메뉴 건너뛰기




Volumn 19, Issue 3, 2014, Pages 473-481

Comparison between response surface models and artificial neural networks in hydrologic forecasting

Author keywords

Artificial neural networks; Hydrologic forecasting; Regression; Response surface model

Indexed keywords


EID: 84894105439     PISSN: 10840699     EISSN: None     Source Type: Journal    
DOI: 10.1061/(ASCE)HE.1943-5584.0000827     Document Type: Article
Times cited : (28)

References (41)
  • 1
    • 0034254196 scopus 로고    scopus 로고
    • Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments
    • Abrahart, R. J., and See, L. (2000). "Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments." Hydrol. Process., 14(11-12), 2157-2175.
    • (2000) Hydrol. Process , vol.14 , Issue.11-12 , pp. 2157-2175
    • Abrahart, R.J.1    See, L.2
  • 2
    • 67649097312 scopus 로고    scopus 로고
    • Multiple linear regression and artificial neural networks models for generalized reservoir storage-yield-reliability function for reservoir planning
    • 10.1061/(ASCE) HE.1943-5584.0000041
    • Adeloye, A. J. (2009). "Multiple linear regression and artificial neural networks models for generalized reservoir storage-yield-reliability function for reservoir planning." J. Hydrol. Eng., 10.1061/(ASCE) HE.1943-5584.0000041, 731-738.
    • (2009) J. Hydrol. Eng , pp. 731-738
    • Adeloye, A.J.1
  • 3
    • 0033380112 scopus 로고    scopus 로고
    • Evaluation of simple enzyme kinetics by response surface modelling
    • Andersson, M., and Adlercreutz, P. (1999). "Evaluation of simple enzyme kinetics by response surface modelling." Biotechnol. Tech., 13(12), 903-907.
    • (1999) Biotechnol. Tech. , vol.13 , Issue.12 , pp. 903-907
    • Andersson, M.1    Adlercreutz, P.2
  • 4
    • 0000649310 scopus 로고
    • Application of linear random models to four annual streamflow series
    • Carlson, R., MacCormick, A., and Watts, D. (1970). "Application of linear random models to four annual streamflow series." Water Resour. Res., 6(4), 1070-1078.
    • (1970) Water Resour. Res. , vol.6 , Issue.4 , pp. 1070-1078
    • Carlson, R.1    MacCormick, A.2    Watts, D.3
  • 5
    • 17144442570 scopus 로고    scopus 로고
    • Modelling of the monthly and daily behaviour of the runoffof the Xallas River using Box-Jenkins and neural networks methods
    • Castellano-Méndez, M., González-Manteiga, W., Febrero-Bande, M., Prada-Sánchez, J. M., and Lozano-Calderón, R. (2004). "Modelling of the monthly and daily behaviour of the runoffof the Xallas River using Box-Jenkins and neural networks methods." J. Hydrol., 296(1-4), 38-58.
    • (2004) J. Hydrol. , vol.296 , Issue.1-4 , pp. 38-58
    • Castellano-Méndez, M.1    González-Manteiga, W.2    Febrero-Bande, M.3    Prada-Sánchez, J.M.4    Lozano-Calderón, R.5
  • 6
    • 0019227509 scopus 로고
    • Gamma synthetic hydrographs
    • Croley, T. E., II (1980). "Gamma synthetic hydrographs." J. Hydrol., 47(1-2), 41-52.
    • (1980) J. Hydrol. , vol.47 , Issue.1-2 , pp. 41-52
    • Croley II, T.E.1
  • 7
    • 0037005708 scopus 로고    scopus 로고
    • Estimation of missing streamflow data using principles of chaos theory
    • Elshorbagy, A., Simonovicb, S. P., and Panu, U. S. (2002). "Estimation of missing streamflow data using principles of chaos theory." J. Hydrol., 255(1-4), 123-133.
    • (2002) J. Hydrol. , vol.255 , Issue.1-4 , pp. 123-133
    • Elshorbagy, A.1    Simonovicb, S.P.2    Panu, U.S.3
  • 8
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. I: Preliminary concepts
    • 10.1061/(ASCE)1084-0699 (2000)5
    • Govindaraju, R. S. (2000a). "Artificial neural networks in hydrology. I: Preliminary concepts." J. Hydrol. Eng., 10.1061/(ASCE)1084-0699 (2000)5:2(115), 115-123.
    • (2000) J. Hydrol. Eng , vol.2 , Issue.115 , pp. 115-123
    • Govindaraju, R.S.1
  • 9
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. II: Hydrologic applications
    • 10.1061/(ASCE)1084-0699(2000)5
