메뉴 건너뛰기




Volumn 49, Issue , 2014, Pages 241-267

An empirical evaluation of ranking measures with respect to robustness to noise

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; ELECTRONICS ENGINEERING;

EID: 84894418956     PISSN: None     EISSN: 10769757     Source Type: Journal    
DOI: 10.1613/jair.4136     Document Type: Article
Times cited : (6)

References (35)
  • 1
    • 0033164667 scopus 로고    scopus 로고
    • Comparing classifiers when the misallocation costs are uncertain
    • Adams, N., & Hand, D. (1999). Comparing classifiers when the misallocation costs are uncertain. Pattern Recognition, 32 (7), 1139-1147.
    • (1999) Pattern Recognition , vol.32 , Issue.7 , pp. 1139-1147
    • Adams, N.1    Hand, D.2
  • 2
    • 84886567160 scopus 로고    scopus 로고
    • Irvine, CA: University of California, School of Information and Computer Science
    • Bache, K., & Lichman, M. (2013). UCI machine learning repository. [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science.
    • (2013) UCI Machine Learning Repository
    • Bache, K.1    Lichman, M.2
  • 3
    • 49549139345 scopus 로고
    • The area under the ordinal dominance graph and the area below the receiver operating characteristic curve
    • Bamber, D. (1975). The area under the ordinal dominance graph and the area below the receiver operating characteristic curve. Journal of Mathematical Psychology, 12, 387-415.
    • (1975) Journal of Mathematical Psychology , vol.12 , pp. 387-415
    • Bamber, D.1
  • 5
    • 84855679008 scopus 로고    scopus 로고
    • Caveats and pitfalls of ROC analysis in clinical microarray research (and how to avoid them)
    • Berrar, D., & Flach, P. (2012). Caveats and pitfalls of ROC analysis in clinical microarray research (and how to avoid them). Briefings in Bioinformatics, 13 (1), 83-97.
    • (2012) Briefings in Bioinformatics , vol.13 , Issue.1 , pp. 83-97
    • Berrar, D.1    Flach, P.2
  • 6
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • PII S0031320396001422
    • Bradley, A. (1997). The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 30 (3), 1145-1159. (Pubitemid 127406521)
    • (1997) Pattern Recognition , vol.30 , Issue.7 , pp. 1145-1159
    • Bradley, A.P.1
  • 7
    • 84872800974 scopus 로고    scopus 로고
    • ROC curve equivalence using the Kolmogorov-Smirnov test
    • Bradley, A. (2013). ROC curve equivalence using the Kolmogorov-Smirnov test. Pattern Recognition Letters, 34 (5), 470-475.
    • (2013) Pattern Recognition Letters , vol.34 , Issue.5 , pp. 470-475
    • Bradley, A.1
  • 10
    • 33748991193 scopus 로고    scopus 로고
    • Cost curves: An improved method for visualizing classifier performance
    • DOI 10.1007/s10994-006-8199-5
    • Drummond, C., & Holte, R. (2006). Cost curves: An improved method for visualizing classifier performance. Machine Learning, 65, 95-130. (Pubitemid 44451195)
    • (2006) Machine Learning , vol.65 , Issue.1 , pp. 95-130
    • Drummond, C.1    Holte, R.C.2
  • 13
    • 70349280929 scopus 로고    scopus 로고
    • An experimental comparison of performance measures for classification
    • Ferri, C., Hernández-Orallo, J., & Modroiu, R. (2009). An experimental comparison of performance measures for classification. Pattern Recognition Letters, 30, 27-38.
    • (2009) Pattern Recognition Letters , vol.30 , pp. 27-38
    • Ferri, C.1    Hernández-Orallo, J.2    Modroiu, R.3
  • 15
    • 83055177185 scopus 로고    scopus 로고
    • ROC analysis
    • In Sammut, C., & Webb, G. (Eds.), Springer
    • Flach, P. (2010). ROC analysis. In Sammut, C., & Webb, G. (Eds.), Encyclopedia of Machine Learning, pp. 869-874. Springer.
    • (2010) Encyclopedia of Machine Learning , pp. 869-874
    • Flach, P.1
  • 18
    • 33745886270 scopus 로고    scopus 로고
    • Classifier technology and the illusion of progress
    • DOI 10.1214/088342306000000060
    • Hand, D. (2006). Classifier technology and the illusion of progress. Statistical Science, 21 (1), 1-14. (Pubitemid 44046906)
    • (2006) Statistical Science , vol.21 , Issue.1 , pp. 1-14
    • Hand, D.J.1
  • 19
    • 69549133517 scopus 로고    scopus 로고
    • Measuring classifier performance: A coherent alternative to the area under the ROC curve
    • Hand, D. (2009). Measuring classifier performance: a coherent alternative to the area under the ROC curve. Machine Learning, 77, 103-123.
    • (2009) Machine Learning , vol.77 , pp. 103-123
    • Hand, D.1
  • 20
    • 84873807222 scopus 로고    scopus 로고
    • When is the area under the receiver operating characteristic curve an appropriate measure of classifier performance?
    • Hand, D., & Anagnostopoulos, C. (2013). When is the area under the receiver operating characteristic curve an appropriate measure of classifier performance?. Pattern Recognition Letters, 34 (5), 492-495.
    • (2013) Pattern Recognition Letters , vol.34 , Issue.5 , pp. 492-495
    • Hand, D.1    Anagnostopoulos, C.2
  • 21
    • 0020524559 scopus 로고
    • A method of comparing the areas under receiver operating characteristic curves derived from the same cases
    • Hanley, J., & McNeil, B. (1983). A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology, 148 (3), 839-843. (Pubitemid 13033817)
