-
1
-
-
19544371373
-
Gene targeting in mice: Functional analysis of the mammalian genome for the twenty-first century
-
doi:10.1038/nrg1619. PubMed: 15931173
-
Capecchi MR (2005) Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat Rev Genet 6: 507-512. doi:10.1038/nrg1619. PubMed: 15931173.
-
(2005)
Nat Rev Genet
, vol.6
, pp. 507-512
-
-
Capecchi, M.R.1
-
2
-
-
36849091463
-
Gene targeting in embryonic stem cells scores a knockout in Stockholm
-
doi:10.1016/j.cell.2007.11.033. PubMed: 18083089
-
Mak TW (2007) Gene targeting in embryonic stem cells scores a knockout in Stockholm. Cell 131: 1027-1031. doi:10.1016/j.cell.2007.11.033. PubMed: 18083089.
-
(2007)
Cell
, vol.131
, pp. 1027-1031
-
-
Mak, T.W.1
-
3
-
-
0025979877
-
Targeting, disruption, replacement, and allele rescue - integrative dna transformation in yeast
-
doi:10.1016/0076-6879(91)94022-5
-
Rothstein R (1991) Targeting, disruption, replacement, and allele rescue - integrative dna transformation in yeast. Method Enzymol 194: 281-301. doi:10.1016/0076-6879(91)94022-5.
-
(1991)
Method Enzymol
, vol.194
, pp. 281-301
-
-
Rothstein, R.1
-
4
-
-
0037502792
-
Genetic models in applied physiology - Invited review: Functional genomics in the mouse: Powerful techniques for unraveling the basis of human development and disease
-
PubMed: 12736192
-
Bogue CW (2003) Genetic models in applied physiology - Invited review: Functional genomics in the mouse: Powerful techniques for unraveling the basis of human development and disease. J Appl Physiol 94: 2502-2509. PubMed: 12736192.
-
(2003)
J Appl Physiol
, vol.94
, pp. 2502-2509
-
-
Bogue, C.W.1
-
5
-
-
79960424171
-
In vivo genome editing restores haemostasis in a mouse model of haemophilia
-
doi:10.1038/nature10177. PubMed: 21706032
-
Li H, Haurigot V, Doyon Y, Li T, Wong SY et al. (2011) In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature 475: 217-U128. doi:10.1038/nature10177. PubMed: 21706032.
-
(2011)
Nature
, vol.475
-
-
Li, H.1
Haurigot, V.2
Doyon, Y.3
Li, T.4
Wong, S.Y.5
-
6
-
-
84855505372
-
High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp
-
doi:10.1073/pnas.1105861108. PubMed: 22123974
-
Kilian O, Benemann CSE, Niyogi KK, Vick B (2011) High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp. Proc Natl Acad Sci U S A 108: 21265-21269. doi:10.1073/pnas.1105861108. PubMed: 22123974.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 21265-21269
-
-
Kilian, O.1
Benemann, C.S.E.2
Niyogi, K.K.3
Vick, B.4
-
7
-
-
0037394794
-
Plant genome modification by homologous recombination
-
PubMed: 12667873
-
Hanin M, Paszkowski J (2003) Plant genome modification by homologous recombination. Curr Opin Plant Biol 6: 157-162. PubMed: 12667873.
-
(2003)
Curr Opin Plant Biol
, vol.6
, pp. 157-162
-
-
Hanin, M.1
Paszkowski, J.2
-
8
-
-
0027384567
-
Homologous recombination in plant-cells is enhanced by in-vivo induction of double-strand breaks into dna by a site-specific endonuclease
-
doi:10.1093/nar/21.22.5034. PubMed: 8255757
-
Puchta H, Dujon B, Hohn B (1993) Homologous recombination in plant-cells is enhanced by in-vivo induction of double-strand breaks into dna by a site-specific endonuclease. Nucleic Acids Res 21: 5034-5040. doi:10.1093/nar/21.22.5034. PubMed: 8255757.
