메뉴 건너뛰기




Volumn 28, Issue 8, 2012, Pages 1136-1142

A Bayesian approach to targeted experiment design

Author keywords

[No Author keywords available]

Indexed keywords

JANUS KINASE; STAT PROTEIN;

EID: 84859739489     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/bts092     Document Type: Article
Times cited : (95)

References (27)
  • 1
    • 77953783032 scopus 로고    scopus 로고
    • Mass and information feedbacks through receptor endocytosis govern insulin signaling as revealed using a parameter-free modeling framework
    • Brännmark, C. et al. (2010) Mass and information feedbacks through receptor endocytosis govern insulin signaling as revealed using a parameter-free modeling framework. J. Biol. Chem., 285, 20171.
    • (2010) J. Biol. Chem. , vol.285 , pp. 20171
    • Brännmark, C.1
  • 2
    • 42749109054 scopus 로고    scopus 로고
    • Statistical mechanical approaches to models with many poorly known parameters
    • Brown, K.S. and Sethna, J.P. (2003) Statistical mechanical approaches to models with many poorly known parameters. Phys. Rev. E, 68, 021904.
    • (2003) Phys. Rev. E , vol.68 , pp. 021904
    • Brown, K.S.1    Sethna, J.P.2
  • 3
    • 84859758552 scopus 로고    scopus 로고
    • Statistical analysis of nonlinear dynamical systems using differential geometric sampling methods
    • Calderhead, B. and Girolami, M. (2011) Statistical analysis of nonlinear dynamical systems using differential geometric sampling methods. J. R. Soc. Interface Focus, 1, 821-835.
    • (2011) J. R. Soc. Interface Focus , vol.1 , pp. 821-835
    • Calderhead, B.1    Girolami, M.2
  • 4
    • 34249744604 scopus 로고    scopus 로고
    • Optimal experimental design in an epidermal growth factor receptor signalling and down-regulation model
    • Casey, F. et al. (2007) Optimal experimental design in an epidermal growth factor receptor signalling and down-regulation model. Syst. Biol. IET, 1, 190-202.
    • (2007) Syst. Biol. IET , vol.1 , pp. 190-202
    • Casey, F.1
  • 5
    • 58849162806 scopus 로고    scopus 로고
    • Systems biology: model based evaluation and comparison of potential explanations for given biological data
    • Cedersund, G. and Roll, J. (2009) Systems biology: model based evaluation and comparison of potential explanations for given biological data. FEBS J., 276, 903-922.
    • (2009) FEBS J. , vol.276 , pp. 903-922
    • Cedersund, G.1    Roll, J.2
  • 6
    • 0030539336 scopus 로고    scopus 로고
    • Markov chain Monte Carlo convergence diagnostics: a comparative review
    • Cowles, M. and Carlin, B. (1996) Markov chain Monte Carlo convergence diagnostics: a comparative review. J. Am. Stat. Assoc., 91, 883-904.
    • (1996) J. Am. Stat. Assoc. , vol.91 , pp. 883-904
    • Cowles, M.1    Carlin, B.2
  • 7
    • 33646684004 scopus 로고    scopus 로고
    • Sequential monte carlo samplers
    • Del Moral, P. et al. (2006) Sequential monte carlo samplers. J. Roy. Stat. Soc. B, 68, 411-436.
    • (2006) J. Roy. Stat. Soc. B , vol.68 , pp. 411-436
    • Del Moral, P.1
  • 8
    • 1342286938 scopus 로고    scopus 로고
    • Simulation methods for optimal experimental design in systems biology
    • Faller, D. et al. (2003) Simulation methods for optimal experimental design in systems biology. Simulation, 79, 717.
    • (2003) Simulation , vol.79 , pp. 717
    • Faller, D.1
  • 9
    • 84972511893 scopus 로고
    • Practical markov chain monte carlo
    • Geyer, C. (1992) Practical markov chain monte carlo. Stat. Sci., 7, 473-483.
    • (1992) Stat. Sci. , vol.7 , pp. 473-483
    • Geyer, C.1
  • 10
    • 79952295497 scopus 로고    scopus 로고
    • Riemann manifold Langevin and Hamiltonian Monte Carlo methods
    • Girolami, M. and Calderhead, B. (2011) Riemann manifold Langevin and Hamiltonian Monte Carlo methods. J. Roy. Stat. Soc. B, 73, 123-214.
    • (2011) J. Roy. Stat. Soc. B , vol.73 , pp. 123-214
    • Girolami, M.1    Calderhead, B.2
  • 11
    • 84857647761 scopus 로고    scopus 로고
    • Workflow for generating competing hypothesis from models with parameter uncertainty
    • Gomez-Cabrero, D. et al. (2011) Workflow for generating competing hypothesis from models with parameter uncertainty. J. R. Soc. Interface Focus, 1, 438.
    • (2011) J. R. Soc. Interface Focus , vol.1 , pp. 438
    • Gomez-Cabrero, D.1
  • 12
    • 35748977901 scopus 로고    scopus 로고
    • Universally sloppy parameter sensitivities in systems biology models
    • Gutenkunst, R.N. et al. (2007) Universally sloppy parameter sensitivities in systems biology models. PLoS Comput. Biol., 3, e189.
    • (2007) PLoS Comput. Biol. , vol.3
    • Gutenkunst, R.N.1
  • 13
    • 77952481588 scopus 로고    scopus 로고
    • Parameter identification, experimental design and model falsification for biological network models using semidefinite programming