    • Govindaraju, R. S. (2000b). "Artificial neural networks in hydrology. II: Hydrologic applications." J. Hydrol. Eng., 10.1061/(ASCE)1084-0699(2000)5:2(124), 124-137.
    • (2000) J. Hydrol. Eng , vol.2 , Issue.124 , pp. 124-137
    • Govindaraju, R.S.1
  • 10
    • 0025247333 scopus 로고
    • Suitability of two-parameter gamma and three-parameter beta distributions as synthetic unit hydrographs in Anatolia
    • Haktanir, T., and Sezen, N. (1990). "Suitability of two-parameter gamma and three-parameter beta distributions as synthetic unit hydrographs in Anatolia." Hydrol. Sci. J., 35(2), 167-184.
    • (1990) Hydrol. Sci. J. , vol.35 , Issue.2 , pp. 167-184
    • Haktanir, T.1    Sezen, N.2
  • 11
    • 0024092569 scopus 로고
    • Short-term forecasting of snowmelt discharge using ARMAX models
    • Haltiner, J. P., and Salas, J. D. (1988). "Short-term forecasting of snowmelt discharge using ARMAX models." J. Amer. Water Resour. Assoc., 24(5), 1083-1089.
    • (1988) J. Amer. Water Resour. Assoc. , vol.24 , Issue.5 , pp. 1083-1089
    • Haltiner, J.P.1    Salas, J.D.2
  • 12
    • 58549096521 scopus 로고    scopus 로고
    • Comparative study of ANNs versus parametric methods in rainfall frequency analysis
    • 10.1061/(ASCE)1084-0699(2009)14
    • He, J. X., and Valeo, C. (2009). "Comparative study of ANNs versus parametric methods in rainfall frequency analysis." J. Hydrol. Eng., 10.1061/(ASCE)1084-0699(2009)14:2(172), 172-184.
    • (2009) J. Hydrol. Eng , vol.2 , Issue.172 , pp. 172-184
    • He, J.X.1    Valeo, C.2
  • 13
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik, K., Stinchcombe, M., and White, H. (1989). "Multilayer feedforward networks are universal approximators." Neural Networks, 2(5), 359-366.
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 14
    • 0035472003 scopus 로고    scopus 로고
    • River flow time series prediction with a range dependent neural network
    • Hu, T. S., Lam, K. C., and Ng, S. T. (2001). "River flow time series prediction with a range dependent neural network." Hydrol. Sci. J., 46(5), 729-745.
    • (2001) Hydrol. Sci. J. , vol.46 , Issue.5 , pp. 729-745
    • Hu, T.S.1    Lam, K.C.2    Ng, S.T.3
  • 15
    • 84894084297 scopus 로고    scopus 로고
    • An optimization-simulation approach for watershed management under changing climate in the Georgia Basin
    • Prepared for CCIAD, Earth Sciences Sector, Natural Resources Canada
    • Huang, G. H., et al. (2007). "An optimization-simulation approach for watershed management under changing climate in the Georgia Basin." Prepared for CCIAD, Earth Sciences Sector, Natural Resources Canada.
    • (2007)
    • Huang, G.H.1
  • 16
    • 69949109477 scopus 로고    scopus 로고
    • Development of a decision support system for rural eco-environmental management in Yongxin County, Jiangxi Province China
    • Huang, G. H., Sun, W., Nie, X. H., Qin, X. S., and Zhang, X. D. (2010). "Development of a decision support system for rural eco-environmental management in Yongxin County, Jiangxi Province, China." Environ. Model. Software, 25(1), 25-42.
    • (2010) Environ. Model. Software , vol.25 , Issue.1 , pp. 25-42
    • Huang, G.H.1    Sun, W.2    Nie, X.H.3    Qin, X.S.4    Zhang, X.D.5
  • 17
    • 4544294829 scopus 로고    scopus 로고
    • Nonparametric direct mapping of rainfall-runoffrelationships: An alternative approach to data analysis and modeling?" Water Resour
    • Iorgulescu, I., and Beven, K. J. (2004). "Nonparametric direct mapping of rainfall-runoffrelationships: An alternative approach to data analysis and modeling?" Water Resour. Res., 40(8), W08403.
    • (2004) Res , vol.40 , Issue.8
    • Iorgulescu, I.1    Beven, K.J.2
  • 18
    • 0036475142 scopus 로고    scopus 로고
    • Characterization and prediction of runoffdynamics: A nonlinear dynamical view
    • Islam, M. N., and Sivakumar, B. (2002). "Characterization and prediction of runoffdynamics: A nonlinear dynamical view." Adv. Water Resour., 25(2), 179-190.
    • (2002) Adv. Water Resour. , vol.25 , Issue.2 , pp. 179-190
