-
1
-
-
0033164667
-
Comparing classifiers when the misallocation costs are uncertain
-
Adams, N., & Hand, D. (1999). Comparing classifiers when the misallocation costs are uncertain. Pattern Recognition, 32 (7), 1139-1147.
-
(1999)
Pattern Recognition
, vol.32
, Issue.7
, pp. 1139-1147
-
-
Adams, N.1
Hand, D.2
-
2
-
-
84886567160
-
-
Irvine, CA: University of California, School of Information and Computer Science
-
Bache, K., & Lichman, M. (2013). UCI machine learning repository. [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science.
-
(2013)
UCI Machine Learning Repository
-
-
Bache, K.1
Lichman, M.2
-
3
-
-
49549139345
-
The area under the ordinal dominance graph and the area below the receiver operating characteristic curve
-
Bamber, D. (1975). The area under the ordinal dominance graph and the area below the receiver operating characteristic curve. Journal of Mathematical Psychology, 12, 387-415.
-
(1975)
Journal of Mathematical Psychology
, vol.12
, pp. 387-415
-
-
Bamber, D.1
-
4
-
-
47849133262
-
The expected performance curve
-
Bengio, S., Mariéthoz, J., & Keller, M. (2005). The expected performance curve. Proceedings of the ICML 2005 workshop on ROC Analysis in Machine Learning, 9-16.
-
(2005)
Proceedings of the ICML 2005 Workshop on ROC Analysis in Machine Learning
, pp. 9-16
-
-
Bengio, S.1
Mariéthoz, J.2
Keller, M.3
-
5
-
-
84855679008
-
Caveats and pitfalls of ROC analysis in clinical microarray research (and how to avoid them)
-
Berrar, D., & Flach, P. (2012). Caveats and pitfalls of ROC analysis in clinical microarray research (and how to avoid them). Briefings in Bioinformatics, 13 (1), 83-97.
-
(2012)
Briefings in Bioinformatics
, vol.13
, Issue.1
, pp. 83-97
-
-
Berrar, D.1
Flach, P.2
-
6
-
-
0031191630
-
The use of the area under the ROC curve in the evaluation of machine learning algorithms
-
PII S0031320396001422
-
Bradley, A. (1997). The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 30 (3), 1145-1159. (Pubitemid 127406521)
-
(1997)
Pattern Recognition
, vol.30
, Issue.7
, pp. 1145-1159
-
-
Bradley, A.P.1
-
7
-
-
84872800974
-
ROC curve equivalence using the Kolmogorov-Smirnov test
-
Bradley, A. (2013). ROC curve equivalence using the Kolmogorov-Smirnov test. Pattern Recognition Letters, 34 (5), 470-475.
-
(2013)
Pattern Recognition Letters
, vol.34
, Issue.5
, pp. 470-475
-
-
Bradley, A.1
-
8
-
-
38049177755
-
Eficient AUC optimization for classification
-
In Kok, J., Koronacki, J., de Mántaras, R., Matwin, S., Mladenič, D., & Skowron, A. (Eds.), Springer
-
Calders, T., & Jaroszewicz, S. (2007). Eficient AUC optimization for classification. In Kok, J., Koronacki, J., de Mántaras, R., Matwin, S., Mladenič, D., & Skowron, A. (Eds.), Proceedings of the 11th European Conference on Principles and Practice of Knowledge Discovery in Databases, pp. 42-53. Springer.
-
(2007)
Proceedings of the 11th European Conference on Principles and Practice of Knowledge Discovery in Databases
, pp. 42-53
-
-
Calders, T.1
Jaroszewicz, S.2
-
10
-
-
33748991193
-
Cost curves: An improved method for visualizing classifier performance
-
DOI 10.1007/s10994-006-8199-5
-
Drummond, C., & Holte, R. (2006). Cost curves: An improved method for visualizing classifier performance. Machine Learning, 65, 95-130. (Pubitemid 44451195)
-
(2006)
Machine Learning
, vol.65
, Issue.1
, pp. 95-130
-
-
Drummond, C.1
Holte, R.C.2
-
12
-
-
33751370611
-
Modifying ROC curves to incorporate predicted probabilities
-
Bonn, Germany
-
Ferri, C., Flach, P., Hernández-Orallo, J., & Senad, A. (2005). Modifying ROC curves to incorporate predicted probabilities. In Proceedings of the 2nd Workshop on ROC Analysis in Machine Learning. Bonn, Germany.
