메뉴 건너뛰기




Volumn 28, Issue 8, 2012, Pages 1130-1135

An integrated strategy for prediction uncertainty analysis

Author keywords

[No Author keywords available]

Indexed keywords

JANUS KINASE 1; STAT PROTEIN;

EID: 84859749049     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/bts088     Document Type: Article
Times cited : (54)

References (26)
  • 2
    • 77953783032 scopus 로고    scopus 로고
    • Mass and information feedbacks through receptor endocytosis govern insulin signaling as revealed using a parameter-free modeling framework
    • Brännmark, C. et al. (2010) Mass and information feedbacks through receptor endocytosis govern insulin signaling as revealed using a parameter-free modeling framework. J. Biol. Chem., 285, 20171-20179.
    • (2010) J. Biol. Chem. , vol.285 , pp. 20171-20179
    • Brännmark, C.1
  • 3
    • 42749109054 scopus 로고    scopus 로고
    • Statistical mechanical approaches to models with many poorly known parameters
    • Brown, K.S. and Sethna, J.P. (2003) Statistical mechanical approaches to models with many poorly known parameters. Phys. Rev. E, 68, 021904.
    • (2003) Phys. Rev. E , vol.68 , pp. 021904
    • Brown, K.S.1    Sethna, J.P.2
  • 4
    • 69449098014 scopus 로고    scopus 로고
    • Estimating Bayes factors via thermodynamic integration and population MCMC
    • Calderhead, B. and Girolami, M. (2009) Estimating Bayes factors via thermodynamic integration and population MCMC.Comput. Stat. Data Anal., 53, 4028-4045.
    • (2009) Comput. Stat. Data Anal. , vol.53 , pp. 4028-4045
    • Calderhead, B.1    Girolami, M.2
  • 5
    • 58849162806 scopus 로고    scopus 로고
    • Systems biology: model based evaluation and comparison of potential explanations for given biological data
    • Cedersund, G. and Roll, J. (2009) Systems biology: model based evaluation and comparison of potential explanations for given biological data. FEBS J., 276, 903-922.
    • (2009) FEBS J. , vol.276 , pp. 903-922
    • Cedersund, G.1    Roll, J.2
  • 6
    • 0030539336 scopus 로고    scopus 로고
    • Markov chain Monte Carlo convergence diagnostics: a comparative review
    • Cowles, M. and Carlin, B. (1996) Markov chain Monte Carlo convergence diagnostics: a comparative review. J. Am. Stat. Assoc., 91, 883-904.
    • (1996) J. Am. Stat. Assoc. , vol.91 , pp. 883-904
    • Cowles, M.1    Carlin, B.2
  • 7
    • 0442309445 scopus 로고    scopus 로고
    • Identifiability, improper priors, and gibbs sampling for generalized linear models
    • Gelfand, A. and Sahu, S. (1999) Identifiability, improper priors, and gibbs sampling for generalized linear models. J. Am. Stat. Assoc., 94, 247-253.
    • (1999) J. Am. Stat. Assoc. , vol.94 , pp. 247-253
    • Gelfand, A.1    Sahu, S.2
  • 8
    • 84972511893 scopus 로고
    • Practical Markov chain Monte Carlo
    • Geyer, C. (1992)Practical Markov chain Monte Carlo. Stat. Sci., 7, 473-483.
    • (1992) Stat. Sci. , vol.7 , pp. 473-483
    • Geyer, C.1
  • 10
    • 79952295497 scopus 로고    scopus 로고
    • Riemann manifold langevin and hamiltonian monte carlo methods
    • Girolami, M. and Calderhead, B. (2011) Riemann manifold langevin and hamiltonian monte carlo methods. J. Roy. Stat. Soc. B Stat. Meth., 73, 123-214.
    • (2011) J. Roy. Stat. Soc. B Stat. Meth. , vol.73 , pp. 123-214
    • Girolami, M.1    Calderhead, B.2
  • 11
    • 84857647761 scopus 로고    scopus 로고
    • Workflow for generating competing hypothesis from models with parameter uncertainty
    • Gomez-Cabrero, D. et al. (2011)Workflow for generating competing hypothesis from models with parameter uncertainty. Interf. Focus, 1, 438-449.
    • (2011) Interf. Focus , vol.1 , pp. 438-449
    • Gomez-Cabrero, D.1
  • 12
    • 40749086427 scopus 로고    scopus 로고
    • Biological pathway kinetic rate constants are scaleinvariant
    • Grandison, S. and Morris, R. (2008)Biological pathway kinetic rate constants are scaleinvariant. Bioinformatics, 24, 741-743.
    • (2008) Bioinformatics , vol.24 , pp. 741-743
    • Grandison, S.1    Morris, R.2
  • 13
    • 35748977901 scopus 로고    scopus 로고
    • Universally sloppy parameter sensitivities in systems biology models
    • Gutenkunst, R.N. et al. (2007) Universally sloppy parameter sensitivities in systems biology models. PLoS Comput. Biol., 3, e189.
    • (2007) PLoS Comput. Biol. , vol.3
    • Gutenkunst, R.N.1
  • 14
    • 77956444019 scopus 로고    scopus 로고
    • Guaranteed steady state bounds for uncertain (bio-) chemical processes using infeasibility certificates
