-
1
-
-
0001626339
-
A classification EM algorithm for clustering and two stochastic versions
-
Celeux, G., Govaert, G.: A classification EM algorithm for clustering and two stochastic versions. Comput. Stat. Data Anal. 14, 315-332 (1992)
-
(1992)
Comput. Stat. Data Anal
, vol.14
, pp. 315-332
-
-
Celeux, G.1
Govaert, G.2
-
2
-
-
0002607026
-
Bayesian classification (autoclass): Theory and results
-
Fayyad, U, Pitesky-Shapiro, O, Uthurusamy, R, eds, AAAI Press, CA
-
Cheeseman, P., Stutz, J.: Bayesian classification (autoclass): theory and results. In: Fayyad, U., Pitesky-Shapiro, O., Uthurusamy, R. (eds.) Advances in Knowledge Discovery and Data Mining. pp. 61-83 AAAI Press, CA (1996)
-
(1996)
Advances in Knowledge Discovery and Data Mining
, pp. 61-83
-
-
Cheeseman, P.1
Stutz, J.2
-
3
-
-
0001381164
-
Estimating the components of a mixture of normal distributions
-
Day, N.E.: Estimating the components of a mixture of normal distributions. Biometrika 56, 464-474 (1969)
-
(1969)
Biometrika
, vol.56
, pp. 464-474
-
-
Day, N.E.1
-
4
-
-
0002629270
-
Maximum likelihood for incomplete data via the EM algorithm
-
Dempster, A., Laird, N., Rubin, D.: Maximum likelihood for incomplete data via the EM algorithm. J. Roy. Stat. Soc. 39(B), 1-38 (1977)
-
(1977)
J. Roy. Stat. Soc
, vol.39
, Issue.B
, pp. 1-38
-
-
Dempster, A.1
Laird, N.2
Rubin, D.3
-
5
-
-
0031269184
-
Beyond independence: Conditions for the optimality of the simple bayesian classifier
-
Domingos, P., Pazzani, M.: Beyond independence: Conditions for the optimality of the simple bayesian classifier. Mach. Learn. 29, 103-130 (1997)
-
(1997)
Mach. Learn
, vol.29
, pp. 103-130
-
-
Domingos, P.1
Pazzani, M.2
-
6
-
-
0030291360
-
Comparison of the mixture and the classification maximum likelihood in cluster analysis with binary data
-
Govaert, G., Nadif, M.: Comparison of the mixture and the classification maximum likelihood in cluster analysis with binary data. Comput. Stat. Data Anal. 23, 65-81 (1996)
-
(1996)
Comput. Stat. Data Anal
, vol.23
, pp. 65-81
-
-
Govaert, G.1
Nadif, M.2
-
7
-
-
21144460553
-
Conjugate gradient acceleration of the EM algorithm
-
Jamshidian, M., Jennrich, R.: Conjugate gradient acceleration of the EM algorithm. J. Am. Stat. Associ 88(421), 221-228 (1993)
-
(1993)
J. Am. Stat. Associ
, vol.88
, Issue.421
, pp. 221-228
-
-
Jamshidian, M.1
Jennrich, R.2
-
9
-
-
0034592784
-
Efficient clustering of high-dimensional data sets with application to reference matching
-
Ramakrishnan, R, Stolfo, S, eds, ACM, NewYork
-
McCallum, A., Nigam, K., Ungar, L.: Efficient clustering of high-dimensional data sets with application to reference matching. In: Ramakrishnan, R., Stolfo, S. (eds.) Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 169-178. ACM, NewYork (2000)
-
(2000)
Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 169-178
-
-
McCallum, A.1
Nigam, K.2
Ungar, L.3
-
11
-
-
0001232538
-
A fast improvement to the EM algorithm on its own terms
-
Meilijson, I.: A fast improvement to the EM algorithm on its own terms. J. Roy. Stat. Soc. Ser B 51(1), 127-138 (1989)
-
(1989)
J. Roy. Stat. Soc. Ser B
, vol.51
, Issue.1
, pp. 127-138
-
-
Meilijson, I.1
-
12
-
-
18244387717
-
The EM algorithm - an old folksong sung to a fast new tune (with discussion)
-
Meng, X.-L., van Dyk, D.: The EM algorithm - an old folksong sung to a fast new tune (with discussion). J. Royal Stat. Soc. Ser B 59, 511-567 (1997)
-
(1997)
J. Royal Stat. Soc. Ser B
, vol.59
, pp. 511-567
-
-
Meng, X.-L.1
van Dyk, D.2
-
13
-
-
84899029127
-
Very fast EM-based mixture model clustering using multiresolution kd-trees
-
Kearns, M.S, Solla, S.A, Cohn, D.A, eds, MIT Press, Cambridge, MA
-
Moore, A.: Very fast EM-based mixture model clustering using multiresolution kd-trees. In: Kearns, M.S., Solla, S.A., Cohn, D.A. (eds.) Advances in Neural Information Processing Systems 11: Proceedings of the 1998 Conference, pp. 543-549. MIT Press, Cambridge, MA (1999)
-
(1999)
Advances in Neural Information Processing Systems 11: Proceedings of the 1998 Conference
, pp. 543-549
-
-
Moore, A.1
-
14
-
-
0002788893
-
A view of the EM algorithm that justifies incremental, sparse, and other variants
-
Jordan, M, ed, Kluwer Academic Publishers, Dordrecht
-
Neal, R., Hinton, G.: A view of the EM algorithm that justifies incremental, sparse, and other variants. In: Jordan, M. (ed.) Learning in Graphical Models, pp. 355-371. Kluwer Academic Publishers, Dordrecht (1998)
-
(1998)
Learning in Graphical Models
, pp. 355-371
-
-
Neal, R.1
Hinton, G.2
-
15
-
-
0002643871
-
Clustering criteria by multivariate normal mixtures
-
Symons, M.: Clustering criteria by multivariate normal mixtures. Biometrics 37, 35-43 (1981)
-
(1981)
Biometrics
, vol.37
, pp. 35-43
-
-
Symons, M.1
-
16
-
-
0035575419
-
Accelerating EM for large databases
-
Thiesson, B., Meek, C., Heckerman, D.: Accelerating EM for large databases. Mach. Learn. 45, 279-299 (2001)
-
(2001)
Mach. Learn
, vol.45
, pp. 279-299
-
-
Thiesson, B.1
Meek, C.2
Heckerman, D.3
|