-
2
-
-
79953865926
-
Training linear ranking SVMs in linearithmic time using red-black trees
-
Airola, A., Pahikkala, T., & Salakoski, T. (2011). Training linear ranking SVMs in linearithmic time using red-black trees. Pattern Recognition Letters, 32(9), 1328-1336.
-
(2011)
Pattern Recognition Letters
, vol.32
, Issue.9
, pp. 1328-1336
-
-
Airola, A.1
Pahikkala, T.2
Salakoski, T.3
-
4
-
-
0015475519
-
Symmetric binary B-trees: Data structure and maintenance algorithms
-
Bayer, R. (1972). Symmetric binary B-trees: Data structure and maintenance algorithms. Acta Informatica, 1, 290-306.
-
(1972)
Acta Informatica
, vol.1
, pp. 290-306
-
-
Bayer, R.1
-
6
-
-
0035478854
-
Random forests
-
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
9
-
-
77953642308
-
Efficient algorithms for ranking with SVMs
-
Chapelle, O., & Keerthi, S. S. (2010). Efficient algorithms for ranking with SVMs. Information Retrieval, 13(3), 201-215.
-
(2010)
Information Retrieval
, vol.13
, Issue.3
, pp. 201-215
-
-
Chapelle, O.1
Keerthi, S.S.2
-
10
-
-
33746035297
-
Fast algorithms for the calculation of Kendall's τ
-
Christensen, D. (2005). Fast algorithms for the calculation of Kendall's τ. Computational Statistics, 20, 51-62.
-
(2005)
Computational Statistics
, vol.20
, pp. 51-62
-
-
Christensen, D.1
-
12
-
-
34249753618
-
Support-vector network
-
Cortes, C., & Vapnik, V. (1995). Support-vector network. Machine Learning, 20, 273-297.
-
(1995)
Machine Learning
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
13
-
-
50949133669
-
LIBLINEAR: A library for large linear classification
-
Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., & Lin, C.-J. (2008). LIBLINEAR: A library for large linear classification. Journal of Machine Learning Research, 9, 1871-1874.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 1871-1874
-
-
Fan, R.-E.1
Chang, K.-W.2
Hsieh, C.-J.3
Wang, X.-R.4
Lin, C.-J.5
-
14
-
-
0035470889
-
Greedy function approximation: A gradient boosting machine
-
Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189-1232.
-
(2001)
Annals of Statistics
, vol.29
, Issue.5
, pp. 1189-1232
-
-
Friedman, J.H.1
-
15
-
-
70349524223
-
A disquisition on the performance behavior of binary search tree data structures
-
Heger, D. A. (2004). A disquisition on the performance behavior of binary search tree data structures. European Journal for the Informatics Professional, 5(5), 67-75.
-
(2004)
European Journal for the Informatics Professional
, vol.5
, Issue.5
, pp. 67-75
-
-
Heger, D.A.1
-
16
-
-
0008371352
-
Large margin rank boundaries for ordinal regression
-
P. J. Bartlett, B. Scḧolkopf, D. Schuurmans, & A. J. Smola (Eds.), Cambridge, MA: MIT Press
-
Herbrich, R., Graepel, T., & Obermayer, K. (2000). Large margin rank boundaries for ordinal regression. In P. J. Bartlett, B. Scḧolkopf, D. Schuurmans, & A. J. Smola (Eds.), Advances in large margin classifiers (pp. 115-132). Cambridge, MA: MIT Press.
-
(2000)
Advances in large margin classifiers
, pp. 115-132
-
-
Herbrich, R.1
Graepel, T.2
Obermayer, K.3
-
18
-
-
1842637192
-
Cumulated gain-based evaluation of IR techniques
-
J̈arvelin, K., & Kek̈al̈ainen, J. (2002). Cumulated gain-based evaluation of IR techniques. ACM Transactions on Information Systems, 20(4), 422-446.
-
(2002)
ACM Transactions on Information Systems
, vol.20
, Issue.4
, pp. 422-446
-
-
J̈arvelin, K.1
Kek̈al̈ainen, J.2
-
21
-
-
21844461582
-
A modified finite Newton method for fast solution of large scale linear SVMs
-
Keerthi, S. S., & DeCoste, D. (2005). A modified finite Newton method for fast solution of large scale linear SVMs. Journal of Machine Learning Research, 6, 341-361.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 341-361
-
-
Keerthi, S.S.1
DeCoste, D.2
-
22
-
-
0002282074
-
A newmeasure of rank correlation
-
Kendall, M. G. (1938). A newmeasure of rank correlation. Biometrika, 30(1/2), 81-93.
-
(1938)
Biometrika
, vol.30
, Issue.1-2
, pp. 81-93
-
-
Kendall, M.G.1
-
24
-
-
0033436056
-
Newton's method for large-scale bound constrained problems
-
Lin, C.-J., & Moŕe, J. J. (1999). Newton's method for large-scale bound constrained problems. SIAM Journal on Optimization, 9, 1100-1127.