-
(2005)
Proceedings of the 2nd Workshop on ROC Analysis in Machine Learning
-
-
Ferri, C.1
Flach, P.2
Hernández-Orallo, J.3
Senad, A.4
-
13
-
-
70349280929
-
An experimental comparison of performance measures for classification
-
Ferri, C., Hernández-Orallo, J., & Modroiu, R. (2009). An experimental comparison of performance measures for classification. Pattern Recognition Letters, 30, 27-38.
-
(2009)
Pattern Recognition Letters
, vol.30
, pp. 27-38
-
-
Ferri, C.1
Hernández-Orallo, J.2
Modroiu, R.3
-
15
-
-
83055177185
-
ROC analysis
-
In Sammut, C., & Webb, G. (Eds.), Springer
-
Flach, P. (2010). ROC analysis. In Sammut, C., & Webb, G. (Eds.), Encyclopedia of Machine Learning, pp. 869-874. Springer.
-
(2010)
Encyclopedia of Machine Learning
, pp. 869-874
-
-
Flach, P.1
-
17
-
-
77951964158
-
Smallsample precision of ROC-related estimates
-
Hanczar, B., Hua, J., Sima, C., Weinstein, J., Bittner, M., & Dougherty, E. (2010). Smallsample precision of ROC-related estimates. Bioinformatics, 26, 822-830.
-
(2010)
Bioinformatics
, vol.26
, pp. 822-830
-
-
Hanczar, B.1
Hua, J.2
Sima, C.3
Weinstein, J.4
Bittner, M.5
Dougherty, E.6
-
18
-
-
33745886270
-
Classifier technology and the illusion of progress
-
DOI 10.1214/088342306000000060
-
Hand, D. (2006). Classifier technology and the illusion of progress. Statistical Science, 21 (1), 1-14. (Pubitemid 44046906)
-
(2006)
Statistical Science
, vol.21
, Issue.1
, pp. 1-14
-
-
Hand, D.J.1
-
19
-
-
69549133517
-
Measuring classifier performance: A coherent alternative to the area under the ROC curve
-
Hand, D. (2009). Measuring classifier performance: a coherent alternative to the area under the ROC curve. Machine Learning, 77, 103-123.
-
(2009)
Machine Learning
, vol.77
, pp. 103-123
-
-
Hand, D.1
-
20
-
-
84873807222
-
When is the area under the receiver operating characteristic curve an appropriate measure of classifier performance?
-
Hand, D., & Anagnostopoulos, C. (2013). When is the area under the receiver operating characteristic curve an appropriate measure of classifier performance?. Pattern Recognition Letters, 34 (5), 492-495.
-
(2013)
Pattern Recognition Letters
, vol.34
, Issue.5
, pp. 492-495
-
-
Hand, D.1
Anagnostopoulos, C.2
-
21
-
-
0020524559
-
A method of comparing the areas under receiver operating characteristic curves derived from the same cases
-
Hanley, J., & McNeil, B. (1983). A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology, 148 (3), 839-843. (Pubitemid 13033817)
-
(1983)
Radiology
, vol.148
, Issue.3
, pp. 839-843
-
-
Hanley, J.A.1
McNeil, B.J.2
-
22
-
-
84869160181
-
A unified view of performance metrics: Translating threshold choice into expected classification loss
-
Hernández-Orallo, J., Flach, P., & Ferri, C. (2012). A unified view of performance metrics: Translating threshold choice into expected classification loss. Journal of Machine Learning Research, 13, 2813-2869.
-
(2012)
Journal of Machine Learning Research
, vol.13
, pp. 2813-2869
-
-
Hernández-Orallo, J.1
Flach, P.2
Ferri, C.3
-
23
-
-
0025756234
-
The area under the ROC curve and its competitors
-
Hilden, J. (1991). The area under the ROC curve and its competitors. Medical Decision Making, 11 (2), 95-101.
