-
3
-
-
79955702502
-
Libsvm: A library for support vector machines
-
Software available at
-
Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2:27:1-27:27, 2011. Software available at http://www.csie.ntu.edu.tw/?cjlin/libsvm.
-
(2011)
ACM Transactions on Intelligent Systems and Technology
, pp. 2271-2727
-
-
Chang, C.-C.1
Lin, C.-J.2
-
4
-
-
34247849152
-
Training a support vector machine in the primal
-
Olivier Chapelle. Training a support vector machine in the primal. Neural Computation, 19(5): 1155-1178, 2007.
-
(2007)
Neural Computation
, vol.19
, Issue.5
, pp. 1155-1178
-
-
Chapelle, O.1
-
5
-
-
34249753618
-
Support-vector network
-
Corina Cortes and Vladimir Vapnik. Support-vector network. Machine Learning, 20:273-297, 1995.
-
(1995)
Machine Learning
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
6
-
-
50949133669
-
Liblinear: A library for large linear classification
-
URL
-
Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. LIBLINEAR: A library for large linear classification. Journal of Machine Learning Research, 9:1871-1874, 2008. URL http://www.csie.ntu.edu.tw/?cjlin/ papers/liblinear.pdf.
-
(2008)
Journal Of Machine Learning Research
, vol.9
, pp. 1871-1874
-
-
Fan, R.-E.1
Chang, K.-W.2
Hsieh, C.-J.3
Wang, X.-R.4
Lin, C.-J.5
-
8
-
-
84942484786
-
Ridge regression: Biased estimation for nonorthogonal problems
-
Arthur E. Hoerl and Robert W. Kennard. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1):55-67, 1970.
-
(1970)
Technometrics
, vol.12
, Issue.1
, pp. 55-67
-
-
Hoerl, A.E.1
Kennard, R.W.2
-
9
-
-
56449086680
-
A dual coordinate descent method for large-scale linear svm
-
URL
-
Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin, S. Sathiya Keerthi, and Sellamanickam Sundararajan. A dual coordinate descent method for large-scale linear SVM. In Proceedings of the Twenty Fifth International Conference on Machine Learning (ICML), 2008. URL http://www.csie.ntu. edu.tw/?cjlin/papers/ cddual.pdf.
-
(2008)
Proceedings of the Twenty Fifth International Conference on Machine Learning (ICML)
-
-
Hsieh, C.-J.1
Chang, K.-W.2
Lin, C.-J.3
Keerthi, S.S.4
Sundararajan, S.5
-
10
-
-
0002714543
-
Making large-scale svm learning practical
-
Bernhard Scholkopf, Christopher J. C. Burges, and Alexander J. Smola, editors, Cambridge, MA, MIT Press
-
Thorsten Joachims. Making large-scale SVM learning practical. In Bernhard Sch?olkopf, Christopher J. C. Burges, and Alexander J. Smola, editors, Advances in Kernel Methods -Support Vector Learning, pages 169-184, Cambridge, MA, 1998. MIT Press.
-
(1998)
Advances in Kernel Methods -Support Vector Learning
, pp. 169-184
-
-
Joachims, T.1
-
12
-
-
21844461582
-
A modified finite newton method for fast solution of large scale linear svms
-
S. Sathiya Keerthi and Dennis DeCoste. A modified finite Newton method for fast solution of large scale linear SVMs. Journal of Machine Learning Research, 6:341-361, 2005.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 341-361
-
-
Keerthi, S.S.1
DeCoste, D.2
-
13
-
-
80053436853
-
Predicting risk from financial reports with regression
-
Shimon Kogan, Dimitry Levin, Bryan R. Routledge, Jacob S. Sagi, and Noah A. Smith. Predicting risk from financial reports with regression. In In Proceedings of the North American Association for Computational Linguistics Human Language Technologies Conference, pages 272-280, 2009.
