메뉴 건너뛰기




Volumn 73, Issue 10-12, 2010, Pages 2225-2233

First and second order sensitivity analysis of MLP

Author keywords

Explanation ability; Multi layered perceptrons; Non linear model; Variable importance

Indexed keywords

BLACK BOXES; BLACK-BOX MODEL; FUNCTION MAPPING; IMPORTANCE INDEX; INPUT AND OUTPUTS; INPUT VARIABLES; MLP MODEL; MULTILAYERED PERCEPTRONS; NON-LINEAR MODEL; PREDICTION MODEL; REAL APPLICATIONS; SECOND ORDER EFFECT; SECOND-ORDER SENSITIVITY;

EID: 77952542781     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2010.01.011     Document Type: Article
Times cited : (41)

References (14)
  • 1
    • 85084737696 scopus 로고
    • Sensitivity analysis for feedforward artificial neural networks with differentiable activation functions, in: Proceedings of the International Joint Conference on Neural Networks, Baltimore.
    • S. Hashem, Sensitivity analysis for feedforward artificial neural networks with differentiable activation functions, in: Proceedings of the International Joint Conference on Neural Networks, Baltimore, 1992, pp. 419-424.
    • (1992) , pp. 419-424
    • Hashem, S.1
  • 2
    • 0029521876 scopus 로고
    • Input variable selection for neural networks application to predicting the US business cycle, in: Proceedings of the IEEE/IAFE on Computational Intelligence for Financial Engineering, New York.
    • J. Utans, J. Moody, S. Rehfuss, H. Siegelmann, Input variable selection for neural networks application to predicting the US business cycle, in: Proceedings of the IEEE/IAFE on Computational Intelligence for Financial Engineering, New York, 1995, pp. 118-122.
    • (1995) , pp. 118-122
    • Utans, J.1    Moody, J.2    Rehfuss, S.3    Siegelmann, H.4
  • 3
    • 85131704151 scopus 로고    scopus 로고
    • Input selection by multilayer feedforward trained networks, in: Proceedings of the International Joint Conference on Neural Networks, Washington.
    • M.F. Redondo, C.H. Espinosa, Input selection by multilayer feedforward trained networks, in: Proceedings of the International Joint Conference on Neural Networks, Washington, 1999, pp. 1834-1839.
    • (1999) , pp. 1834-1839
    • Redondo, M.F.1    Espinosa, C.H.2
  • 5
    • 0033623037 scopus 로고    scopus 로고
    • Application of neural networks and sensitivity analysis to improved prediction of trauma survival
    • Hunter A. Application of neural networks and sensitivity analysis to improved prediction of trauma survival. Computer Methods and Programs in Biomedicine 2000, 62(1):11-19.
    • (2000) Computer Methods and Programs in Biomedicine , vol.62 , Issue.1 , pp. 11-19
    • Hunter, A.1
  • 6
    • 0035505658 scopus 로고    scopus 로고
    • A new pruning heuristic based on variance analysis of sensitivity information
    • Engelbrecht A.P. A new pruning heuristic based on variance analysis of sensitivity information. IEEE Transactions on Neural Networks 2001, 12(6):1386-1399.
    • (2001) IEEE Transactions on Neural Networks , vol.12 , Issue.6 , pp. 1386-1399
    • Engelbrecht, A.P.1
  • 7
    • 25144492516 scopus 로고    scopus 로고
    • Efficient feature selection via analysis of relevance and redundancy
    • Yu L., Liu H. Efficient feature selection via analysis of relevance and redundancy. The Journal of Machine Learning Research 2004, 5:1205-1224.
    • (2004) The Journal of Machine Learning Research , vol.5 , pp. 1205-1224
    • Yu, L.1    Liu, H.2
  • 9
    • 0037442845 scopus 로고    scopus 로고
    • Review and comparison of methods to study the contribution of variables in artificial neural network models
    • Gevrey M., Dimopoulosb I., Leka S. Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecological Modelling 2003, 160(3):249-264.
    • (2003) Ecological Modelling , vol.160 , Issue.3 , pp. 249-264
    • Gevrey, M.1    Dimopoulosb, I.2    Leka, S.3
  • 10
    • 3242721368 scopus 로고    scopus 로고
    • An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data
    • Olden J.D., Joyb M.K., Deathb R.G. An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data. Ecological Modelling 2004, 178(3):389-397.
    • (2004) Ecological Modelling , vol.178 , Issue.3 , pp. 389-397
    • Olden, J.D.1    Joyb, M.K.2    Deathb, R.G.3
  • 11
    • 34547378771 scopus 로고    scopus 로고
    • K.L. Joy, D. Primeaux, A comparison of two contributive analysis methods applied to an ANN modeling facial attractiveness, in: Fourth International Conference on Software Engineering Research, Management and Applications (SERA'06).
    • K.L. Joy, D. Primeaux, A comparison of two contributive analysis methods applied to an ANN modeling facial attractiveness, in: Fourth International Conference on Software Engineering Research, Management and Applications (SERA'06), 2006, pp. 82-86.
    • (2006) , pp. 82-86
  • 13
    • 77952549947 scopus 로고    scopus 로고
    • Comparison of neural networks and discriminant analysis in predicting forest cover types, Ph.D. Dissertation, Department of Forest Sciences, Colorado State University, Fort Collins, Colorado.
    • J.A. Blackard, Comparison of neural networks and discriminant analysis in predicting forest cover types, Ph.D. Dissertation, Department of Forest Sciences, Colorado State University, Fort Collins, Colorado, 1998.
    • (1998)
    • Blackard, J.A.1
  • 14
    • 77952545933 scopus 로고    scopus 로고
    • UCI Machine Learning Repository Content Summary, Spambase Database.
    • UCI Machine Learning Repository Content Summary, Spambase Database, 2008. http://www.ics.uci.edu/~mlearn/MLSummary.html.
    • (2008)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.