-
(1999)
SIAM Journal on Optimization
, vol.9
, pp. 1100-1127
-
-
Lin, C.-J.1
Moŕe, J.J.2
-
25
-
-
44649088319
-
Trust region Newton method for large-scale logistic regression
-
Lin, C.-J., Weng, R. C., & Keerthi, S. S. (2008). Trust region Newton method for large-scale logistic regression. Journal of Machine Learning Research, 9, 627-650.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 627-650
-
-
Lin, C.-J.1
Weng, R.C.2
Keerthi, S.S.3
-
27
-
-
0036817951
-
A finite Newton method for classification
-
Mangasarian, O. L. (2002). A finite Newton method for classification. Optimization Methods and Software, 17(5), 913-929.
-
(2002)
Optimization Methods and Software
, vol.17
, Issue.5
, pp. 913-929
-
-
Mangasarian, O.L.1
-
28
-
-
84857846578
-
Web-search ranking with initialized gradient boosted regression trees
-
Mohan, A., Chen, Z., & Weinberger, K. (2011). Web-search ranking with initialized gradient boosted regression trees. In JMLR Workshop and Conference Proceedings: Workshop on Yahoo! Learning to Rank Challenge (Vol. 14, pp. 77-89).
-
(2011)
JMLR Workshop and Conference Proceedings: Workshop on Yahoo! Learning to Rank Challenge
, vol.14
, pp. 77-89
-
-
Mohan, A.1
Chen, Z.2
Weinberger, K.3
-
29
-
-
84899460462
-
The Tencent dataset and KDD-Cup12
-
Niu, Y., Wang, Y., Sun, G., Yue, A., Dalessandro, B., Perlich, C., & Hamner, B. (2012). The Tencent dataset and KDD-Cup12. In ACM SIGKDD KDD-Cup WorkShop.
-
(2012)
ACM SIGKDD KDD-Cup WorkShop
-
-
Niu, Y.1
Wang, Y.2
Sun, G.3
Yue, A.4
Dalessandro, B.5
Perlich, C.6
Hamner, B.7
-
30
-
-
77954568972
-
LETOR: A benchmark collection for research on learning to rank for information retrieval
-
Qin, T., Liu, T.-Y., Xu, J., & Li, H. (2010). LETOR: A benchmark collection for research on learning to rank for information retrieval. Information Retrieval, 13(4), 346-374.
-
(2010)
Information Retrieval
, vol.13
, Issue.4
, pp. 346-374
-
-
Qin, T.1
Liu, T.-Y.2
Xu, J.3
Li, H.4
-
33
-
-
0000305846
-
The conjugate gradient method and trust regions in large scale optimization
-
Steihaug, T. (1983). The conjugate gradient method and trust regions in large scale optimization. SIAM Journal on Numerical Analysis, 20, 626-637.
-
(1983)
SIAM Journal on Numerical Analysis
, vol.20
, pp. 626-637
-
-
Steihaug, T.1
-
34
-
-
76749161402
-
Bundle methods for regularized risk minimization
-
Teo, C. H., Vishwanathan, S., Smola, A., & Le, Q. V. (2010). Bundle methods for regularized risk minimization. Journal of Machine Learning Research, 11, 311-365.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 311-365
-
-
Teo, C.H.1
Vishwanathan, S.2
Smola, A.3
Le, Q.V.4
-
35
-
-
84873421395
-
Parallel boosted regression trees for web search ranking
-
(pp. 387-396)
-
Tyree, S., Weinberger, K. Q., Agrawal, K., & Paykin, J. (2011). Parallel boosted regression trees for web search ranking. In Proceedings of the 20th International Conference on World Wide Web (pp. 387-396).
-
(2011)
In Proceedings of the 20th International Conference on World Wide Web
-
-
Tyree, S.1
Weinberger, K.Q.2
Agrawal, K.3
Paykin, J.4
-
37
-
-
84892638418
-
A two-stage ensemble of diverse models for advertisement ranking in KDD Cup 2012
-
NewYork
-
Wu, K.-W., Ferng, C.-S., Ho, C.-H., Liang, A.-C., Huang, C.-H., Shen, W.-Y.,.. Lin, H.-T. (2012). A two-stage ensemble of diverse models for advertisement ranking in KDD Cup 2012. In ACM SIGKDD KDD-Cup WorkShop. NewYork.
-
(2012)
ACM SIGKDD KDD-Cup WorkShop
-
-
Wu, K.-W.1
Ferng, C.-S.2
Ho, C.-H.3
Liang, A.-C.4
Huang, C.-H.5
Shen, W.-Y.6
Lin, H.-T.7
-
38
-
-
84865422696
-
-
Yuan, G.-X., Ho, C.-H., & Lin, C.-J. (2012). Recent advances of large-scale linear classification. Proceedings of the IEEE, 100(9), 2584-2603.
-
(2012)
Recent advances of large-scale linear classification. Proceedings of the IEEE
, vol.100
, Issue.9
, pp. 2584-2603
-
-
Yuan, G.-X.1
Ho, C.-H.2
Lin, C.-J.3
-
39
-
-
36448953520
-
A regression framework for learning ranking functions using relative relevance judgments
-
New York: ACM
-
Zheng, Z., Chen, K., Sun, G., & Zha, H. (2007). A regression framework for learning ranking functions using relative relevance judgments. In Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 287-294). New York: ACM.
-
(2007)
Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
, pp. 287-294
-
-
Zheng, Z.1
Chen, K.2
Sun, G.3
Zha, H.4
|