메뉴 건너뛰기




Volumn 57, Issue 4, 2014, Pages 602-623

MLH-IDS: A multi-level hybrid intrusion detection method

Author keywords

features; IDS; multi level; outlier; supervised; unsupervised

Indexed keywords

COMPUTER NETWORKS; DATA MINING; ELECTRONIC DOCUMENT IDENTIFICATION SYSTEMS; STATISTICS;

EID: 84897433175     PISSN: 00104620     EISSN: 14602067     Source Type: Journal    
DOI: 10.1093/comjnl/bxt044     Document Type: Article
Times cited : (62)

References (72)
  • 1
    • 27544453325 scopus 로고    scopus 로고
    • Intrusion detection systems
    • U S Department of Defence, 31 November 2001
    • Bace, R. and Mell, P. (2001) Intrusion Detection Systems. NIST Special Publications SP 800, U S Department of Defence, 31 November 2001
    • (2001) NIST Special Publications SP 800
    • Bace, R.1    Mell, P.2
  • 2
    • 85084163349 scopus 로고    scopus 로고
    • Data mining approaches for intrusion detection
    • San Antonio, TX, USA, January 6-6. USENIX
    • Lee, W. and Stolfo, S.J. (1998) Data Mining Approaches for Intrusion Detection. Proc. 7th Conf. USENIX Security Symp., Vol. 7, San Antonio, TX, USA, January, pp. 6-6. USENIX
    • (1998) Proc. 7th Conf. USENIX Security Symp , vol.7
    • Lee, W.1    Stolfo, S.J.2
  • 3
    • 85090433665 scopus 로고    scopus 로고
    • Snort-lightweight intrusion detection for networks
    • Seattle,WA, USA, November USENIX
    • Roesch, M. (1999) Snort-Lightweight Intrusion Detection for Networks. Proc. 13th USENIX Conf. System Administration, Seattle,WA, USA, November, pp. 229-238. USENIX
    • (1999) Proc. 13th USENIX Conf. System Administration , pp. 229-238
    • Roesch, M.1
  • 4
    • 0038663185 scopus 로고    scopus 로고
    • Intrusion detection with unlabeled data using clustering
    • Philadelphia PA, USA, November 8 ACM
    • Portnoy, L., Eskin, E. and Stolfo, S.J. (2001) Intrusion Detection with Unlabeled Data Using Clustering. Proc.ACMCSSWorkshop DMSA-2001, Philadelphia PA, USA, November 8, pp. 5-8.ACM
    • (2001) Proc.ACMCSSWorkshop DMSA-2001 , pp. 5-8
    • Portnoy, L.1    Eskin, E.2    Stolfo, S.J.3
  • 6
    • 80051571493 scopus 로고    scopus 로고
    • Multi-density clustering algorithm for anomaly detection using kdd?99 dataset
    • Kochi, India, July 22-24, Communications in Computer and Information Science (CCIS Springer, Berlin
    • Kumar, S., Kumar, S. and Nandi, S. (2011) Multi-Density Clustering Algorithm for Anomaly Detection Using KDD?99 Dataset. Proc. 1st Int. Conf. Advances in Computing and Communications (ACC 2011), Kochi, India, July 22-24, Communications in Computer and Information Science (CCIS) 190, pp. 619-630. Springer, Berlin
    • (2011) Proc. 1st Int. Conf. Advances in Computing and Communications (ACC 2011 , vol.190 , pp. 619-630
    • Kumar, S.1    Kumar, S.2    Nandi, S.3
  • 7
    • 79953811849 scopus 로고    scopus 로고
    • A survey of outlier detection methods in network anomaly identification
    • Gogoi, P., Bhattacharyya, D.K., Borah, B. and Kalita, J.K. (2011) A survey of outlier detection methods in network anomaly identification. Comput. J., 54, 570-588
    • (2011) Comput. J. , vol.54 , pp. 570-588
    • Gogoi, P.1    Bhattacharyya, D.K.2    Borah, B.3    Kalita, J.K.4
  • 8
    • 84892838433 scopus 로고    scopus 로고
    • Catsub: A technique for clustering categorical data based on subspace
    • Borah, B. and Bhattacharyya, D.K. (2008) Catsub: A technique for clustering categorical data based on subspace. ICFAI J. Comput. Sci., II, 7-20