    • Islam, M.N.1    Sivakumar, B.2
  • 19
    • 0037340658 scopus 로고    scopus 로고
    • Comparative analysis of event-based rainfall-runoffmodeling techniques-Deterministic, statistical, and artificial neural networks
    • 10.1061/(ASCE)1084-0699 (2003)8
    • Jain, A., and Indurthy, S. (2003). "Comparative analysis of event-based rainfall-runoffmodeling techniques-Deterministic, statistical, and artificial neural networks." J. Hydrol. Eng., 10.1061/(ASCE)1084-0699 (2003)8:2(93), 93-98.
    • (2003) J. Hydrol. Eng , vol.2 , Issue.93 , pp. 93-98
    • Jain, A.1    Indurthy, S.2
  • 20
    • 0034642947 scopus 로고    scopus 로고
    • Noise reduction and prediction of hydrometeorological time series: Dynamical systems approach vs. stochastic approach
    • Jayawardena, A. W., and Gurung, A. B. (2000). "Noise reduction and prediction of hydrometeorological time series: Dynamical systems approach vs. stochastic approach." J. Hydrol., 228(3-4), 242-264.
    • (2000) J. Hydrol. , vol.228 , Issue.3-4 , pp. 242-264
    • Jayawardena, A.W.1    Gurung, A.B.2
  • 21
    • 0028199319 scopus 로고
    • Analysis and prediction of chaos in rainfall and stream flow time series
    • Jayawardena, A. W., and Lai, F. (1994). "Analysis and prediction of chaos in rainfall and stream flow time series." J. Hydrol., 153(1-4), 23-52.
    • (1994) J. Hydrol. , vol.153 , Issue.1-4 , pp. 23-52
    • Jayawardena, A.W.1    Lai, F.2
  • 22
    • 0028667489 scopus 로고
    • Neural networks for river flow prediction
    • 10.1061/(ASCE)0887-3801(1994)8
    • Karunanithi, N., Grenney, W. J., Whitley, D., and Bovee, K. (1994). "Neural networks for river flow prediction." J. Comput. Civ. Eng., 10.1061/(ASCE)0887-3801(1994)8:2(201), 201-220.
    • (1994) J. Comput. Civ. Eng , vol.2 , Issue.201 , pp. 201-220
    • Karunanithi, N.1    Grenney, W.J.2    Whitley, D.3    Bovee, K.4
  • 23
    • 1642497522 scopus 로고    scopus 로고
    • River flow modeling using artificial neural networks
    • 10.1061/(ASCE)1084-0699(2004)9
    • Kişi, Ö. (2004). "River flow modeling using artificial neural networks." J. Hydrol. Eng., 10.1061/(ASCE)1084-0699(2004)9:1(60), 60-63.
    • (2004) J. Hydrol. Eng , vol.1 , Issue.60 , pp. 60-63
    • Kişi, Ö.1
  • 24
    • 34548146808 scopus 로고    scopus 로고
    • Streamflow forecasting using different artificial neural network algorithms
    • 10.1061/(ASCE)1084-0699 (2007)12
    • Kişi, Ö. (2007). "Streamflow forecasting using different artificial neural network algorithms." J. Hydrol. Eng., 10.1061/(ASCE)1084-0699 (2007)12:5(532), 532-539.
    • (2007) J. Hydrol. Eng , vol.5 , Issue.532 , pp. 532-539
    • Kişi, Ö.1
  • 25
    • 0026627415 scopus 로고
    • Kolmogorov's theorem and multilayer neural networks
    • Kůrková, V. (1992). "Kolmogorov's theorem and multilayer neural networks." Neural Networks, 5(3), 501-506.
    • (1992) Neural Networks , vol.5 , Issue.3 , pp. 501-506
    • Kůrková, V.1
  • 26
    • 78650509451 scopus 로고    scopus 로고
    • Comparison of data-driven modelling techniques for river flow forecasting
    • Londhe, S., and Charhate, S. (2010). "Comparison of data-driven modelling techniques for river flow forecasting." Hydrol. Sci. J., 55(7), 1163-1174.
    • (2010) Hydrol. Sci. J. , vol.55 , Issue.7 , pp. 1163-1174
    • Londhe, S.1    Charhate, S.2
  • 27
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
    • Maier, H. R., and Dandy, G. C. (2000). "Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications." Environ. Model. Software, 15(1), 101-124.
    • (2000) Environ. Model. Software , vol.15 , Issue.1 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 28
    • 0001362410 scopus 로고
    • The Levenberg-Marquardt algorithm: Implementation and theory
    • Moré, J. J. (1978). "The Levenberg-Marquardt algorithm: Implementation and theory." Numer. Anal., 630, 105-116.
    • (1978) Numer. Anal. , vol.630 , pp. 105-116
    • Moré, J.J.1
  • 30
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models part I-A discussion of principles
