메뉴 건너뛰기




Volumn 8, Issue 1, 2014, Pages

Optimal experiment design for model selection in biochemical networks

Author keywords

Bayes factor; Inference; Model selection; Uncertainty

Indexed keywords

ARTICLE; BAYES THEOREM; BIOLOGICAL MODEL; BIOLOGY; NONLINEAR SYSTEM;

EID: 84896718163     PISSN: None     EISSN: 17520509     Source Type: Journal    
DOI: 10.1186/1752-0509-8-20     Document Type: Article
Times cited : (41)

References (66)
  • 1
    • 83455196008 scopus 로고    scopus 로고
    • Parameter adaptations during phenotype transitions in progressive diseases
    • 10.1186/1752-0509-5-174, 3354367, 22029623
    • Tiemann C, Vanlier J, Hilbers P, van Riel N. Parameter adaptations during phenotype transitions in progressive diseases. BMC Syst Biol 2011, 5:174. 10.1186/1752-0509-5-174, 3354367, 22029623.
    • (2011) BMC Syst Biol , vol.5 , pp. 174
    • Tiemann, C.1    Vanlier, J.2    Hilbers, P.3    van Riel, N.4
  • 2
    • 84875423272 scopus 로고    scopus 로고
    • Applications of analysis of dynamic adaptations in parameter trajectories
    • 10.1098/rsfs.2012.0084, 3638482, 23853705
    • van Riel NA, Tiemann CA, Vanlier J, Hilbers PA. Applications of analysis of dynamic adaptations in parameter trajectories. Interface Focus 2013, 3(2):20120084. 10.1098/rsfs.2012.0084, 3638482, 23853705.
    • (2013) Interface Focus , vol.3 , Issue.2 , pp. 20120084
    • van Riel, N.A.1    Tiemann, C.A.2    Vanlier, J.3    Hilbers, P.A.4
  • 3
    • 75149170173 scopus 로고    scopus 로고
    • Silencing of glycolysis in muscle: experimental observation and numerical analysis
    • 10.1113/expphysiol.2009.049841, 2893886, 19801387
    • Schmitz J, Van Riel N, Nicolay K, Hilbers P, Jeneson J. Silencing of glycolysis in muscle: experimental observation and numerical analysis. Exp Physiol 2010, 95(2):380-397. 10.1113/expphysiol.2009.049841, 2893886, 19801387.
    • (2010) Exp Physiol , vol.95 , Issue.2 , pp. 380-397
    • Schmitz, J.1    Van Riel, N.2    Nicolay, K.3    Hilbers, P.4    Jeneson, J.5
  • 7
    • 45949098576 scopus 로고    scopus 로고
    • Mathematical modeling and analysis of insulin clearance in vivo
    • 10.1186/1752-0509-2-43, 2430945, 18477391
    • Koschorreck M, Gilles E. Mathematical modeling and analysis of insulin clearance in vivo. BMC Syst Biol 2008, 2:43. 10.1186/1752-0509-2-43, 2430945, 18477391.
    • (2008) BMC Syst Biol , vol.2 , pp. 43
    • Koschorreck, M.1    Gilles, E.2
  • 8
    • 0036212767 scopus 로고    scopus 로고
    • Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors
    • 10.1038/nbt0402-370, 11923843
    • Schoeberl B, Eichler-Jonsson C, Gilles E, Müller G. Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat Biotechnol 2002, 20(4):370-375. 10.1038/nbt0402-370, 11923843.
    • (2002) Nat Biotechnol , vol.20 , Issue.4 , pp. 370-375
    • Schoeberl, B.1    Eichler-Jonsson, C.2    Gilles, E.3    Müller, G.4
  • 9
    • 0033834262 scopus 로고    scopus 로고
    • A metabolic control analysis of kinetic controls in ATP free energy metabolism in contracting skeletal muscle
    • Jeneson J, Westerhoff H, Kushmerick M. A metabolic control analysis of kinetic controls in ATP free energy metabolism in contracting skeletal muscle. Am J Physiol-Cell Physiol 2000, 279(3):C813-C832.