-
(1993)
Nucleic Acids Res
, vol.21
, pp. 5034-5040
-
-
Puchta, H.1
Dujon, B.2
Hohn, B.3
-
9
-
-
66249147273
-
Precise genome modification in the crop species Zea mays using zinc-finger nucleases
-
doi:10.1038/nature07992. PubMed: 19404259
-
Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA et al. (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459: 437-U156. doi:10.1038/nature07992. PubMed: 19404259.
-
(2009)
Nature
, vol.459
-
-
Shukla, V.K.1
Doyon, Y.2
Miller, J.C.3
DeKelver, R.C.4
Moehle, E.A.5
-
10
-
-
66249093890
-
High-frequency modification of plant genes using engineered zinc-finger nucleases
-
doi:10.1038/nature07845. PubMed: 19404258
-
Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML et al. (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459: 442-U161. doi:10.1038/nature07845. PubMed: 19404258.
-
(2009)
Nature
, vol.459
-
-
Townsend, J.A.1
Wright, D.A.2
Winfrey, R.J.3
Fu, F.4
Maeder, M.L.5
-
11
-
-
84871803423
-
Transcription Activator-Like Effector Nucleases Enable Efficient Plant Genome Engineering
-
doi:10.1104/pp.112.205179
-
Zhang Y, Zhang F, Li X, Baller JA, Qi Y et al. (2013) Transcription Activator-Like Effector Nucleases Enable Efficient Plant Genome Engineering. Plant Physiol 161: 20-27. doi:10.1104/pp.112.205179.
-
(2013)
Plant Physiol
, vol.161
, pp. 20-27
-
-
Zhang, Y.1
Zhang, F.2
Li, X.3
Baller, J.A.4
Qi, Y.5
-
12
-
-
84884161677
-
Staying on target with CRISPR-Cas
-
doi:10.1038/nbt.2684. PubMed: 24022156
-
Carroll D (2013) Staying on target with CRISPR-Cas. Nat Biotechnol 31: 807-809. doi:10.1038/nbt.2684. PubMed: 24022156.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 807-809
-
-
Carroll, D.1
-
13
-
-
33845880624
-
Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription
-
doi:10.1038/ng1929. PubMed: 17128275
-
Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet 39: 61-69. doi:10.1038/ng1929. PubMed: 17128275.
-
(2007)
Nat Genet
, vol.39
, pp. 61-69
-
-
Zilberman, D.1
Gehring, M.2
Tran, R.K.3
Ballinger, T.4
Henikoff, S.5
-
14
-
-
84863855972
-
DNA methylation in an intron of the IBM1 histone demethylase gene stabilizes chromatin modification patterns
-
doi:10.1038/emboj.2012.141. PubMed: 22580822
-
Rigal M, Kevei Z, Pélissier T, Mathieu O (2012) DNA methylation in an intron of the IBM1 histone demethylase gene stabilizes chromatin modification patterns. EMBO J 31: 2981-2993. doi:10.1038/emboj.2012.141. PubMed: 22580822.
-
(2012)
EMBO J
, vol.31
, pp. 2981-2993
-
-
Rigal, M.1
Kevei, Z.2
Pélissier, T.3
Mathieu, O.4
-
15
-
-
18344390653
-
DNMT1 and DNMT3b cooperate to silence genes in human cancer cells
-
doi:10.1038/416552a. PubMed: 11932749
-
Rhee I, Bachman KE, Park BH, Jair KW, Yen RWC et al. (2002) DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature 416: 552-556. doi:10.1038/416552a. PubMed: 11932749.
-
(2002)
Nature
, vol.416
, pp. 552-556
-
-
Rhee, I.1
Bachman, K.E.2
Park, B.H.3
Jair, K.W.4
Yen, R.W.C.5
-
16
-
-
84870679663
-
Loss of the DNA Methyltransferase MET1 Induces H3K9 Hypermethylation at PcG Target Genes and Redistribution of H3K27 Trimethylation to Transposons in Arabidopsis thaliana
-
doi:10.1371/journal.pgen.1003062. PubMed: 23209430
-
Deleris A, Stroud H, Bernatavichute Y, Johnson E, Klein G et al. (2012) Loss of the DNA Methyltransferase MET1 Induces H3K9 Hypermethylation at PcG Target Genes and Redistribution of H3K27 Trimethylation to Transposons in Arabidopsis thaliana. PLoS Genet 8: e1003062-e1003062. doi:10.1371/journal.pgen. 1003062. PubMed: 23209430.