    • Hasenauer, J. et al. (2010a) Guaranteed steady state bounds for uncertain (bio-) chemical processes using infeasibility certificates. J. Process Contr., 20, 1076-1083.
    • (2010) J. Process Contr. , vol.20 , pp. 1076-1083
    • Hasenauer, J.1
  • 15
    • 77952481588 scopus 로고    scopus 로고
    • Parameter identification, experimental design and model falsification for biological network models using semidefinite programming
    • Hasenauer, J. et al. (2010b) Parameter identification, experimental design and model falsification for biological network models using semidefinite programming. IET Syst. Biol., 4, 119-130.
    • (2010) IET Syst. Biol. , vol.4 , pp. 119-130
    • Hasenauer, J.1
  • 16
    • 33845368513 scopus 로고    scopus 로고
    • Copasia complex pathway simulator
    • Hoops, S. et al. (2006) Copasia complex pathway simulator. Bioinformatics, 22, 3067-3074.
    • (2006) Bioinformatics , vol.22 , pp. 3067-3074
    • Hoops, S.1
  • 17
    • 84873751778 scopus 로고
    • An invariant form for the prior probability in estimation problems
    • Jeffreys, H. (1946)An invariant form for the prior probability in estimation problems. Proc. Roy. Soc. Lond. A Math. Phys. Sci., 186, 453-461.
    • (1946) Proc. Roy. Soc. Lond. A Math. Phys. Sci. , vol.186 , pp. 453-461
    • Jeffreys, H.1
  • 18
    • 35748945147 scopus 로고    scopus 로고
    • An error model for protein quantification
    • Kreutz, C. et al. (2007)An error model for protein quantification. Bioinformatics, 23, 2747-2753.
    • (2007) Bioinformatics , vol.23 , pp. 2747-2753
    • Kreutz, C.1
  • 19
    • 77954487004 scopus 로고    scopus 로고
    • ABC-SysBio-approximate Bayesian computation in Python with GPU support
    • Liepe, J. et al. (2010)ABC-SysBio-approximate Bayesian computation in Python with GPU support. Bioinformatics, 26, 1797-1799.
    • (2010) Bioinformatics , vol.26 , pp. 1797-1799
    • Liepe, J.1
  • 20
    • 51749122228 scopus 로고    scopus 로고
    • Dynamical modeling and multi-experiment fitting with potterswheel
    • Maiwald, T. and Timmer, J. (2008) Dynamical modeling and multi-experiment fitting with potterswheel. Bioinformatics, 24, 2037-2043.
    • (2008) Bioinformatics , vol.24 , pp. 2037-2043
    • Maiwald, T.1    Timmer, J.2
  • 21
    • 79960402456 scopus 로고    scopus 로고
    • A hierarchical whole-body modeling approach elucidates the link between in vitro insulin signaling and in vivo glucose homeostasis
    • Nyman, E. et al. (2011) A hierarchical whole-body modeling approach elucidates the link between in vitro insulin signaling and in vivo glucose homeostasis. J. Biol. Chem., 286, 26028-26041.
    • (2011) J. Biol. Chem. , vol.286 , pp. 26028-26041
    • Nyman, E.1
  • 22
    • 0036803348 scopus 로고    scopus 로고
    • Identifiability of parameters in MCMC Bayesian inference of phylogeny
    • Rannala, B. (2002) Identifiability of parameters in MCMC Bayesian inference of phylogeny. Syst. Biol., 51, 754-760.
    • (2002) Syst. Biol. , vol.51 , pp. 754-760
    • Rannala, B.1
  • 23
    • 67650760503 scopus 로고    scopus 로고
    • Structural and practical identifiability analysis of partially observed dynamical models by exploiting the PL
    • Raue, A. et al. (2009)Structural and practical identifiability analysis of partially observed dynamical models by exploiting the PL.Bioinformatics, 25, 1923-1929.
    • (2009) Bioinformatics , vol.25 , pp. 1923-1929
    • Raue, A.1
  • 24
    • 0037417886 scopus 로고    scopus 로고
    • Identification of nucleocytoplasmic cycling as a remote sensor in cellular signaling by databased modeling
    • Swameye, I. et al. (2003) Identification of nucleocytoplasmic cycling as a remote sensor in cellular signaling by databased modeling. Proc. Natl Acad. Sci. USA, 100, 1028-1033.
    • (2003) Proc. Natl Acad. Sci. USA , vol.100 , pp. 1028-1033
    • Swameye, I.1
  • 25
    • 58149142997 scopus 로고    scopus 로고
    • Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems
    • Toni, T. et al. (2009)Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. J. Roy. Soc. Interf., 6, 187-202.
    • (2009) J. Roy. Soc. Interf. , vol.6 , pp. 187-202
    • Toni, T.1
  • 26
    • 12444337674 scopus 로고    scopus 로고
    • Model parameterization, prior distributions, and the general time-reversible model in Bayesian phylogenetics
    • Zwickl, D. and Holder, M. (2004) Model parameterization, prior distributions, and the general time-reversible model in Bayesian phylogenetics. Syst. Biol., 53, 877-888.
    • (2004) Syst. Biol. , vol.53 , pp. 877-888
    • Zwickl, D.1    Holder, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.