-
Petrovskiy, M.I.1
-
69
-
-
84897452962
-
Fast lightweight outlier detection in mixed-Attribute data.technical report
-
The Ohio State University Ohio, USA
-
Otey, M.E., Parthasarathy, S. and Ghoting, A. (2005) Fast Lightweight Outlier Detection in Mixed-Attribute Data.Technical Report. Department of Computer Science and Engineering, The Ohio State University, Ohio, USA
-
(2005)
Department of Computer Science and Engineering
-
-
Otey, M.E.1
Parthasarathy, S.2
Ghoting, A.3
-
70
-
-
62949154974
-
Cluster-based outlier detection
-
Duan, L., Xu, L., Liu,Y. and Lee, J. (2008) Cluster-based outlier detection. Ann. Oper. Res., 168, 151-168
-
(2008)
Ann. Oper. Res
, vol.168
, pp. 151-168
-
-
Duan, L.1
Xu, L.2
Liu, Y.3
Lee, J.4
-
72
-
-
0002948319
-
Algorithms for mining distance- based outliers in large datasets
-
New York, NY, USA, August 24-27 Morgan Kaufmann
-
Knorr, E.M. and Ng, R. (1998) Algorithms for Mining Distance- Based Outliers in Large Datasets. Proc. 24th Int. Conf.Very Large Data Bases (VLDB 1998), New York, NY, USA, August 24-27, pp. 392-403. Morgan Kaufmann.
-
(1998)
Proc. 24th Int. Conf.Very Large Data Bases (VLDB 1998
, pp. 392-403
-
-
Knorr, E.M.1
Ng, R.2
|