메뉴 건너뛰기




Volumn 37, Issue 4, 2007, Pages 513-525

Speed-up for the expectation-maximization algorithm for clustering categorical data

Author keywords

Acceleration; Categorical data; Clustering; Expectation maximization algorithm; Mixture model

Indexed keywords

CONVERGENCE OF NUMERICAL METHODS; DATA STRUCTURES; DATABASE SYSTEMS; MATHEMATICAL MODELS;

EID: 33847320688     PISSN: 09255001     EISSN: 15732916     Source Type: Journal    
DOI: 10.1007/s10898-006-9059-3     Document Type: Article
Times cited : (20)

References (16)
  • 1
    • 0001626339 scopus 로고
    • A classification EM algorithm for clustering and two stochastic versions
    • Celeux, G., Govaert, G.: A classification EM algorithm for clustering and two stochastic versions. Comput. Stat. Data Anal. 14, 315-332 (1992)
    • (1992) Comput. Stat. Data Anal , vol.14 , pp. 315-332
    • Celeux, G.1    Govaert, G.2
  • 2
    • 0002607026 scopus 로고    scopus 로고
    • Bayesian classification (autoclass): Theory and results
    • Fayyad, U, Pitesky-Shapiro, O, Uthurusamy, R, eds, AAAI Press, CA
    • Cheeseman, P., Stutz, J.: Bayesian classification (autoclass): theory and results. In: Fayyad, U., Pitesky-Shapiro, O., Uthurusamy, R. (eds.) Advances in Knowledge Discovery and Data Mining. pp. 61-83 AAAI Press, CA (1996)
    • (1996) Advances in Knowledge Discovery and Data Mining , pp. 61-83
    • Cheeseman, P.1    Stutz, J.2
  • 3
    • 0001381164 scopus 로고
    • Estimating the components of a mixture of normal distributions
    • Day, N.E.: Estimating the components of a mixture of normal distributions. Biometrika 56, 464-474 (1969)
    • (1969) Biometrika , vol.56 , pp. 464-474
    • Day, N.E.1
  • 4
    • 0002629270 scopus 로고
    • Maximum likelihood for incomplete data via the EM algorithm
    • Dempster, A., Laird, N., Rubin, D.: Maximum likelihood for incomplete data via the EM algorithm. J. Roy. Stat. Soc. 39(B), 1-38 (1977)
    • (1977) J. Roy. Stat. Soc , vol.39 , Issue.B , pp. 1-38
    • Dempster, A.1    Laird, N.2    Rubin, D.3
  • 5
    • 0031269184 scopus 로고    scopus 로고
    • Beyond independence: Conditions for the optimality of the simple bayesian classifier
    • Domingos, P., Pazzani, M.: Beyond independence: Conditions for the optimality of the simple bayesian classifier. Mach. Learn. 29, 103-130 (1997)
    • (1997) Mach. Learn , vol.29 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 6
    • 0030291360 scopus 로고    scopus 로고
    • Comparison of the mixture and the classification maximum likelihood in cluster analysis with binary data
    • Govaert, G., Nadif, M.: Comparison of the mixture and the classification maximum likelihood in cluster analysis with binary data. Comput. Stat. Data Anal. 23, 65-81 (1996)
    • (1996) Comput. Stat. Data Anal , vol.23 , pp. 65-81
    • Govaert, G.1    Nadif, M.2
  • 7
    • 21144460553 scopus 로고
    • Conjugate gradient acceleration of the EM algorithm
    • Jamshidian, M., Jennrich, R.: Conjugate gradient acceleration of the EM algorithm. J. Am. Stat. Associ 88(421), 221-228 (1993)
    • (1993) J. Am. Stat. Associ , vol.88 , Issue.421 , pp. 221-228
    • Jamshidian, M.1    Jennrich, R.2
  • 11
    • 0001232538 scopus 로고
    • A fast improvement to the EM algorithm on its own terms
    • Meilijson, I.: A fast improvement to the EM algorithm on its own terms. J. Roy. Stat. Soc. Ser B 51(1), 127-138 (1989)
    • (1989) J. Roy. Stat. Soc. Ser B , vol.51 , Issue.1 , pp. 127-138
    • Meilijson, I.1
  • 12
    • 18244387717 scopus 로고    scopus 로고
    • The EM algorithm - an old folksong sung to a fast new tune (with discussion)
    • Meng, X.-L., van Dyk, D.: The EM algorithm - an old folksong sung to a fast new tune (with discussion). J. Royal Stat. Soc. Ser B 59, 511-567 (1997)
    • (1997) J. Royal Stat. Soc. Ser B , vol.59 , pp. 511-567
    • Meng, X.-L.1    van Dyk, D.2
  • 13
    • 84899029127 scopus 로고    scopus 로고
    • Very fast EM-based mixture model clustering using multiresolution kd-trees
    • Kearns, M.S, Solla, S.A, Cohn, D.A, eds, MIT Press, Cambridge, MA
    • Moore, A.: Very fast EM-based mixture model clustering using multiresolution kd-trees. In: Kearns, M.S., Solla, S.A., Cohn, D.A. (eds.) Advances in Neural Information Processing Systems 11: Proceedings of the 1998 Conference, pp. 543-549. MIT Press, Cambridge, MA (1999)
    • (1999) Advances in Neural Information Processing Systems 11: Proceedings of the 1998 Conference , pp. 543-549
    • Moore, A.1
  • 14
    • 0002788893 scopus 로고    scopus 로고
    • A view of the EM algorithm that justifies incremental, sparse, and other variants
    • Jordan, M, ed, Kluwer Academic Publishers, Dordrecht
    • Neal, R., Hinton, G.: A view of the EM algorithm that justifies incremental, sparse, and other variants. In: Jordan, M. (ed.) Learning in Graphical Models, pp. 355-371. Kluwer Academic Publishers, Dordrecht (1998)
    • (1998) Learning in Graphical Models , pp. 355-371
    • Neal, R.1    Hinton, G.2
  • 15
    • 0002643871 scopus 로고
    • Clustering criteria by multivariate normal mixtures
    • Symons, M.: Clustering criteria by multivariate normal mixtures. Biometrics 37, 35-43 (1981)
    • (1981) Biometrics , vol.37 , pp. 35-43
    • Symons, M.1
  • 16
    • 0035575419 scopus 로고    scopus 로고
    • Accelerating EM for large databases
    • Thiesson, B., Meek, C., Heckerman, D.: Accelerating EM for large databases. Mach. Learn. 45, 279-299 (2001)
    • (2001) Mach. Learn , vol.45 , pp. 279-299
    • Thiesson, B.1    Meek, C.2    Heckerman, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.