    • Hasenauer, J. et al. (2010) Parameter identification, experimental design and model falsification for biological network models using semidefinite programming. Syst. Biol. IET, 4, 119-130.
    • (2010) Syst. Biol. IET , vol.4 , pp. 119-130
    • Hasenauer, J.1
  • 14
    • 33845368513 scopus 로고    scopus 로고
    • Copasia complex pathway simulator
    • Hoops, S. et al. (2006) Copasia complex pathway simulator. Bioinformatics, 22, 3067.
    • (2006) Bioinformatics , vol.22 , pp. 3067
    • Hoops, S.1
  • 15
    • 71049127915 scopus 로고    scopus 로고
    • An empirical Bayesian approach for model-based inference of cellular signaling networks
    • Klinke, D. (2009)An empirical Bayesian approach for model-based inference of cellular signaling networks. BMC Bioinformatics, 10, 371.
    • (2009) BMC Bioinformatics , vol.10 , pp. 371
    • Klinke, D.1
  • 16
    • 58849137994 scopus 로고    scopus 로고
    • Systems biology: experimental design
    • Kreutz, C. and Timmer, J. (2009) Systems biology: experimental design. FEBS J., 276, 923-942.
    • (2009) FEBS J. , vol.276 , pp. 923-942
    • Kreutz, C.1    Timmer, J.2
  • 17
    • 35748945147 scopus 로고    scopus 로고
    • An error model for protein quantification
    • Kreutz, C. et al. (2007) An error model for protein quantification. Bioinformatics, 23, 2747.
    • (2007) Bioinformatics , vol.23 , pp. 2747
    • Kreutz, C.1
  • 18
    • 84864008426 scopus 로고    scopus 로고
    • Likelihood based observability analysis and confidence intervals for predictions of dynamic models
    • Kreutz, C. et al. (2011) Likelihood based observability analysis and confidence intervals for predictions of dynamic models. Arxiv preprint arXiv:1107.0013.
    • (2011) Arxiv preprint
    • Kreutz, C.1
  • 19
    • 77954487004 scopus 로고    scopus 로고
    • ABC-SysBio approximate Bayesian computation in Python with GPU support
    • Liepe, J. et al. (2010) ABC-SysBio approximate Bayesian computation in Python with GPU support. Bioinformatics, 26, 1797.
    • (2010) Bioinformatics , vol.26 , pp. 1797
    • Liepe, J.1
  • 20
    • 51749122228 scopus 로고    scopus 로고
    • Dynamical modeling and multi-experiment fitting with potterswheel
    • Maiwald, T. and Timmer, J. (2008) Dynamical modeling and multi-experiment fitting with potterswheel. Bioinformatics, 24, 2037-2043.
    • (2008) Bioinformatics , vol.24 , pp. 2037-2043
    • Maiwald, T.1    Timmer, J.2
  • 21
    • 21444452127 scopus 로고    scopus 로고
    • Sampling from multimodal distributions using tempered transitions
    • Neal, R. (1996) Sampling from multimodal distributions using tempered transitions. Stat. Comput., 6, 353-366.
    • (1996) Stat. Comput. , vol.6 , pp. 353-366
    • Neal, R.1
  • 22
    • 67650760503 scopus 로고    scopus 로고
    • Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood
    • Raue, A. et al. (2009) Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics, 25, 1923.
    • (2009) Bioinformatics , vol.25 , pp. 1923
    • Raue, A.1
  • 23
    • 32044474451 scopus 로고    scopus 로고
    • A hybrid approach for efficient and robust parameter estimation in biochemical pathways
    • Rodriguez-Fernandez, M. et al. (2006) A hybrid approach for efficient and robust parameter estimation in biochemical pathways. Biosystems, 83, 248-265.
    • (2006) Biosystems , vol.83 , pp. 248-265
    • Rodriguez-Fernandez, M.1
  • 24
    • 77951967006 scopus 로고    scopus 로고
    • An optimal experimental design approach to model discrimination in dynamic biochemical systems
    • Skanda, D. and Lebiedz, D. (2010) An optimal experimental design approach to model discrimination in dynamic biochemical systems. Bioinformatics, 26, 939.
    • (2010) Bioinformatics , vol.26 , pp. 939
    • Skanda, D.1    Lebiedz, D.2
  • 25
    • 0037417886 scopus 로고    scopus 로고
    • Identification of nucleocytoplasmic cycling as a remote sensor in cellular signaling by databased modeling
    • Swameye, I. et al. (2003) Identification of nucleocytoplasmic cycling as a remote sensor in cellular signaling by databased modeling. Proc. Natl Acad. Sci., 100, 1028.
    • (2003) Proc. Natl Acad. Sci. , vol.100 , pp. 1028
    • Swameye, I.1
  • 26
    • 83455196008 scopus 로고    scopus 로고
    • Parameter adaptations during phenotype transitions in progressive diseases
    • Tiemann, C. et al. (2011) Parameter adaptations during phenotype transitions in progressive diseases. BMC Syst. Biol., 5, 174.
    • (2011) BMC Syst. Biol. , vol.5 , pp. 174
    • Tiemann, C.1
  • 27
    • 58149142997 scopus 로고    scopus 로고
    • Approximate bayesian computation scheme for parameter inference and model selection in dynamical systems
    • Toni, T. et al. (2009) Approximate bayesian computation scheme for parameter inference and model selection in dynamical systems. J. Roy. Soc. Interface, 6, 187-202.
    • (2009) J. Roy. Soc. Interface , vol.6 , pp. 187-202
    • Toni, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.