    • (2008) ICFAI J. Comput. Sci , vol.2 , pp. 7-20
    • Borah, B.1    Bhattacharyya, D.K.2
  • 10
    • 84962260018 scopus 로고    scopus 로고
    • Evaluating intrusion detection systems: The 1998 darpa off-line intrusion detection evaluation
    • Los Alamitos, CA, USA IEEE Computer Society Press
    • Lippmann, R. et al. (2000) Evaluating Intrusion Detection Systems: The 1998 DARPA Off-Line Intrusion Detection Evaluation. Proc. DARPA Information Survivability Conf. and Exposition (DISCEX) 2000, Los Alamitos, CA, USA, pp. 12-26. IEEE Computer Society Press
    • (2000) Proc. DARPA Information Survivability Conf. and Exposition (DISCEX 2000 , pp. 12-26
    • Lippmann, R.1
  • 11
    • 0142253852 scopus 로고    scopus 로고
    • ADAM: A testbed for exploring the use of data mining in intrusion detection
    • Daniel, B., Julia, C., Sushil, J. and Ningning,W. (2001)ADAM: A testbed for exploring the use of data mining in intrusion detection. SIGMOD Rec., 30, 15-24
    • (2001) SIGMOD Rec , vol.30 , pp. 15-24
    • Daniel, B.1    Julia, C.2    Sushil, J.3    Ningning, W.4
  • 12
    • 24944591774 scopus 로고    scopus 로고
    • Adwice- Anomaly detection with real-Time incremental clustering
    • Berlin, Germany, May Springer, Berlin
    • Burbeck, K. and Nadjm-Tehrani, S. (2005) ADWICE- Anomaly Detection with Real-Time Incremental Clustering. Proc. Information Security and Cryptology-ICISC 2004, Berlin, Germany, May, pp. 407-424. Springer, Berlin
    • (2005) Proc. Information Security and Cryptology-ICISC 2004 , pp. 407-424
    • Burbeck, K.1    Nadjm-Tehrani, S.2
  • 13
    • 35648969617 scopus 로고    scopus 로고
    • A denial of service detector based on maximum likelihood detection and the random
    • Oke, G. and Loukas, G. (2007) A denial of service detector based on maximum likelihood detection and the random neural network. Comput. J., 50, 717-727
    • (2007) Neural Network. Comput. J. , vol.50 , pp. 717-727
    • Oke, G.1    Loukas, G.2
  • 16
    • 80053510589 scopus 로고    scopus 로고
    • Surveying port scans and their detection methodologies
    • Bhuyan, M.H., Bhattacharyya, D.K. and Kalita, J.K. (2011) Surveying port scans and their detection methodologies. Comput. J., 54, 1-17
    • (2011) Comput. J. , vol.54 , pp. 1-17
    • Bhuyan, M.H.1    Bhattacharyya, D.K.2    Kalita, J.K.3
  • 17
    • 84897420454 scopus 로고    scopus 로고
    • Anomaly detection and prevention in network traffic based on statistical approach and a- stable model
    • Bhange, A. and Utareja, S. (2012) Anomaly detection and prevention in network traffic based on statistical approach and a- stable model. Int. J. Adv. Res. Comput. Eng. Technol., 1, 690-698
    • (2012) Int. J. Adv. Res. Comput. Eng. Technol , vol.1 , pp. 690-698
    • Bhange, A.1    Utareja, S.2
  • 19
    • 0030157145 scopus 로고    scopus 로고
    • Birch: An efficient data clustering method forvery large databases
    • Montreal, Quebec, Canada, June 4-6 ACM Press
    • Zhang, T., Ramakrishnan, R. and Livny, M. (1996) Birch: An Efficient Data Clustering Method forVery Large Databases. Proc. 1996 ACM SIGMOD, Montreal, Quebec, Canada, June 4-6, pp. 103-114. ACM Press
    • (1996) Proc. 1996 ACM SIGMOD , pp. 103-114
    • Zhang, T.1    Ramakrishnan, R.2    Livny, M.3
  • 20
    • 84868695480 scopus 로고    scopus 로고
    • Unsupervised anomaly detection in network intrusion detection using clusters
    • Newcastle, NSW, Australia, January/February Australian Computer Society, Inc. Darlinghurst