-
(2009)
Proceedings of the North American Association for Computational Linguistics Human Language Technologies Conference
, pp. 272-280
-
-
Kogan, S.1
Levin, D.2
Routledge, B.R.3
Sagi, J.S.4
Smith, N.A.5
-
14
-
-
0040081684
-
A note on the decomposition methods for support vector regression
-
Shuo-Peng Liao, Hsuan-Tien Lin, and Chih-Jen Lin. A note on the decomposition methods for support vector regression. Neural Computation, 14:1267-1281, 2002.
-
(2002)
Neural Computation
, vol.14
, pp. 1267-1281
-
-
Liao, S.-P.1
Lin, H.-T.2
Lin, C.-J.3
-
15
-
-
0033436056
-
Newton's method for large bound-constrained optimization problems
-
PII S1052623498345075
-
Chih-Jen Lin and Jorge J. Moŕe. Newton's method for large-scale bound constrained problems. SIAM Journal on Optimization, 9:1100-1127, 1999. (Pubitemid 129489319)
-
(1999)
SIAM Journal on Optimization
, vol.9
, Issue.4
, pp. 1100-1127
-
-
Lin, C.-J.1
More, J.J.2
-
16
-
-
44649088319
-
Trust region newton method for largescale logistic regression
-
URL
-
Chih-Jen Lin, Ruby C. Weng, and S. Sathiya Keerthi. Trust region Newton method for largescale logistic regression. Journal of Machine Learning Research, 9:627-650, 2008. URL http://www.csie.ntu.edu.tw/?cjlin/papers/logistic.pdf.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 627-650
-
-
Lin, C.-J.1
Weng, R.C.2
Keerthi, S.S.3
-
17
-
-
0036817951
-
A finite Newton method for classification
-
DOI 10.1080/1055678021000028375
-
Olvi L. Mangasarian. A finite Newton method for classification. Optimization Methods and Software, 17(5):913-929, 2002. (Pubitemid 35476480)
-
(2002)
Optimization Methods and Software
, vol.17
, Issue.5
, pp. 913-929
-
-
Mangasarian, O.L.1
-
18
-
-
77956642913
-
-
Technical report, CORE Discussion Paper, Universit'e Catholique de Louvain, Louvain-la-Neuve, Louvain, Belgium,. URL
-
Yurii E. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. Technical report, CORE Discussion Paper, Universit'e Catholique de Louvain, Louvain-la-Neuve, Louvain, Belgium, 2010. URL http://www.ucl.be/cps/ucl/doc/core/documents/coredp2010-2web.pdf.
-
(2010)
Efficiency of Coordinate Descent Methods on Huge-Scale Optimization Problems
-
-
Nesterov, Y.E.1
-
19
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
Bernhard Sch?olkopf, Christopher J. C. Burges, and Alexander J. Smola, editors, Cambridge, MA, MIT Press
-
John C. Platt. Fast training of support vector machines using sequential minimal optimization. In Bernhard Sch?olkopf, Christopher J. C. Burges, and Alexander J. Smola, editors, Advances in Kernel Methods -Support Vector Learning, Cambridge, MA, 1998. MIT Press.
-
(1998)
Advances in Kernel Methods -Support Vector Learning
-
-
Platt, J.C.1
-
23
-
-
46749146509
-
A coordinate gradient descent method for nonsmooth separable minimization
-
Paul Tseng and Sangwoon Yun. A coordinate gradient descent method for nonsmooth separable minimization. Mathematical Programming, 117:387-423, 2009.
-
(2009)
Mathematical Programming
, vol.117
, pp. 387-423
-
-
Tseng, P.1
Yun, S.2
-
25
-
-
79551500651
-
A comparison of optimization methods and software for large-scale l1-regularized linear classification
-
URL
-
Guo-Xun Yuan, Kai-Wei Chang, Cho-Jui Hsieh, and Chih-Jen Lin. A comparison of optimization methods and software for large-scale l1-regularized linear classification. Journal of Machine Learning Research, 11:3183-3234, 2010. URL http://www.csie.ntu.edu.tw/?cjlin/papers/l1.pdf.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 3183-3234
-
-
Yuan, G.-X.1
Chang, K.-W.2
Hsieh, C.-J.3
Lin, C.-J.4
|