    • (2000) Am J Physiol-Cell Physiol , vol.279 , Issue.3
    • Jeneson, J.1    Westerhoff, H.2    Kushmerick, M.3
  • 10
    • 33846299581 scopus 로고    scopus 로고
    • Oxidative ATP synthesis in skeletal muscle is controlled by substrate feedback
    • Wu F, Jeneson J, Beard D. Oxidative ATP synthesis in skeletal muscle is controlled by substrate feedback. Am J Physiol-Cell Physiol 2007, 292:C115-C124.
    • (2007) Am J Physiol-Cell Physiol , vol.292
    • Wu, F.1    Jeneson, J.2    Beard, D.3
  • 12
    • 62549165395 scopus 로고    scopus 로고
    • BISEN: Biochemical simulation environment
    • 10.1093/bioinformatics/btp069, 2732302, 19244386
    • Vanlier J, Wu F, Qi F, Vinnakota K, Han Y, Dash R, Yang F, Beard D. BISEN: Biochemical simulation environment. Bioinformatics 2009, 25(6):836-837. 10.1093/bioinformatics/btp069, 2732302, 19244386.
    • (2009) Bioinformatics , vol.25 , Issue.6 , pp. 836-837
    • Vanlier, J.1    Wu, F.2    Qi, F.3    Vinnakota, K.4    Han, Y.5    Dash, R.6    Yang, F.7    Beard, D.8
  • 13
    • 84888062735 scopus 로고    scopus 로고
    • Parameter uncertainty in biochemical models described by ordinary differential equations
    • 10.1016/j.mbs.2013.03.006, 23535194
    • Vanlier J, Tiemann C, Hilbers P, van Riel N. Parameter uncertainty in biochemical models described by ordinary differential equations. Math Biosci 2013, 246(2):305-314. 10.1016/j.mbs.2013.03.006, 23535194.
    • (2013) Math Biosci , vol.246 , Issue.2 , pp. 305-314
    • Vanlier, J.1    Tiemann, C.2    Hilbers, P.3    van Riel, N.4
  • 14
    • 71049127915 scopus 로고    scopus 로고
    • An empirical Bayesian approach for model-based inference of cellular signaling networks
    • 10.1186/1471-2105-10-371, 2781012, 19900289
    • Klinke D. An empirical Bayesian approach for model-based inference of cellular signaling networks. BMC Bioinformatics 2009, 10:371. 10.1186/1471-2105-10-371, 2781012, 19900289.
    • (2009) BMC Bioinformatics , vol.10 , pp. 371
    • Klinke, D.1
  • 15
    • 84863564323 scopus 로고    scopus 로고
    • Calibrating spatio-temporal models of leukocyte dynamics against in vivo live-imaging data using approximate Bayesian computation
    • Taylor H, Barnes C, Huvet M, Bugeon L, Thorne T, Lamb J, Dallman M, Stumpf M, et al. Calibrating spatio-temporal models of leukocyte dynamics against in vivo live-imaging data using approximate Bayesian computation. Integr Biol 2012, 4(3):335-345.
    • (2012) Integr Biol , vol.4 , Issue.3 , pp. 335-345
    • Taylor, H.1    Barnes, C.2    Huvet, M.3    Bugeon, L.4    Thorne, T.5    Lamb, J.6    Dallman, M.7    Stumpf, M.8
  • 16
    • 67650760503 scopus 로고    scopus 로고
    • Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood
    • 10.1093/bioinformatics/btp358, 19505944
    • Raue A, Kreutz C, Maiwald T, Bachmann J, Schilling M, Klingmüller U, Timmer J. Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics 2009, 25(15):1923. 10.1093/bioinformatics/btp358, 19505944.