    • (1983) Radiology , vol.148 , Issue.3 , pp. 839-843
    • Hanley, J.A.1    McNeil, B.J.2
  • 22
    • 84869160181 scopus 로고    scopus 로고
    • A unified view of performance metrics: Translating threshold choice into expected classification loss
    • Hernández-Orallo, J., Flach, P., & Ferri, C. (2012). A unified view of performance metrics: Translating threshold choice into expected classification loss. Journal of Machine Learning Research, 13, 2813-2869.
    • (2012) Journal of Machine Learning Research , vol.13 , pp. 2813-2869
    • Hernández-Orallo, J.1    Flach, P.2    Ferri, C.3
  • 23
    • 0025756234 scopus 로고
    • The area under the ROC curve and its competitors
    • Hilden, J. (1991). The area under the ROC curve and its competitors. Medical Decision Making, 11 (2), 95-101.
    • (1991) Medical Decision Making , vol.11 , Issue.2 , pp. 95-101
    • Hilden, J.1
  • 24
    • 84894469885 scopus 로고    scopus 로고
    • The Evaluation of Predictive Learners: Some Theoretical and Empirical Results
    • Machine Learning: ECML 2001
    • Korb, K., Hope, L., & Hughes, M. (2001). The evaluation of predictive learners: Some theoretical and empirical results. In DeRaedt, L., & Flach, P. (Eds.), Lecture Notes in Artificial Intelligence, pp. 276-287. Springer. (Pubitemid 33331076)
    • (2001) LECTURE NOTES IN COMPUTER SCIENCE , Issue.2167 , pp. 276-287
    • Korb, K.B.1    Hope, L.R.2    Hughes, M.J.3
  • 25
    • 38949161848 scopus 로고    scopus 로고
    • AUC: A misleading measure of the performance of predictive distribution models
    • DOI 10.1111/j.1466-8238.2007.00358.x
    • Lobo, J., Jiménez-Valverde, A., & Real, R. (2008). AUC: a misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography, 17, 145-151. (Pubitemid 351228538)
    • (2008) Global Ecology and Biogeography , vol.17 , Issue.2 , pp. 145-151
    • Lobo, J.M.1    Jimenez-valverde, A.2    Real, R.3
  • 26
    • 0024370623 scopus 로고
    • Analyzing a portion of the ROC curve
    • McClish, D. (1989). Analyzing a portion of the ROC curve. Medical Decision Making, 9 (3), 190-195. (Pubitemid 19181460)
    • (1989) Medical Decision Making , vol.9 , Issue.3 , pp. 190-195
    • Katzman McClish, D.1
  • 27
    • 84875454178 scopus 로고    scopus 로고
    • On measuring the performance of binary classifiers
    • Parker, C. (2013). On measuring the performance of binary classifiers. Knowledge and Information Systems, 35, 131-152.
    • (2013) Knowledge and Information Systems , vol.35 , pp. 131-152
    • Parker, C.1
  • 28
    • 80053222008 scopus 로고    scopus 로고
    • A survey on graphical methods for classification predictive performance evaluation
    • Prati, R., Batista, G., & Monard, M. (2011). A survey on graphical methods for classification predictive performance evaluation. IEEE Transactions on Knowledge and Data Engineering, 23 (11), 1601-1618.
    • (2011) IEEE Transactions on Knowledge and Data Engineering , vol.23 , Issue.11 , pp. 1601-1618
    • Prati, R.1    Batista, G.2    Monard, M.3
  • 29
    • 0035283313 scopus 로고    scopus 로고
    • Robust classification for imprecise environments
    • DOI 10.1023/A:1007601015854
    • Provost, F., & Fawcett, T. (2001). Robust classification for imprecise environments. Machine Learning, 42 (3), 203-231. (Pubitemid 32188799)
    • (2001) Machine Learning , vol.42 , Issue.3 , pp. 203-231
    • Provost, F.1    Fawcett, T.2
  • 30
    • 70149113077 scopus 로고    scopus 로고
    • R Development Core Team. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0
    • R Development Core Team (2009). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
    • (2009) R: A Language and Environment for Statistical Computing
  • 32
    • 48349140000 scopus 로고    scopus 로고
    • A critical analysis of variants of the AUC
    • Vanderlooy, S., & Hüllermeier, E. (2008). A critical analysis of variants of the AUC. Machine Learning, 72, 247-262.
    • (2008) Machine Learning , vol.72 , pp. 247-262
    • Vanderlooy, S.1    Hüllermeier, E.2
  • 33
    • 14844366200 scopus 로고    scopus 로고
    • On the application of ROC analysis to predict classification performance under varying class distributions
    • DOI 10.1007/s10994-005-4257-7
    • Webb, G., & Ting, K. (2005). On the application of ROC analysis to predict classification performance under varying class distributions. Machine Learning, 58 (1), 25-32. (Pubitemid 40356737)
    • (2005) Machine Learning , vol.58 , Issue.1 , pp. 25-32
    • Webb, G.I.1    Ting, K.M.2
  • 35
    • 84882759063 scopus 로고    scopus 로고
    • An improved model selection heuristic for AUC
    • In Kok, J., Koronacki, J., de Mántaras, R., Matwin, S., Mladenič, D., & Skowron, A. (Eds.), Springer
    • Wu, S., Flach, P., & Ferri, C. (2007). An improved model selection heuristic for AUC. In Kok, J., Koronacki, J., de Mántaras, R., Matwin, S., Mladenič, D., & Skowron, A. (Eds.), Proceedings of the 18th European Conference on Machine Learning (ECML 2007), pp. 478-489. Springer.
    • (2007) Proceedings of the 18th European Conference on Machine Learning (ECML 2007) , pp. 478-489
    • Wu, S.1    Flach, P.2    Ferri, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.