    • Leung, K. and Leckie, C. (2005) Unsupervised Anomaly Detection in Network Intrusion Detection Using Clusters. Proc. 28th Australasian Conf. Computer Science, Vol. 38, Newcastle, NSW, Australia, January/February, pp. 333-342. Australian Computer Society, Inc. Darlinghurst
    • (2005) Proc. 28th Australasian Conf. Computer Science , vol.38 , pp. 333-342
    • Leung, K.1    Leckie, C.2
  • 22
    • 84994158589 scopus 로고    scopus 로고
    • Sting:A statistical information grid approach to spatial data mining
    • San Francisco, CA, USA Morgan Kaufmann
    • Wang,W.,Yang, J. and Muntz, R.R. (1997) STING:A Statistical Information Grid Approach to Spatial Data Mining. In Proc. of 23rd Int. Conf. on Very Large Databases, San Francisco, CA, USA, pp. 186-195. Morgan Kaufmann
    • (1997) Proc. of 23rd Int. Conf. on Very Large Databases , pp. 186-195
    • WangW.Yang, J.1    Muntz, R.R.2
  • 23
    • 84949487685 scopus 로고    scopus 로고
    • A scalable parallel subspace clustering algorithm for massive data sets
    • Toronto, Canada, August 21-24 IEEE Computer Society
    • Nagesh, H.S., Goil, S. and Choudhary, A.N. (2000) A Scalable Parallel Subspace Clustering Algorithm for Massive Data Sets. Proc. ICPP 2000, Toronto, Canada, August 21-24, p. 477. IEEE Computer Society
    • (2000) Proc. ICPP 2000 , pp. 477
    • Nagesh, H.S.1    Goil, S.2    Choudhary, A.N.3
  • 25
    • 25844491810 scopus 로고    scopus 로고
    • An intelligent intrusion detection system (IDS) for anomaly and misuse detection in computer networks
    • Depren, O., Topllar, M., Anarim, E. and Ciliz, M.K. (2005) An intelligent intrusion detection system (IDS) for anomaly and misuse detection in computer networks. Expert Syst. Appl., 29, 713-722
    • (2005) Expert Syst. Appl , vol.29 , pp. 713-722
    • Depren, O.1    Topllar, M.2    Anarim, E.3    Ciliz, M.K.4
  • 26
    • 33750955638 scopus 로고    scopus 로고
    • A hybrid network intrusion detection technique using random forests
    • Reliability and Security, ARES 2006, Vienna, Austria IEEE Xplore
    • Zhang, J. and Zulkernine, M. (2006)A Hybrid Network Intrusion Detection Technique Using Random Forests. Proc. 1st Int. Conf. Availability, Reliability and Security, ARES 2006, Vienna, Austria, pp. 262-269. IEEE Xplore
    • (2006) Proc. 1st Int. Conf. Availability , pp. 262-269
    • Zhang, J.1    Zulkernine, M.2
  • 27
    • 33847743856 scopus 로고    scopus 로고
    • Hybrid intrusion detection with weighted signature generation over anomalous internet episodes
    • Hwang, K., Cai, M., Chen,Y. and Qin, M. (2007) Hybrid intrusion detection with weighted signature generation over anomalous internet episodes. IEEE Trans. Dependable Secur. Comput., 4, 41-55
    • (2007) IEEE Trans. Dependable Secur. Comput , vol.4 , pp. 41-55
    • Hwang, K.1    Cai, M.2    Chen, Y.3    Qin, M.4
  • 28
    • 62249168871 scopus 로고    scopus 로고
    • A hybrid intrusion detection system design for computer network security
    • Aydyn, M.A., Zaim, A.H. and Ceylan, K.G. (2009) A hybrid intrusion detection system design for computer network security. Comput. Electr. Eng., 35, 517-526
    • (2009) Comput. Electr. Eng , vol.35 , pp. 517-526
    • Aydyn, M.A.1    Zaim, A.H.2    Ceylan, K.G.3
  • 29
    • 11244249796 scopus 로고    scopus 로고
    • Design of multiple- level tree classifiers for intrusion detection system
    • Singapore, December IEEE Xplore
    • Xiang, C., Chong, M.Y. and Zhu, H.L. (2004) Design of Multiple- Level Tree Classifiers for Intrusion Detection System. Proc. 2004 IEEE Conf. Cybernetics and Intelligent Systems, Singapore, December, pp. 872-877. IEEE Xplore