    • (2009) Bioinformatics , vol.25 , Issue.15 , pp. 1923
    • Raue, A.1    Kreutz, C.2    Maiwald, T.3    Bachmann, J.4    Schilling, M.5    Klingmüller, U.6    Timmer, J.7
  • 17
    • 77952481588 scopus 로고    scopus 로고
    • Parameter identification, experimental design and model falsification for biological network models using semidefinite programming
    • Hasenauer J, Waldherr S, Wagner K, Allgower F. Parameter identification, experimental design and model falsification for biological network models using semidefinite programming. Syst Biol IET 2010, 4(2):119-130.
    • (2010) Syst Biol IET , vol.4 , Issue.2 , pp. 119-130
    • Hasenauer, J.1    Waldherr, S.2    Wagner, K.3    Allgower, F.4
  • 18
    • 77953783032 scopus 로고    scopus 로고
    • Mass and information feedbacks through receptor endocytosis govern insulin signaling as revealed using a parameter-free modeling framework
    • 10.1074/jbc.M110.106849, 2888430, 20421297
    • Brännmark C, Palmér R, Glad S, Cedersund G, Strålfors P. Mass and information feedbacks through receptor endocytosis govern insulin signaling as revealed using a parameter-free modeling framework. J Biol Chem 2010, 285(26):20171. 10.1074/jbc.M110.106849, 2888430, 20421297.
    • (2010) J Biol Chem , vol.285 , Issue.26 , pp. 20171
    • Brännmark, C.1    Palmér, R.2    Glad, S.3    Cedersund, G.4    Strålfors, P.5
  • 19
    • 79952295497 scopus 로고    scopus 로고
    • Riemann manifold langevin and hamiltonian monte carlo methods
    • Girolami M, Calderhead B. Riemann manifold langevin and hamiltonian monte carlo methods. J R Stat Soci: Series B (Stat Methodol) 2011, 73(2):123-214.
    • (2011) J R Stat Soci: Series B (Stat Methodol) , vol.73 , Issue.2 , pp. 123-214
    • Girolami, M.1    Calderhead, B.2
  • 20
    • 58849162806 scopus 로고    scopus 로고
    • Systems biology: model based evaluation and comparison of potential explanations for given biological data
    • 10.1111/j.1742-4658.2008.06845.x, 19215297
    • Cedersund G, Roll J. Systems biology: model based evaluation and comparison of potential explanations for given biological data. FEBS J 2009, 276(4):903-922. 10.1111/j.1742-4658.2008.06845.x, 19215297.
    • (2009) FEBS J , vol.276 , Issue.4 , pp. 903-922
    • Cedersund, G.1    Roll, J.2
  • 22
    • 84859758552 scopus 로고    scopus 로고
    • Statistical analysis of nonlinear dynamical systems using differential geometric sampling methods
    • 10.1098/rsfs.2011.0051, 3262297, 23226584
    • Calderhead B, Girolami M. Statistical analysis of nonlinear dynamical systems using differential geometric sampling methods. Interface Focus 2011, 1(6):821-835. 10.1098/rsfs.2011.0051, 3262297, 23226584.
    • (2011) Interface Focus , vol.1 , Issue.6 , pp. 821-835
    • Calderhead, B.1    Girolami, M.2
  • 24
    • 77951967006 scopus 로고    scopus 로고
    • An optimal experimental design approach to model discrimination in dynamic biochemical systems
    • 10.1093/bioinformatics/btq074, 20176580
    • Skanda D, Lebiedz D. An optimal experimental design approach to model discrimination in dynamic biochemical systems. Bioinformatics 2010, 26(7):939. 10.1093/bioinformatics/btq074, 20176580.
    • (2010) Bioinformatics , vol.26 , Issue.7 , pp. 939
    • Skanda, D.1    Lebiedz, D.2
  • 25
    • 84864000726 scopus 로고    scopus 로고
    • Experimental Design for Parameter Estimation of Gene Regulatory Networks
    • 10.1371/journal.pone.0040052, 3397990, 22815723
    • Steiert B, Raue A, Timmer J, Kreutz C. Experimental Design for Parameter Estimation of Gene Regulatory Networks. PloS one 2012, 7(7):e40052. 10.1371/journal.pone.0040052, 3397990, 22815723.