-
(2012)
PLoS Genet
, vol.8
-
-
Deleris, A.1
Stroud, H.2
Bernatavichute, Y.3
Johnson, E.4
Klein, G.5
-
17
-
-
40749109894
-
Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning
-
doi:10.1038/nature06745. PubMed: 18278030
-
Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B et al. (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452: 215-219. doi:10.1038/nature06745. PubMed: 18278030.
-
(2008)
Nature
, vol.452
, pp. 215-219
-
-
Cokus, S.J.1
Feng, S.2
Zhang, X.3
Chen, Z.4
Merriman, B.5
-
18
-
-
42749087226
-
Highly Integrated Single-Base Resolution Maps of the Epigenome in Arabidopsis
-
doi:10.1016/j.cell. 2008.03.029. PubMed: 18423832
-
Lister R, O'Malley RC, Tonti-Filippini J, Gregory BD, Berry CC et al. (2008) Highly Integrated Single-Base Resolution Maps of the Epigenome in Arabidopsis. Cell 133: 523-536. doi:10.1016/j.cell. 2008.03.029. PubMed: 18423832.
-
(2008)
Cell
, vol.133
, pp. 523-536
-
-
Lister, R.1
O'Malley, R.C.2
Tonti-Filippini, J.3
Gregory, B.D.4
Berry, C.C.5
-
19
-
-
0026546877
-
A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands
-
doi:10.1073/pnas.89.5.1827. PubMed: 1542678
-
Frommer M, McDonald LE, Millar DS, Collis CM, Watt F et al. (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 89: 1827-1831. doi:10.1073/pnas.89.5.1827. PubMed: 1542678.
-
(1992)
Proc Natl Acad Sci U S A
, vol.89
, pp. 1827-1831
-
-
Frommer, M.1
McDonald, L.E.2
Millar, D.S.3
Collis, C.M.4
Watt, F.5
-
20
-
-
52649126232
-
Kismeth: Analyzer of plant methylation states through bisulfite sequencing
-
doi:10.1186/1471-2105-9-371. PubMed: 18786255
-
Gruntman E, Qi Y, Slotkin RK, Roeder T, Martienssen RA et al. (2008) Kismeth: Analyzer of plant methylation states through bisulfite sequencing. Bmc Bioinformatics 9: 371. doi:10.1186/1471-2105-9-371. PubMed: 18786255.
-
(2008)
Bmc Bioinformatics
, vol.9
, pp. 371
-
-
Gruntman, E.1
Qi, Y.2
Slotkin, R.K.3
Roeder, T.4
Martienssen, R.A.5
-
21
-
-
0035544402
-
Gene targeting in Arabidopsis
-
PubMed: 11851913
-
Hanin M, Volrath S, Bogucki A, Briker M, Ward E et al. (2001) Gene targeting in Arabidopsis. Plant J 28: 671-677. PubMed: 11851913.
-
(2001)
Plant J
, vol.28
, pp. 671-677
-
-
Hanin, M.1
Volrath, S.2
Bogucki, A.3
Briker, M.4
Ward, E.5
-
22
-
-
84876955340
-
ZFN-mediated gene targeting of the Arabidopsis protoporphyrinogen oxidase gene through Agrobacterium-mediated floral dip transformation
-
doi:10.1111/pbi.12040. PubMed: 23279135
-
de Pater S, Pinas JE, Hooykaas PJJ, van der Zaal BJ (2013) ZFN-mediated gene targeting of the Arabidopsis protoporphyrinogen oxidase gene through Agrobacterium-mediated floral dip transformation. Plant Biotechnol J 11: 510-515. doi:10.1111/pbi.12040. PubMed: 23279135.