    • (2004) Proc. 2004 IEEE Conf. Cybernetics and Intelligent Systems , pp. 872-877
    • Xiang, C.1    Chong, M.Y.2    Zhu, H.L.3
  • 30
    • 33748100382 scopus 로고    scopus 로고
    • RT-UNNID: A practical solution to real-Time network-based intrusion detection using unsupervised neural networks
    • Amini, M., Jalili, R. and Shahriari, H.R. (2006) RT-UNNID: A practical solution to real-Time network-based intrusion detection using unsupervised neural networks. Comput. Secur., 25, 459-468
    • (2006) Comput. Secur , vol.25 , pp. 459-468
    • Amini, M.1    Jalili, R.2    Shahriari, H.R.3
  • 32
    • 84883271942 scopus 로고    scopus 로고
    • Selecting features for intrusion detection: A feature relevance analysis on kdd 99 intrusion detection datasets
    • Security and Trust, Halifax, NS, Canada, October. Dalhousie University
    • Kayacik, H.G., Heywood, A.N.Z. and Heywood, M.I. (2005) Selecting Features for Intrusion Detection: A Feature Relevance Analysis on KDD 99 Intrusion Detection Datasets. Proc. 3rd Annual Conf. Privacy, Security and Trust, Halifax, NS, Canada, October. Dalhousie University
    • (2005) Proc. 3rd Annual Conf. Privacy
    • Kayacik, H.G.1    Heywood, A.N.Z.2    Heywood, M.I.3
  • 33
    • 84941155240 scopus 로고
    • Well separated clusters and optimal fuzzy partitions
    • Dunn, J. (1974) Well separated clusters and optimal fuzzy partitions. J. Cybern., 4, 95-104
    • (1974) J. Cybern , vol.4 , pp. 95-104
    • Dunn, J.1
  • 34
    • 85004899658 scopus 로고
    • Quadratic assignment as a general data analysis strategy
    • Huberi, L. and Schultz, J. (1976) Quadratic assignment as a general data analysis strategy. Br. J. Math. Stat. Psychol., 29, 190-241
    • (1976) Br. J. Math. Stat. Psychol , vol.29 , pp. 190-241
    • Huberi, L.1    Schultz, J.2
  • 36
    • 0023453329 scopus 로고
    • Silhouettes: A graphical aid to the interpretation and validation of cluster analysis
    • Rousseeuw, P.J. (1987) Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math., 20, 53-65
    • (1987) J. Comput. Appl. Math , vol.20 , pp. 53-65
    • Rousseeuw, P.J.1
  • 38
    • 78649411182 scopus 로고    scopus 로고
    • Feature selection based on rough set and modified genetic algorithm for intrusion detection
    • Hefei, China, August 24-27I EEEXplore
    • Guo,Y. et al. (2010) Feature Selection Based on Rough Set and Modified Genetic Algorithm for Intrusion Detection. Proc. 5th Int. Conf. Computer Science &Education, Hefei, China, August 24-27, pp. 1441-1446. IEEEXplore
    • (2010) Proc. 5th Int. Conf. Computer Science &Education , pp. 1441-1446
    • Guo, Y.1
  • 39
    • 33745772192 scopus 로고    scopus 로고
    • Ranking outliers using symmetric neighborhood relationship
    • Advances in Knowledge Discovery and Data Mining (PAKDD Singapore
    • Jin, W., Tung, A.K.H., Han, J. and Wang, W. (2006) Ranking Outliers Using Symmetric Neighborhood Relationship. Proc. 10th Pacific-Asia Conf. Advances in Knowledge Discovery and Data Mining (PAKDD), Singapore, pp. 577-593
    • (2006) Proc. 10th Pacific-Asia Conf , pp. 577-593
    • Jin, W.1    Tung, A.K.H.2    Han, J.3    Wang, W.4
  • 40
    • 0031162081 scopus 로고    scopus 로고
    • The sr-Tree: An index structure for high-dimensional nearest neighbor queries
    • SIGMOD ?97, NY, USA, June. ACM, NewYork