    • (2012) PloS one , vol.7 , Issue.7
    • Steiert, B.1    Raue, A.2    Timmer, J.3    Kreutz, C.4
  • 27
    • 84865642147 scopus 로고    scopus 로고
    • Likelihood based observability analysis and confidence intervals for predictions of dynamic models
    • 10.1186/1752-0509-6-120, 3490710, 22947028
    • Kreutz C, Raue A, Timmer J. Likelihood based observability analysis and confidence intervals for predictions of dynamic models. BMC Syst Biol 2012, 6:120. 10.1186/1752-0509-6-120, 3490710, 22947028.
    • (2012) BMC Syst Biol , vol.6 , pp. 120
    • Kreutz, C.1    Raue, A.2    Timmer, J.3
  • 28
    • 84859749049 scopus 로고    scopus 로고
    • An integrated strategy for prediction uncertainty analysis
    • 10.1093/bioinformatics/bts088, 3324512, 22355081
    • Vanlier J, Tiemann C, Hilbers P, van Riel N. An integrated strategy for prediction uncertainty analysis. Bioinformatics 2012, 28(8):1130-1135. 10.1093/bioinformatics/bts088, 3324512, 22355081.
    • (2012) Bioinformatics , vol.28 , Issue.8 , pp. 1130-1135
    • Vanlier, J.1    Tiemann, C.2    Hilbers, P.3    van Riel, N.4
  • 29
    • 84873505176 scopus 로고    scopus 로고
    • Maximizing the Information Content of Experiments in Systems Biology
    • 10.1371/journal.pcbi.1002888, 3561087, 23382663
    • Liepe J, Filippi S, Komorowski M, Stumpf MP. Maximizing the Information Content of Experiments in Systems Biology. PLOS Comput Biol 2013, 9:e1002888. 10.1371/journal.pcbi.1002888, 3561087, 23382663.
    • (2013) PLOS Comput Biol , vol.9
    • Liepe, J.1    Filippi, S.2    Komorowski, M.3    Stumpf, M.P.4
  • 30
    • 84859739489 scopus 로고    scopus 로고
    • A Bayesian approach to targeted experiment design
    • 10.1093/bioinformatics/bts092, 3324513, 22368245
    • Vanlier J, Tiemann C, Hilbers P, van Riel N. A Bayesian approach to targeted experiment design. Bioinformatics 2012, 28(8):1136-1142. 10.1093/bioinformatics/bts092, 3324513, 22368245.
    • (2012) Bioinformatics , vol.28 , Issue.8 , pp. 1136-1142
    • Vanlier, J.1    Tiemann, C.2    Hilbers, P.3    van Riel, N.4
  • 31
    • 1642336155 scopus 로고    scopus 로고
    • Functional genomic hypothesis generation and experimentation by a robot scientist
    • 10.1038/nature02236, 14724639
    • King RD, Whelan KE, Jones FM, Reiser PG, Bryant CH, Muggleton SH, Kell DB, Oliver SG. Functional genomic hypothesis generation and experimentation by a robot scientist. Nature 2004, 427(6971):247-252. 10.1038/nature02236, 14724639.
    • (2004) Nature , vol.427 , Issue.6971 , pp. 247-252
    • King, R.D.1    Whelan, K.E.2    Jones, F.M.3    Reiser, P.G.4    Bryant, C.H.5    Muggleton, S.H.6    Kell, D.B.7    Oliver, S.G.8
  • 32
    • 0000695404 scopus 로고
    • Information-based objective functions for active data selection
    • MacKay DJ. Information-based objective functions for active data selection. Neural Comput 1992, 4(4):590-604.
    • (1992) Neural Comput , vol.4 , Issue.4 , pp. 590-604
    • MacKay, D.J.1
  • 33
    • 81355153795 scopus 로고    scopus 로고
    • Optimizing experimental design for comparing models of brain function
    • 10.1371/journal.pcbi.1002280, 3219623, 22125485
    • Daunizeau J, Preuschoff K, Friston K, Stephan K. Optimizing experimental design for comparing models of brain function. PLoS Comput Biol 2011, 7(11):e1002280. 10.1371/journal.pcbi.1002280, 3219623, 22125485.
