-
1
-
-
0030157145
-
Birch: An efficient data clustering method for very large databases
-
Zhang, T., Ramakrishnan, R., Livny, M.: Birch: an efficient data clustering method for very large databases. In: SIGMOD Record 1996 ACM SIGMOD International Conference on Management of Data, pp. 103-114 (1996)
-
(1996)
SIGMOD Record 1996 ACM SIGMOD International Conference on Management of Data
, pp. 103-114
-
-
Zhang, T.1
Ramakrishnan, R.2
Livny, M.3
-
2
-
-
24944591774
-
ADWICE - Anomaly detection with real-time incremental clustering
-
Park, C.-s., Chee, S. (eds.) ICISC 2004. Springer, Heidelberg
-
Burbeck, K., Nadjm-Tehrani, S.: ADWICE - anomaly detection with real-time incremental clustering. In: Park, C.-s., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 407-424. Springer, Heidelberg (2005)
-
(2005)
LNCS
, vol.3506
, pp. 407-424
-
-
Burbeck, K.1
Nadjm-Tehrani, S.2
-
4
-
-
77949796969
-
Network Intrusion Detection
-
Mukhrjee, B., Levitt, N.: Network Intrusion Detection. IEEE Networks 24, 26-29 (2005)
-
(2005)
IEEE Networks
, vol.24
, pp. 26-29
-
-
Mukhrjee, B.1
Levitt, N.2
-
5
-
-
2342457929
-
Data mining aided signature discovery in network-based intrusion detection system
-
Han, H., Lu, X.L., Lu, J., Bo, C.: Data mining aided signature discovery in network-based intrusion detection system. ACM SIGOPS Operating System Review 36, 7-13 (2002)
-
(2002)
ACM SIGOPS Operating System Review
, vol.36
, pp. 7-13
-
-
Han, H.1
Lu, X.L.2
Lu, J.3
Bo, C.4
-
6
-
-
51149102669
-
An application of supervised and Unsupervised learning approaches to telecommunications fraud detection
-
Hilas, C.S., Mastorocostas, P.A.: An application of supervised and Unsupervised learning approaches to telecommunications fraud detection. ACM Journal of Knowledge-Based systems 21, 721-726 (2008)
-
(2008)
ACM Journal of Knowledge-Based Systems
, vol.21
, pp. 721-726
-
-
Hilas, C.S.1
Mastorocostas, P.A.2
-
7
-
-
79952544959
-
Research and application of one-class small hypersphere Support Vector Machine for Network anomaly detection
-
Kumar, S., Nandi, S., Biswas, S.: Research and application of one-class small hypersphere Support Vector Machine for Network anomaly detection. In: The Third International Conference on Communication System and Networks (COMSNETS), pp. 1-4 (2011)
-
(2011)
The Third International Conference on Communication System and Networks (COMSNETS)
, pp. 1-4
-
-
Kumar, S.1
Nandi, S.2
Biswas, S.3
-
8
-
-
77953620856
-
A novel unsupervised classification approach for network anomaly detection by k-means clustering and ID3 decision tree learning method
-
Yasami, Y., Mozaffari, S.P.: A novel unsupervised classification approach for network anomaly detection by k-means clustering and ID3 decision tree learning method. ACM Jounal of Supercomputing 53, 231-245 (2010)
-
(2010)
ACM Jounal of Supercomputing
, vol.53
, pp. 231-245
-
-
Yasami, Y.1
Mozaffari, S.P.2
-
9
-
-
0036647190
-
An efficient k-Mean clustering Algorithm: Analysis and Implement
-
Kanungo, T., Mount, D.M., Netanyahu, N.S.: An efficient k-Mean clustering Algorithm: Analysis and Implement. ACM/IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 881-892 (2002)
-
(2002)
ACM/IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.24
, pp. 881-892
-
-
Kanungo, T.1
Mount, D.M.2
Netanyahu, N.S.3
-
10
-
-
34250838601
-
A study on fuzzy C-mean clustering-based systems in automatic spike detection
-
Hilal Inan, Z., Kuntalp, M.: A study on fuzzy C-mean clustering-based systems in automatic spike detection. ACM Journal of Computers in Biology and Medicine 37, 1160-1166 (2007)
-
(2007)
ACM Journal of Computers in Biology and Medicine
, vol.37
, pp. 1160-1166
-
-
Hilal Inan, Z.1
Kuntalp, M.2
-
11
-
-
85170282443
-
A Desnsity-Based Algorithm for Discovering Clusters in Large Spatial Databased with Noise
-
Ester, M., Kriegel, H.-P., Sander, J.: A Desnsity-Based Algorithm for Discovering Clusters in Large Spatial Databased with Noise. In: Proceeding on 2nd International Conference on Knowledge Discovery and Data Mining, pp. 226-231 (1996)
-
(1996)
Proceeding on 2nd International Conference on Knowledge Discovery and Data Mining
, pp. 226-231
-
-
Ester, M.1
Kriegel, H.-P.2
Sander, J.3
|