-
(2013)
Plant Biotechnol J
, vol.11
, pp. 510-515
-
-
De Pater, S.1
Pinas, J.E.2
Hooykaas, P.J.J.3
Van Der Zaal, B.J.4
-
23
-
-
84874991260
-
Patterns of population epigenomic diversity
-
doi:10.1038/nature11968. PubMed: 23467092
-
Schmitz RJ, Schultz MD, Urich MA, Nery JR, Pelizzola M et al. (2013) Patterns of population epigenomic diversity. Nature 495: 193-198. doi:10.1038/nature11968. PubMed: 23467092.
-
(2013)
Nature
, vol.495
, pp. 193-198
-
-
Schmitz, R.J.1
Schultz, M.D.2
Urich, M.A.3
Nery, J.R.4
Pelizzola, M.5
-
24
-
-
82355181082
-
Localized egg-cell expression of effector proteins for targeted modification of the Arabidopsis genome
-
doi:10.1111/j.1365-313X.2011.04741.x. PubMed: 21848915
-
Even-Faitelson L, Samach A, Melamed-Bessudo C, Avivi-Ragolsky N, Levy AA (2011) Localized egg-cell expression of effector proteins for targeted modification of the Arabidopsis genome. Plant J 68: 929-937. doi:10.1111/j.1365-313X.2011.04741.x. PubMed: 21848915.
-
(2011)
Plant J
, vol.68
, pp. 929-937
-
-
Even-Faitelson, L.1
Samach, A.2
Melamed-Bessudo, C.3
Avivi-Ragolsky, N.4
Levy, A.A.5
-
25
-
-
24744454355
-
High-frequency gene targeting in Arabidopsis plants expressing the yeast RAD54 gene
-
doi:10.1073/pnas.0502601102. PubMed: 16093317
-
Shaked H, Melamed-Bessudo C, Levy AA (2005) High-frequency gene targeting in Arabidopsis plants expressing the yeast RAD54 gene. Proc Natl Acad Sci U S A 102: 12265-12269. doi:10.1073/pnas.0502601102. PubMed: 16093317.
-
(2005)
Proc Natl Acad Sci U S A
, vol.102
, pp. 12265-12269
-
-
Shaked, H.1
Melamed-Bessudo, C.2
Levy, A.A.3
-
26
-
-
84864679478
-
Widespread dynamic DNA methylation in response to biotic stress
-
doi:10.1073/pnas.1209329109. PubMed: 22733782
-
Dowen RH, Pelizzola M, Schmitz RJ, Lister R, Dowen JM et al. (2012) Widespread dynamic DNA methylation in response to biotic stress. Proc Natl Acad Sci U S A 109: E2183-E2191. doi:10.1073/pnas.1209329109. PubMed: 22733782.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
-
-
Dowen, R.H.1
Pelizzola, M.2
Schmitz, R.J.3
Lister, R.4
Dowen, J.M.5
-
27
-
-
0030993133
-
Deletion of the H19 transcription unit reveals the existence of a putative imprinting control element
-
doi:10.1101/gad.11.12.1596. PubMed: 9203585
-
Ripoche MA, Kress C, Poirier F, Dandolo L (1997) Deletion of the H19 transcription unit reveals the existence of a putative imprinting control element. Genes Dev 11: 1596-1604. doi:10.1101/gad.11.12.1596. PubMed: 9203585.
-
(1997)
Genes Dev
, vol.11
, pp. 1596-1604
-
-
Ripoche, M.A.1
Kress, C.2
Poirier, F.3
Dandolo, L.4
-
28
-
-
0346725982
-
Disruption of the genomic imprint in trans with homologous recombination at Snrpn in ES cells
-
doi:10.1002/gene.10237. PubMed: 14666508
-
Tsai TF, Bressler J, Jiang YH, Beaudet AL (2003) Disruption of the genomic imprint in trans with homologous recombination at Snrpn in ES cells. Genesis 37: 151-161. doi:10.1002/gene.10237. PubMed: 14666508.