    • Nash, J. E., and Sutcliffe, J. V. (1970). "River flow forecasting through conceptual models part I-A discussion of principles." J. Hydrol., 10(3), 282-290.
    • (1970) J. Hydrol. , vol.10 , Issue.3 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 31
    • 0001535952 scopus 로고
    • River flow forecasting through conceptual models part II-The Brosna catchment at Ferbane
    • O'Connell, P. E., Nash, J. E., and Farrell, J. P. (1970). "River flow forecasting through conceptual models part II-The Brosna catchment at Ferbane." J. Hydrol., 10(4): 317-329.
    • (1970) J. Hydrol. , vol.10 , Issue.4 , pp. 317-329
    • O'Connell, P.E.1    Nash, J.E.2    Farrell, J.P.3
  • 32
    • 0030619033 scopus 로고    scopus 로고
    • Nonlinear analysis of river flow time sequences
    • Porporato, A., and Ridolfi, L. (1997). "Nonlinear analysis of river flow time sequences." Water Resour. Res., 33(6), 1353-1367.
    • (1997) Water Resour. Res. , vol.33 , Issue.6 , pp. 1353-1367
    • Porporato, A.1    Ridolfi, L.2
  • 33
    • 0035879624 scopus 로고    scopus 로고
    • Multivariate nonlinear prediction of river flows
    • Porporato, A., and Ridolfi, L. (2001). "Multivariate nonlinear prediction of river flows." J. Hydrol., 248(1-4), 109-122.
    • (2001) J. Hydrol. , vol.248 , Issue.1-4 , pp. 109-122
    • Porporato, A.1    Ridolfi, L.2
  • 34
    • 0029413038 scopus 로고
    • Multivariate modelling of water resources time series using artificial neural networks
    • Raman, H., and Sunikumar, N. (1995). "Multivariate modelling of water resources time series using artificial neural networks." Hydrol. Sci. J., 40(2), 145-163.
    • (1995) Hydrol. Sci. J. , vol.40 , Issue.2 , pp. 145-163
    • Raman, H.1    Sunikumar, N.2
  • 35
    • 84894027418 scopus 로고    scopus 로고
    • Proc., Int. Conf. on Modeling, Optimization, and Computing, West Bengal, India, AIP Publishing, Melville, New York, 28-30 Oct 2010
    • Ranade, A. K., Pandey, M., and Datta, D. (2010). "Stochastic response surface based simulation of ground water modeling." Proc., Int. Conf. on Modeling, Optimization, and Computing, West Bengal, India, AIP Publishing, Melville, New York, 28-30 Oct. 2010.
    • (2010) Stochastic response surface based simulation of ground water modeling
    • Ranade, A.K.1    Pandey, M.2    Datta, D.3
  • 37
    • 0022111962 scopus 로고
    • Approaches to multivariate modeling of water resources time series
    • Salas, J. D., Tabios, G. Q., III, and Bartolini, P. (1985). "Approaches to multivariate modeling of water resources time series." J. Amer. Water Resour. Assoc., 21(4), 683-708.
    • (1985) J. Amer. Water Resour. Assoc. , vol.21 , Issue.4 , pp. 683-708
    • Salas, J.D.1    Tabios III, G.Q.2    Bartolini, P.3
  • 39
    • 34047254142 scopus 로고    scopus 로고
    • Suitability of different neural networks in daily flow forecasting
    • Singh, P., and Deo, M. C. (2007). "Suitability of different neural networks in daily flow forecasting." Appl. Soft Comput., 7(3), 968-978.
    • (2007) Appl. Soft Comput. , vol.7 , Issue.3 , pp. 968-978
    • Singh, P.1    Deo, M.C.2
  • 40
    • 68349105875 scopus 로고    scopus 로고
    • A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series
    • Wang, W. C., Chau, K. W., Cheng, C. T., and Qiu, L. (2009). "A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series." J. Hydrol., 374(3-4), 294-306.
    • (2009) J. Hydrol. , vol.374 , Issue.3-4 , pp. 294-306
    • Wang, W.C.1    Chau, K.W.2    Cheng, C.T.3    Qiu, L.4
  • 41
    • 0033019602 scopus 로고    scopus 로고
    • Short term streamflow forecasting using artificial neural networks
    • Zealand, C. M., Burn, D. H., and Simonovic, S. P. (1999). "Short term streamflow forecasting using artificial neural networks." J. Hydrol., 214(1-4), 32-48.
    • (1999) J. Hydrol , vol.214 , Issue.1-4 , pp. 32-48
    • Zealand, C.M.1    Burn, D.H.2    Simonovic, S.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.