-
(1991)
Medical Decision Making
, vol.11
, Issue.2
, pp. 95-101
-
-
Hilden, J.1
-
24
-
-
84894469885
-
The Evaluation of Predictive Learners: Some Theoretical and Empirical Results
-
Machine Learning: ECML 2001
-
Korb, K., Hope, L., & Hughes, M. (2001). The evaluation of predictive learners: Some theoretical and empirical results. In DeRaedt, L., & Flach, P. (Eds.), Lecture Notes in Artificial Intelligence, pp. 276-287. Springer. (Pubitemid 33331076)
-
(2001)
LECTURE NOTES IN COMPUTER SCIENCE
, Issue.2167
, pp. 276-287
-
-
Korb, K.B.1
Hope, L.R.2
Hughes, M.J.3
-
25
-
-
38949161848
-
AUC: A misleading measure of the performance of predictive distribution models
-
DOI 10.1111/j.1466-8238.2007.00358.x
-
Lobo, J., Jiménez-Valverde, A., & Real, R. (2008). AUC: a misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography, 17, 145-151. (Pubitemid 351228538)
-
(2008)
Global Ecology and Biogeography
, vol.17
, Issue.2
, pp. 145-151
-
-
Lobo, J.M.1
Jimenez-valverde, A.2
Real, R.3
-
26
-
-
0024370623
-
Analyzing a portion of the ROC curve
-
McClish, D. (1989). Analyzing a portion of the ROC curve. Medical Decision Making, 9 (3), 190-195. (Pubitemid 19181460)
-
(1989)
Medical Decision Making
, vol.9
, Issue.3
, pp. 190-195
-
-
Katzman McClish, D.1
-
27
-
-
84875454178
-
On measuring the performance of binary classifiers
-
Parker, C. (2013). On measuring the performance of binary classifiers. Knowledge and Information Systems, 35, 131-152.
-
(2013)
Knowledge and Information Systems
, vol.35
, pp. 131-152
-
-
Parker, C.1
-
28
-
-
80053222008
-
A survey on graphical methods for classification predictive performance evaluation
-
Prati, R., Batista, G., & Monard, M. (2011). A survey on graphical methods for classification predictive performance evaluation. IEEE Transactions on Knowledge and Data Engineering, 23 (11), 1601-1618.
-
(2011)
IEEE Transactions on Knowledge and Data Engineering
, vol.23
, Issue.11
, pp. 1601-1618
-
-
Prati, R.1
Batista, G.2
Monard, M.3
-
29
-
-
0035283313
-
Robust classification for imprecise environments
-
DOI 10.1023/A:1007601015854
-
Provost, F., & Fawcett, T. (2001). Robust classification for imprecise environments. Machine Learning, 42 (3), 203-231. (Pubitemid 32188799)
-
(2001)
Machine Learning
, vol.42
, Issue.3
, pp. 203-231
-
-
Provost, F.1
Fawcett, T.2
-
30
-
-
70149113077
-
-
R Development Core Team. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0
-
R Development Core Team (2009). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
-
(2009)
R: A Language and Environment for Statistical Computing
-
-
-
32
-
-
48349140000
-
A critical analysis of variants of the AUC
-
Vanderlooy, S., & Hüllermeier, E. (2008). A critical analysis of variants of the AUC. Machine Learning, 72, 247-262.
-
(2008)
Machine Learning
, vol.72
, pp. 247-262
-
-
Vanderlooy, S.1
Hüllermeier, E.2
-
33
-
-
14844366200
-
On the application of ROC analysis to predict classification performance under varying class distributions
-
DOI 10.1007/s10994-005-4257-7
-
Webb, G., & Ting, K. (2005). On the application of ROC analysis to predict classification performance under varying class distributions. Machine Learning, 58 (1), 25-32. (Pubitemid 40356737)
-
(2005)
Machine Learning
, vol.58
, Issue.1
, pp. 25-32
-
-
Webb, G.I.1
Ting, K.M.2
-
35
-
-
84882759063
-
An improved model selection heuristic for AUC
-
In Kok, J., Koronacki, J., de Mántaras, R., Matwin, S., Mladenič, D., & Skowron, A. (Eds.), Springer
-
Wu, S., Flach, P., & Ferri, C. (2007). An improved model selection heuristic for AUC. In Kok, J., Koronacki, J., de Mántaras, R., Matwin, S., Mladenič, D., & Skowron, A. (Eds.), Proceedings of the 18th European Conference on Machine Learning (ECML 2007), pp. 478-489. Springer.
-
(2007)
Proceedings of the 18th European Conference on Machine Learning (ECML 2007)
, pp. 478-489
-
-
Wu, S.1
Flach, P.2
Ferri, C.3
|