    • (2011) PLoS Comput Biol , vol.7 , Issue.11
    • Daunizeau, J.1    Preuschoff, K.2    Friston, K.3    Stephan, K.4
  • 34
    • 84888027235 scopus 로고    scopus 로고
    • High-dimensional Bayesian parameter estimation: case study for a model of JAK2/STAT5 signaling
    • 10.1016/j.mbs.2013.04.002, 23602931
    • Hug S, Raue A, Hasenauer J, Bachmann J, Klingmüller U, Timmer J, Theis F. High-dimensional Bayesian parameter estimation: case study for a model of JAK2/STAT5 signaling. Math Biosci 2013, 246(2):293-304. 10.1016/j.mbs.2013.04.002, 23602931.
    • (2013) Math Biosci , vol.246 , Issue.2 , pp. 293-304
    • Hug, S.1    Raue, A.2    Hasenauer, J.3    Bachmann, J.4    Klingmüller, U.5    Timmer, J.6    Theis, F.7
  • 35
    • 78651071868 scopus 로고    scopus 로고
    • Inferring relevant control mechanisms for interleukin-12 signaling in naïve CD4+; T cells
    • 3004982, 20479776
    • Finley S, Gupta D, Cheng N, Klinke D. Inferring relevant control mechanisms for interleukin-12 signaling in naïve CD4+; T cells. Immunol Cell Biol 2010, 89:100-110. 3004982, 20479776.
    • (2010) Immunol Cell Biol , vol.89 , pp. 100-110
    • Finley, S.1    Gupta, D.2    Cheng, N.3    Klinke, D.4
  • 36
    • 80053601288 scopus 로고    scopus 로고
    • Efficient probabilistic model personalization integrating uncertainty on data and parameters: Application to eikonal-diffusion models in cardiac electrophysiology
    • 10.1016/j.pbiomolbio.2011.07.002, 21763715
    • Konukoglu E, Relan J, Cilingir U, Menze B, Chinchapatnam P, Jadidi A, Cochet H, Hocini M, Delingette H, Jaïs P, et al. Efficient probabilistic model personalization integrating uncertainty on data and parameters: Application to eikonal-diffusion models in cardiac electrophysiology. Prog Biophys Mol Biol 2011, 107:134-146. 10.1016/j.pbiomolbio.2011.07.002, 21763715.
    • (2011) Prog Biophys Mol Biol , vol.107 , pp. 134-146
    • Konukoglu, E.1    Relan, J.2    Cilingir, U.3    Menze, B.4    Chinchapatnam, P.5    Jadidi, A.6    Cochet, H.7    Hocini, M.8    Delingette, H.9    Jaïs, P.10
  • 38
    • 80054829921 scopus 로고    scopus 로고
    • Sources of cell-to-cell variability in canonical nuclear factor-κ B (NF-κ B) signaling pathway inferred from single cell dynamic images
    • 10.1074/jbc.M111.280925, 3199517, 21868381
    • Kalita MK, Sargsyan K, Tian B, Paulucci-Holthauzen A, Najm HN, Debusschere BJ, Brasier AR. Sources of cell-to-cell variability in canonical nuclear factor-κ B (NF-κ B) signaling pathway inferred from single cell dynamic images. J Biol Chem 2011, 286(43):37741-37757. 10.1074/jbc.M111.280925, 3199517, 21868381.
    • (2011) J Biol Chem , vol.286 , Issue.43 , pp. 37741-37757
    • Kalita, M.K.1    Sargsyan, K.2    Tian, B.3    Paulucci-Holthauzen, A.4    Najm, H.N.5    Debusschere, B.J.6    Brasier, A.R.7
  • 39
    • 75249088572 scopus 로고    scopus 로고
    • Simulation-based model selection for dynamical systems in systems and population biology
    • 10.1093/bioinformatics/btp619, 2796821, 19880371
    • Toni T, Stumpf M. Simulation-based model selection for dynamical systems in systems and population biology. Bioinformatics 2010, 26:104-110. 10.1093/bioinformatics/btp619, 2796821, 19880371.
