메뉴 건너뛰기




Volumn 13, Issue , 2012, Pages 3323-3348

Large-scale linear support vector regression

Author keywords

Coordinate descent methods; Newton methods; Support vector regression

Indexed keywords

COORDINATE DESCENT; LEARNING TECHNIQUES; SUPPORT VECTOR CLASSIFICATION; SUPPORT VECTOR REGRESSION (SVR); TRAINING METHODS;

EID: 84870928469     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (149)

References (25)
  • 3
    • 79955702502 scopus 로고    scopus 로고
    • Libsvm: A library for support vector machines
    • Software available at
    • Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2:27:1-27:27, 2011. Software available at http://www.csie.ntu.edu.tw/?cjlin/libsvm.
    • (2011) ACM Transactions on Intelligent Systems and Technology , pp. 2271-2727
    • Chang, C.-C.1    Lin, C.-J.2
  • 4
    • 34247849152 scopus 로고    scopus 로고
    • Training a support vector machine in the primal
    • Olivier Chapelle. Training a support vector machine in the primal. Neural Computation, 19(5): 1155-1178, 2007.
    • (2007) Neural Computation , vol.19 , Issue.5 , pp. 1155-1178
    • Chapelle, O.1
  • 5
    • 34249753618 scopus 로고
    • Support-vector network
    • Corina Cortes and Vladimir Vapnik. Support-vector network. Machine Learning, 20:273-297, 1995.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 8
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • Arthur E. Hoerl and Robert W. Kennard. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1):55-67, 1970.
    • (1970) Technometrics , vol.12 , Issue.1 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.W.2
  • 10
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale svm learning practical
    • Bernhard Scholkopf, Christopher J. C. Burges, and Alexander J. Smola, editors, Cambridge, MA, MIT Press
    • Thorsten Joachims. Making large-scale SVM learning practical. In Bernhard Sch?olkopf, Christopher J. C. Burges, and Alexander J. Smola, editors, Advances in Kernel Methods -Support Vector Learning, pages 169-184, Cambridge, MA, 1998. MIT Press.
    • (1998) Advances in Kernel Methods -Support Vector Learning , pp. 169-184
    • Joachims, T.1
  • 12
    • 21844461582 scopus 로고    scopus 로고
    • A modified finite newton method for fast solution of large scale linear svms
    • S. Sathiya Keerthi and Dennis DeCoste. A modified finite Newton method for fast solution of large scale linear SVMs. Journal of Machine Learning Research, 6:341-361, 2005.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 341-361
    • Keerthi, S.S.1    DeCoste, D.2
  • 14
    • 0040081684 scopus 로고    scopus 로고
    • A note on the decomposition methods for support vector regression
    • Shuo-Peng Liao, Hsuan-Tien Lin, and Chih-Jen Lin. A note on the decomposition methods for support vector regression. Neural Computation, 14:1267-1281, 2002.
    • (2002) Neural Computation , vol.14 , pp. 1267-1281
    • Liao, S.-P.1    Lin, H.-T.2    Lin, C.-J.3
  • 15
    • 0033436056 scopus 로고    scopus 로고
    • Newton's method for large bound-constrained optimization problems
    • PII S1052623498345075
    • Chih-Jen Lin and Jorge J. Moŕe. Newton's method for large-scale bound constrained problems. SIAM Journal on Optimization, 9:1100-1127, 1999. (Pubitemid 129489319)
    • (1999) SIAM Journal on Optimization , vol.9 , Issue.4 , pp. 1100-1127
    • Lin, C.-J.1    More, J.J.2
  • 16
    • 44649088319 scopus 로고    scopus 로고
    • Trust region newton method for largescale logistic regression
    • URL
    • Chih-Jen Lin, Ruby C. Weng, and S. Sathiya Keerthi. Trust region Newton method for largescale logistic regression. Journal of Machine Learning Research, 9:627-650, 2008. URL http://www.csie.ntu.edu.tw/?cjlin/papers/logistic.pdf.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 627-650
    • Lin, C.-J.1    Weng, R.C.2    Keerthi, S.S.3
  • 17
    • 0036817951 scopus 로고    scopus 로고
    • A finite Newton method for classification
    • DOI 10.1080/1055678021000028375
    • Olvi L. Mangasarian. A finite Newton method for classification. Optimization Methods and Software, 17(5):913-929, 2002. (Pubitemid 35476480)
    • (2002) Optimization Methods and Software , vol.17 , Issue.5 , pp. 913-929
    • Mangasarian, O.L.1
  • 18
    • 77956642913 scopus 로고    scopus 로고
    • Technical report, CORE Discussion Paper, Universit'e Catholique de Louvain, Louvain-la-Neuve, Louvain, Belgium,. URL
    • Yurii E. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. Technical report, CORE Discussion Paper, Universit'e Catholique de Louvain, Louvain-la-Neuve, Louvain, Belgium, 2010. URL http://www.ucl.be/cps/ucl/doc/core/documents/coredp2010-2web.pdf.
    • (2010) Efficiency of Coordinate Descent Methods on Huge-Scale Optimization Problems
    • Nesterov, Y.E.1
  • 19
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • Bernhard Sch?olkopf, Christopher J. C. Burges, and Alexander J. Smola, editors, Cambridge, MA, MIT Press
    • John C. Platt. Fast training of support vector machines using sequential minimal optimization. In Bernhard Sch?olkopf, Christopher J. C. Burges, and Alexander J. Smola, editors, Advances in Kernel Methods -Support Vector Learning, Cambridge, MA, 1998. MIT Press.
    • (1998) Advances in Kernel Methods -Support Vector Learning
    • Platt, J.C.1
  • 23
    • 46749146509 scopus 로고    scopus 로고
    • A coordinate gradient descent method for nonsmooth separable minimization
    • Paul Tseng and Sangwoon Yun. A coordinate gradient descent method for nonsmooth separable minimization. Mathematical Programming, 117:387-423, 2009.
    • (2009) Mathematical Programming , vol.117 , pp. 387-423
    • Tseng, P.1    Yun, S.2
  • 25
    • 79551500651 scopus 로고    scopus 로고
    • A comparison of optimization methods and software for large-scale l1-regularized linear classification
    • URL
    • Guo-Xun Yuan, Kai-Wei Chang, Cho-Jui Hsieh, and Chih-Jen Lin. A comparison of optimization methods and software for large-scale l1-regularized linear classification. Journal of Machine Learning Research, 11:3183-3234, 2010. URL http://www.csie.ntu.edu.tw/?cjlin/papers/l1.pdf.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 3183-3234
    • Yuan, G.-X.1    Chang, K.-W.2    Hsieh, C.-J.3    Lin, C.-J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.