-
(2003)
Genesis
, vol.37
, pp. 151-161
-
-
Tsai, T.F.1
Bressler, J.2
Jiang, Y.H.3
Beaudet, A.L.4
-
29
-
-
80054994283
-
Identification of genetic elements that autonomously determine DNA methylation states
-
doi:10.1038/ng.946. PubMed: 21964573
-
Lienert F, Wirbelauer C, Som I, Dean A, Mohn F et al. (2011) Identification of genetic elements that autonomously determine DNA methylation states. Nat Genet 43: 1091-1097. doi:10.1038/ng.946. PubMed: 21964573.
-
(2011)
Nat Genet
, vol.43
, pp. 1091-1097
-
-
Lienert, F.1
Wirbelauer, C.2
Som, I.3
Dean, A.4
Mohn, F.5
-
30
-
-
78049415018
-
DNMT3L Modulates Significant and Distinct Flanking Sequence Preference for DNA Methylation by DNMT3A and DNMT3B In Vivo
-
Wienholz BL, Kareta MS, Moarefi AH, Gordon CA, Ginno PA et al. (2010) DNMT3L Modulates Significant and Distinct Flanking Sequence Preference for DNA Methylation by DNMT3A and DNMT3B In Vivo. PLOS Genet 6: e1001106.
-
(2010)
PLOS Genet
, vol.6
-
-
Wienholz, B.L.1
Kareta, M.S.2
Moarefi, A.H.3
Gordon, C.A.4
Ginno, P.A.5
-
31
-
-
0033539183
-
An epigenetic mutation responsible for natural variation in floral symmetry
-
doi:10.1038/43657. PubMed: 10490023
-
Cubas P, Vincent C, Coen E (1999) An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401: 157-161. doi:10.1038/43657. PubMed: 10490023.
-
(1999)
Nature
, vol.401
, pp. 157-161
-
-
Cubas, P.1
Vincent, C.2
Coen, E.3
-
32
-
-
33845621109
-
Control of FWA gene silencing in Arabidopsis thaliana by SINE-related direct repeats
-
doi:10.1111/j.1365-313X.2006.02936.x. PubMed: 17144899
-
Kinoshita Y, Saze H, Kinoshita T, Miura A, Soppe WJJ et al. (2007) Control of FWA gene silencing in Arabidopsis thaliana by SINE-related direct repeats. Plant J 49: 38-45. doi:10.1111/j.1365-313X.2006.02936.x. PubMed: 17144899.
-
(2007)
Plant J
, vol.49
, pp. 38-45
-
-
Kinoshita, Y.1
Saze, H.2
Kinoshita, T.3
Miura, A.4
Soppe, W.J.J.5
-
33
-
-
80054718602
-
Spontaneous epigenetic variation in the Arabidopsis thaliana methylome
-
doi:10.1038/nature10555. PubMed: 22057020
-
Becker C, Hagmann J, Müller J, Koenig D, Stegle O et al. (2011) Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature 480: 245-U127. doi:10.1038/nature10555. PubMed: 22057020.
-
(2011)
Nature
, vol.480
-
-
Becker, C.1
Hagmann, J.2
Müller, J.3
Koenig, D.4
Stegle, O.5
-
34
-
-
77953664146
-
Epimutations and cancer predisposition: Importance and mechanisms
-
doi:10.1016/j.gde.2010.02.005. PubMed: 20359882
-
Hesson LB, Hitchins MP, Ward RL (2010) Epimutations and cancer predisposition: importance and mechanisms. Curr Opin Genet Dev 20: 290-298. doi:10.1016/j.gde.2010.02.005. PubMed: 20359882.
-
(2010)
Curr Opin Genet Dev
, vol.20
, pp. 290-298
-
-
Hesson, L.B.1
Hitchins, M.P.2
Ward, R.L.3
-
35
-
-
0037011060
-
DNA methylation controls histone H3 lysine 9 methylation and heterochromatin assembly in Arabidopsis
-
doi:10.1093/emboj/cdf657. PubMed: 12456661
-
Soppe WJJ, Jasencakova Z, Houben A, Kakutani T, Meister A et al. (2002) DNA methylation controls histone H3 lysine 9 methylation and heterochromatin assembly in Arabidopsis. EMBO J 21: 6549-6559. doi:10.1093/emboj/cdf657. PubMed: 12456661.