    • (2010) Bioinformatics , vol.26 , pp. 104-110
    • Toni, T.1    Stumpf, M.2
  • 40
    • 40749094910 scopus 로고    scopus 로고
    • Bayesian ranking of biochemical system models
    • 10.1093/bioinformatics/btm607, 18057018
    • Vyshemirsky V, Girolami M. Bayesian ranking of biochemical system models. Bioinformatics 2008, 24(6):833-839. 10.1093/bioinformatics/btm607, 18057018.
    • (2008) Bioinformatics , vol.24 , Issue.6 , pp. 833-839
    • Vyshemirsky, V.1    Girolami, M.2
  • 41
    • 84864498617 scopus 로고    scopus 로고
    • Bayesian model selection validates a biokinetic model for zirconium processing in humans
    • 10.1186/1752-0509-6-95, 3529705, 22863152
    • Schmidl D, Hug S, Li WB, Greiter MB, Theis FJ. Bayesian model selection validates a biokinetic model for zirconium processing in humans. BMC Syst Biol 2012, 6:95. 10.1186/1752-0509-6-95, 3529705, 22863152.
    • (2012) BMC Syst Biol , vol.6 , pp. 95
    • Schmidl, D.1    Hug, S.2    Li, W.B.3    Greiter, M.B.4    Theis, F.J.5
  • 42
    • 77950535005 scopus 로고    scopus 로고
    • Discriminating between rival biochemical network models: three approaches to optimal experiment design
    • 10.1186/1752-0509-4-38, 2873315, 20356406
    • Mélykúti B, August E, Papachristodoulou A, El-Samad H. Discriminating between rival biochemical network models: three approaches to optimal experiment design. BMC Syst Biol 2010, 4:38. 10.1186/1752-0509-4-38, 2873315, 20356406.
    • (2010) BMC Syst Biol , vol.4 , pp. 38
    • Mélykúti, B.1    August, E.2    Papachristodoulou, A.3    El-Samad, H.4
  • 43
    • 84870406313 scopus 로고    scopus 로고
    • Optimal design of stimulus experiments for robust discrimination of biochemical reaction networks
    • 10.1093/bioinformatics/bts585, 3516143, 23047554
    • Flassig R, Sundmacher K. Optimal design of stimulus experiments for robust discrimination of biochemical reaction networks. Bioinformatics 2012, 28(23):3089-3096. 10.1093/bioinformatics/bts585, 3516143, 23047554.
    • (2012) Bioinformatics , vol.28 , Issue.23 , pp. 3089-3096
    • Flassig, R.1    Sundmacher, K.2
  • 44
    • 0038105161 scopus 로고    scopus 로고
    • A new metric for probability distributions
    • Endres DM, Schindelin JE. A new metric for probability distributions. Inf Theory IEEE Trans 2003, 49(7):1858-1860.
    • (2003) Inf Theory IEEE Trans , vol.49 , Issue.7 , pp. 1858-1860
    • Endres, D.M.1    Schindelin, J.E.2
  • 46
    • 84874150433 scopus 로고    scopus 로고
    • Joining forces of Bayesian and frequentist methodology: A study for inference in the presence of non-identifiability
    • Raue A, Kreutz C, Theis F, Timmer J. Joining forces of Bayesian and frequentist methodology: A study for inference in the presence of non-identifiability. Phil Trans Roy Soc A 2012, 371(1984):20110544.
    • (2012) Phil Trans Roy Soc A , vol.371 , Issue.1984 , pp. 20110544
    • Raue, A.1    Kreutz, C.2    Theis, F.3    Timmer, J.4
  • 47
    • 84972511893 scopus 로고
    • Practical markov chain monte carlo
    • Geyer C. Practical markov chain monte carlo. Stat Sci 1992, 7(4):473-483.