    • Katayama, N. and Satoh, S. (1997) The SR-Tree: An Index Structure for High-dimensional Nearest Neighbor Queries. Proc. 1997 ACM SIGMOD Int. Conf. Management of data, SIGMOD ?97, NY, USA, June. ACM, NewYork
    • (1997) Proc. 1997 ACM SIGMOD Int. Conf. Management of data
    • Katayama, N.1    Satoh, S.2
  • 41
    • 84868286263 scopus 로고    scopus 로고
    • Packet and flow based network intrusion dataset
    • Noida, India, August 6-8, Communications in Computer and Information Science (CCIS Springer, Berlin
    • Gogoi, P., Bhuyan, M.H., Bhattacharyya, D.K. and Kalita, J.K. (2012) Packet and Flow Based Network Intrusion Dataset. Proc. 5th Int. Conf. Contemporary Computing (IC3-2012), Noida, India, August 6-8, Communications in Computer and Information Science (CCIS) 306, pp. 322-334. Springer, Berlin
    • (2012) Proc. 5th Int. Conf. Contemporary Computing (IC3-2012 , vol.306 , pp. 322-334
    • Gogoi, P.1    Bhuyan, M.H.2    Bhattacharyya, D.K.3    Kalita, J.K.4
  • 42
    • 0003704318 scopus 로고    scopus 로고
    • CA University of California, Department of Information and Computer Science
    • Hettich, S. and Bay, S.D. (1999) The UCI KDD archive. Irvine, CA: University of California, Department of Information and Computer Science. http://kdd.ics.uci.edu
    • (1999) The UCI KDD archive. Irvine
    • Hettich, S.1    Bay, S.D.2
  • 46
    • 84897406417 scopus 로고    scopus 로고
    • 2009). http://www.wireshark.org/
    • (2009)
  • 47
    • 84897372595 scopus 로고    scopus 로고
    • Rfc 3917: Requirements for IP flow information export: IPFIX
    • Quittek, J., Zseby, T., Claise, B. and Zender, S. (2004) Rfc 3917: Requirements for IP flow information export: IPFIX, Hawthorn Victoria. http://www.ietf.org/rfc/rfc3917.txt
    • (2004) Hawthorn Victoria
    • Quittek, J.1    Zseby, T.2    Claise, B.3    Zender, S.4
  • 54
  • 55
    • 77949593871 scopus 로고    scopus 로고
    • Three-level hybrid intrusion detection system
    • ICIECS 2009, Shanghai, China, December 19-20 IEEE
    • Lu, H. and Xu, J. (2009) Three-Level Hybrid Intrusion Detection System. Proc. Int. Conf. Information Engineering and Computer Science, ICIECS 2009, Shanghai, China, December 19-20, pp. 1-4. IEEE
    • (2009) Proc. Int. Conf. Information Engineering and Computer Science , pp. 1-4
    • Lu, H.1    Xu, J.2
  • 56
    • 40849099949 scopus 로고    scopus 로고
    • Design of multiplelevel hybrid classifier for intrusion detection system using Bayesian clustering and decision trees
    • Xiang, C.,Yong, P.C. and Meng, L.S. (2008) Design of multiplelevel hybrid classifier for intrusion detection system using Bayesian clustering and decision trees. Pattern Recognit. Lett., 29, 918-924
    • (2008) Pattern Recognit. Lett , vol.29 , pp. 918-924
    • Xiang C.Yong, P.C.1    Meng, L.S.2
  • 59
    • 2442537609 scopus 로고    scopus 로고
    • Nsom:A tool to detect denial of service attacks using self-organizing maps
    • University of California, Davis, CA, USA
    • Labib, K. andVemuri, R. (2002) NSOM:A Tool to Detect Denial of Service Attacks Using Self-Organizing Maps. Technical Report. Department of Applied Science University of California, Davis, CA, USA
    • (2002) Technical Report. Department of Applied Science
    • Labib, K.1    Vemuri, R.2
  • 61
    • 34250167266 scopus 로고    scopus 로고
    • Flow- based statistical aggregation schemes for network anomaly detection
    • Sensing, Florida, USA, April 23-25 IEEE
    • Song, S., Ling, L. and Manikopoulo, C.N. (2006) Flow- Based Statistical Aggregation Schemes for Network Anomaly Detection. Proc. IEEE Int. Conf. Networking, Sensing, Florida, USA, April 23-25, pp. 786-791. IEEE