-
(2002)
EMBO J
, vol.21
, pp. 6549-6559
-
-
Soppe, W.J.J.1
Jasencakova, Z.2
Houben, A.3
Kakutani, T.4
Meister, A.5
-
36
-
-
84859620561
-
Deficiency in DNA methylation increases meiotic crossover rates in euchromatic but not in heterochromatic regions in Arabidopsis
-
doi:10.1073/pnas.1120742109. PubMed: 22460791
-
Melamed-Bessudo C, Levy AA (2012) Deficiency in DNA methylation increases meiotic crossover rates in euchromatic but not in heterochromatic regions in Arabidopsis. Proc Natl Acad Sci U S A 109: E981-E988. doi:10.1073/pnas. 1120742109. PubMed: 22460791.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
-
-
Melamed-Bessudo, C.1
Levy, A.A.2
-
37
-
-
84859570036
-
Loss of DNA methylation affects the recombination landscape in Arabidopsis
-
doi:10.1073/pnas.1120841109. PubMed: 22451936
-
Mirouze M, Lieberman-Lazarovich M, Aversano R, Bucher E, Nicolet J et al. (2012) Loss of DNA methylation affects the recombination landscape in Arabidopsis. Proc Natl Acad Sci U S A 109: 5880-5885. doi:10.1073/pnas. 1120841109. PubMed: 22451936.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 5880-5885
-
-
Mirouze, M.1
Lieberman-Lazarovich, M.2
Aversano, R.3
Bucher, E.4
Nicolet, J.5
-
38
-
-
84866168941
-
Epigenetic Remodeling of Meiotic Crossover Frequency in Arabidopsis thaliana DNA Methyltransferase Mutants
-
PubMed: 22876192
-
Yelina NE, Choi K, Chelysheva L, Macaulay M, de Snoo B et al. (2012) Epigenetic Remodeling of Meiotic Crossover Frequency in Arabidopsis thaliana DNA Methyltransferase Mutants. PLoS Genet 8: e1002844. PubMed: 22876192.
-
(2012)
PLoS Genet
, vol.8
-
-
Yelina, N.E.1
Choi, K.2
Chelysheva, L.3
Macaulay, M.4
De Snoo, B.5
-
39
-
-
77954659099
-
Relationship between nucleosome positioning and DNA methylation
-
doi:10.1038/nature09147. PubMed: 20512117
-
Chodavarapu RK, Feng S, Bernatavichute YV, Chen P-Y, Stroud H et al. (2010) Relationship between nucleosome positioning and DNA methylation. Nature 466: 388-392. doi:10.1038/nature09147. PubMed: 20512117.
-
(2010)
Nature
, vol.466
, pp. 388-392
-
-
Chodavarapu, R.K.1
Feng, S.2
Bernatavichute, Y.V.3
Chen, P.-Y.4
Stroud, H.5
-
40
-
-
80051535219
-
Genome Engineering With Zinc-Finger Nucleases
-
doi:10.1534/genetics.111.131433. PubMed: 21828278
-
Carroll D (2011) Genome Engineering With Zinc-Finger Nucleases. Genetics 188: 773-782. doi:10.1534/genetics.111.131433. PubMed: 21828278.
-
(2011)
Genetics
, vol.188
, pp. 773-782
-
-
Carroll, D.1
-
41
-
-
84861348512
-
Efficient and Specific Modifications of the Drosophila Genome by Means of an Easy TALEN Strategy
-
PubMed: 22624882
-
Liu J, Li C, Yu Z, Huang P, Wu H et al. (2012) Efficient and Specific Modifications of the Drosophila Genome by Means of an Easy TALEN Strategy. J Genet Genomics 39: 209-215. PubMed: 22624882.