    • (1992) Stat Sci , vol.7 , Issue.4 , pp. 473-483
    • Geyer, C.1
  • 48
    • 58149142997 scopus 로고    scopus 로고
    • Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems
    • 10.1098/rsif.2008.0172, 2658655, 19205079
    • Toni T, Welch D, Strelkowa N, Ipsen A, Stumpf M. Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. J R Soc Interface 2009, 6(31):187-202. 10.1098/rsif.2008.0172, 2658655, 19205079.
    • (2009) J R Soc Interface , vol.6 , Issue.31 , pp. 187-202
    • Toni, T.1    Welch, D.2    Strelkowa, N.3    Ipsen, A.4    Stumpf, M.5
  • 50
    • 3042641165 scopus 로고    scopus 로고
    • Comparing dynamic causal models
    • 10.1016/j.neuroimage.2004.03.026, 15219588
    • Penny WD, Stephan K, Mechelli A, Friston K. Comparing dynamic causal models. NeuroImage 2004, 22(3):1157-1172. 10.1016/j.neuroimage.2004.03.026, 15219588.
    • (2004) NeuroImage , vol.22 , Issue.3 , pp. 1157-1172
    • Penny, W.D.1    Stephan, K.2    Mechelli, A.3    Friston, K.4
  • 51
    • 0003247384 scopus 로고
    • Weight of evidence: a brief survey
    • Good IJ. Weight of evidence: a brief survey. Bayesian Stat 1985, 2:249-269.
    • (1985) Bayesian Stat , vol.2 , pp. 249-269
    • Good, I.J.1
  • 52
    • 69449098014 scopus 로고    scopus 로고
    • Estimating Bayes factors via thermodynamic integration and population MCMC
    • Calderhead B, Girolami M. Estimating Bayes factors via thermodynamic integration and population MCMC. Comput Stat Data Anal 2009, 53(12):4028-4045.
    • (2009) Comput Stat Data Anal , vol.53 , Issue.12 , pp. 4028-4045
    • Calderhead, B.1    Girolami, M.2
  • 53
    • 0025952277 scopus 로고
    • Divergence measures based on the Shannon entropy
    • Lin J. Divergence measures based on the Shannon entropy. Inf Theory IEEE Trans 1991, 37:145-151.
    • (1991) Inf Theory IEEE Trans , vol.37 , pp. 145-151
    • Lin, J.1
  • 56
    • 80051601039 scopus 로고    scopus 로고
    • On accuracy of PDF divergence estimators and their applicability to representative data sampling
    • Budka M, Gabrys B, Musial K. On accuracy of PDF divergence estimators and their applicability to representative data sampling. Entropy 2011, 13(7):1229-1266.
    • (2011) Entropy , vol.13 , Issue.7 , pp. 1229-1266
    • Budka, M.1    Gabrys, B.2    Musial, K.3
  • 57
    • 34948856944 scopus 로고    scopus 로고
    • High-dimensional statistical distance for region-of-interest tracking: Application to combining a soft geometric constraint with radiometry
    • Minneapolis, Minnesota, USA: IEEE Computer Society
    • Boltz S, Debreuve E, Barlaud M. High-dimensional statistical distance for region-of-interest tracking: Application to combining a soft geometric constraint with radiometry. IEEE Conference on Computer Vision and Pattern Recognition, 2007. CVPR'07 2007, 1-8. Minneapolis, Minnesota, USA: IEEE Computer Society.
    • (2007) IEEE Conference on Computer Vision and Pattern Recognition, 2007. CVPR'07 , pp. 1-8
    • Boltz, S.1    Debreuve, E.2    Barlaud, M.3
  • 58
    • 0032919364 scopus 로고    scopus 로고
    • KEGG: Kyoto encyclopedia of genes and genomes
    • 10.1093/nar/27.1.29, 148090, 9847135
    • Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 1999, 27:29-34. 10.1093/nar/27.1.29, 148090, 9847135.