    • (2006) Proc. IEEE Int. Conf. Networking , pp. 786-791
    • Song, S.1    Ling, L.2    Manikopoulo, C.N.3
  • 62
    • 27544490151 scopus 로고    scopus 로고
    • Nfids: A neuro-fuzzy intrusion detection system
    • Circuits and Systems(ICECS) Iran, December IEEE Xplore
    • Mohajerani, M., Moeini, A. and Kianie, M. (2003) NFIDS: A Neuro-Fuzzy Intrusion Detection System. Proc. 10th IEEE Int. Conf. Electronics, Circuits and Systems(ICECS), Iran, December, pp. 348-351. IEEE Xplore
    • (2003) Proc. 10th IEEE Int. Conf. Electronics , pp. 348-351
    • Mohajerani, M.1    Moeini, A.2    Kianie, M.3
  • 63
    • 0141464248 scopus 로고    scopus 로고
    • Hide: A hierarchical network intrusion detection system using statistical preprocessing and neural network classification
    • Workshop, Seattle, WA, USA, April IEEE Xplore
    • Zhang, Z., Li, J., Manikopoulos, C.N., Jorgenson, J. and Ucles, J. (2001) HIDE: A Hierarchical Network Intrusion Detection System Using Statistical Preprocessing and Neural Network Classification. Proc. 2001 IEEE Man Systems and Cybernetics Information Assurance Workshop, Seattle, WA, USA, April, pp. 85-90. IEEE Xplore
    • (2001) Proc. 2001 IEEE Man Systems and Cybernetics Information Assurance , pp. 85-90
    • Zhang, Z.1    Li, J.2    Manikopoulos, C.N.3    Jorgenson, J.4    Ucles, J.5
  • 66
    • 49049103451 scopus 로고    scopus 로고
    • Dnids: A dependable network intrusion detection system using the csi-knn algorithm master?s
    • Ontario, Canada
    • Kuang, L.V. (2007) DNIDS: A dependable network intrusion detection system using the CSI-KNN algorithm. Master?s Thesis, Queen?s University Kingston, Ontario, Canada
    • (2007) Thesis Queen?s University Ki6ngston
    • Kuang, L.V.1
  • 68
    • 25844450147 scopus 로고    scopus 로고
    • Outlier detection algorithms in data mining systems
    • Petrovskiy, M.I. (2003) Outlier detection algorithms in data mining systems. Program. Comput. Softw., 29, 228-237
    • (2003) Program. Comput. Softw , vol.29 , pp. 228-237
    • Petrovskiy, M.I.1
  • 69
    • 84897452962 scopus 로고    scopus 로고
    • Fast lightweight outlier detection in mixed-Attribute data.technical report
    • The Ohio State University Ohio, USA
    • Otey, M.E., Parthasarathy, S. and Ghoting, A. (2005) Fast Lightweight Outlier Detection in Mixed-Attribute Data.Technical Report. Department of Computer Science and Engineering, The Ohio State University, Ohio, USA
    • (2005) Department of Computer Science and Engineering
    • Otey, M.E.1    Parthasarathy, S.2    Ghoting, A.3
  • 70
    • 62949154974 scopus 로고    scopus 로고
    • Cluster-based outlier detection
    • Duan, L., Xu, L., Liu,Y. and Lee, J. (2008) Cluster-based outlier detection. Ann. Oper. Res., 168, 151-168
    • (2008) Ann. Oper. Res , vol.168 , pp. 151-168
    • Duan, L.1    Xu, L.2    Liu, Y.3    Lee, J.4
  • 72
    • 0002948319 scopus 로고    scopus 로고
    • Algorithms for mining distance- based outliers in large datasets
    • New York, NY, USA, August 24-27 Morgan Kaufmann
    • Knorr, E.M. and Ng, R. (1998) Algorithms for Mining Distance- Based Outliers in Large Datasets. Proc. 24th Int. Conf.Very Large Data Bases (VLDB 1998), New York, NY, USA, August 24-27, pp. 392-403. Morgan Kaufmann.
    • (1998) Proc. 24th Int. Conf.Very Large Data Bases (VLDB 1998 , pp. 392-403
    • Knorr, E.M.1    Ng, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.