    • (1999) Nucleic Acids Res , vol.27 , pp. 29-34
    • Ogata, H.1    Goto, S.2    Sato, K.3    Fujibuchi, W.4    Bono, H.5    Kanehisa, M.6
  • 59
    • 0035002183 scopus 로고    scopus 로고
    • Insulin signalling
    • Bevan P. Insulin signalling. J Cell Sci 2001, 114(8):1429-1430.
    • (2001) J Cell Sci , vol.114 , Issue.8 , pp. 1429-1430
    • Bevan, P.1
  • 60
    • 84945709355 scopus 로고
    • An algorithm for finding best matches in logarithmic expected time
    • Friedman JH, Bentley JL, Finkel RA. An algorithm for finding best matches in logarithmic expected time. ACM Trans Math Softw (TOMS) 1977, 3(3):209-226.
    • (1977) ACM Trans Math Softw (TOMS) , vol.3 , Issue.3 , pp. 209-226
    • Friedman, J.H.1    Bentley, J.L.2    Finkel, R.A.3
  • 61
    • 34250633049 scopus 로고    scopus 로고
    • Forecasting the Bayes factor of a future observation
    • Trotta R. Forecasting the Bayes factor of a future observation. Mon Notices R Astronomical Soc 2007, 378(3):819-824.
    • (2007) Mon Notices R Astronomical Soc , vol.378 , Issue.3 , pp. 819-824
    • Trotta, R.1
  • 62
    • 84859758552 scopus 로고    scopus 로고
    • Statistical analysis of nonlinear dynamical systems using differential geometric sampling methods
    • 10.1098/rsfs.2011.0051, 3262297, 23226584
    • Calderhead B, Girolami M. Statistical analysis of nonlinear dynamical systems using differential geometric sampling methods. Interface Focus 2011, 1(6):821-835. 10.1098/rsfs.2011.0051, 3262297, 23226584.
    • (2011) Interface Focus , vol.1 , Issue.6 , pp. 821-835
    • Calderhead, B.1    Girolami, M.2
  • 63
    • 78049443039 scopus 로고    scopus 로고
    • Accelerating Bayesian inference over nonlinear differential equations with Gaussian processes
    • Calderhead B, Girolami M, Lawrence N. Accelerating Bayesian inference over nonlinear differential equations with Gaussian processes. Adv Neural Inf Process Syst 2009, 21:217-224.
    • (2009) Adv Neural Inf Process Syst , vol.21 , pp. 217-224
    • Calderhead, B.1    Girolami, M.2    Lawrence, N.3
  • 64
    • 77954487004 scopus 로고    scopus 로고
    • ABC-SysBio approximate Bayesian computation in Python with GPU support
    • 10.1093/bioinformatics/btq278, 2894518, 20591907
    • Liepe J, Barnes C, Cule E, Erguler K, Kirk P, Toni T, Stumpf M. ABC-SysBio approximate Bayesian computation in Python with GPU support. Bioinformatics 2010, 26(14):1797. 10.1093/bioinformatics/btq278, 2894518, 20591907.
    • (2010) Bioinformatics , vol.26 , Issue.14 , pp. 1797
    • Liepe, J.1    Barnes, C.2    Cule, E.3    Erguler, K.4    Kirk, P.5    Toni, T.6    Stumpf, M.7
  • 65
    • 84865485151 scopus 로고    scopus 로고
    • GPU-FS-kNN: A Software Tool for Fast and Scalable kNN Computation Using GPUs
    • 10.1371/journal.pone.0044000, 3429408, 22937144
    • Arefin A, Riveros C, Berretta R, Moscato P. GPU-FS-kNN: A Software Tool for Fast and Scalable kNN Computation Using GPUs. PloS one 2012, 7(8):e44000. 10.1371/journal.pone.0044000, 3429408, 22937144.
    • (2012) PloS one , vol.7 , Issue.8
    • Arefin, A.1    Riveros, C.2    Berretta, R.3    Moscato, P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.