-
(2012)
J Genet Genomics
, vol.39
, pp. 209-215
-
-
Liu, J.1
Li, C.2
Yu, Z.3
Huang, P.4
Wu, H.5
-
42
-
-
84873729095
-
Multiplex Genome Engineering Using CRISPR/Cas Systems
-
doi:10.1126/science.1231143. PubMed: 23287718
-
Cong L, Ran FA, Cox D, Lin S, Barretto R et al. (2013) Multiplex Genome Engineering Using CRISPR/Cas Systems. Science 339: 819-823. doi:10.1126/science. 1231143. PubMed: 23287718.
-
(2013)
Science
, vol.339
, pp. 819-823
-
-
Cong, L.1
Ran, F.A.2
Cox, D.3
Lin, S.4
Barretto, R.5
-
43
-
-
84873734105
-
RNA-Guided Human Genome Engineering via Cas9
-
doi:10.1126/science.1232033. PubMed: 23287722
-
Mali P, Yang L, Esvelt KM, Aach J, Guell M et al. (2013) RNA-Guided Human Genome Engineering via Cas9. Science 339: 823-826. doi:10.1126/science.1232033. PubMed: 23287722.
-
(2013)
Science
, vol.339
, pp. 823-826
-
-
Mali, P.1
Yang, L.2
Esvelt, K.M.3
Aach, J.4
Guell, M.5
-
44
-
-
84876409836
-
Genome editing with RNA-guided Cas9 nuclease in Zebrafish embryos
-
doi:10.1038/cr.2013.45. PubMed: 23528705
-
Chang N, Sun C, Gao L, Zhu D, Xu X et al. (2013) Genome editing with RNA-guided Cas9 nuclease in Zebrafish embryos. Cell Res 23: 465-472. doi:10.1038/cr.2013.45. PubMed: 23528705.
-
(2013)
Cell Res
, vol.23
, pp. 465-472
-
-
Chang, N.1
Sun, C.2
Gao, L.3
Zhu, D.4
Xu, X.5
-
45
-
-
84874617789
-
Efficient genome editing in zebrafish using a CRISPR-Cas system
-
doi:10.1038/nbt.2501. PubMed: 23360964
-
Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ et al. (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31: 227-229. doi:10.1038/nbt.2501. PubMed: 23360964.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 227-229
-
-
Hwang, W.Y.1
Fu, Y.2
Reyon, D.3
Maeder, M.L.4
Tsai, S.Q.5
-
46
-
-
84874608929
-
RNA-guided editing of bacterial genomes using CRISPR-Cas systems
-
doi:10.1038/nbt.2508. PubMed: 23360965
-
Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31: 233-239. doi:10.1038/nbt.2508. PubMed: 23360965.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 233-239
-
-
Jiang, W.1
Bikard, D.2
Cox, D.3
Zhang, F.4
Marraffini, L.A.5
-
47
-
-
84886926151
-
Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice
-
doi:10.1093/nar/gkt780. PubMed: 23999092
-
Jiang W, Zhou H, Bi H, Fromm M, Yang B et al. (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41: e188. doi:10.1093/nar/gkt780. PubMed: 23999092.
-
(2013)
Nucleic Acids Res
, vol.41
-
-
Jiang, W.1
Zhou, H.2
Bi, H.3
Fromm, M.4
Yang, B.5
-
48
-
-
84883785822
-
Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9
-
doi:10.1038/nbt.2654. PubMed: 23929339
-
Li JF, Norville JE, Aach J, McCormack M, Zhang D et al. (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31: 688-691. doi:10.1038/nbt.2654. PubMed: 23929339.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 688-691
-
-
Li, J.F.1
Norville, J.E.2
Aach, J.3
McCormack, M.4
Zhang, D.5
-
49
-
-
84885180177
-
Targeted mutagenesis in rice using CRISPR-Cas system
-
doi:10.1038/cr.2013.123. PubMed: 23999856
-
Miao J, Guo D, Zhang J, Huang Q, Qin G et al. (2013) Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res 23: 1233-1236. doi:10.1038/cr.2013. 123. PubMed: 23999856.
-
(2013)
Cell Res
, vol.23
, pp. 1233-1236
-
-
Miao, J.1
Guo, D.2
Zhang, J.3
Huang, Q.4
Qin, G.5
-
50
-
-
84883828590
-
Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease
-
doi:10.1038/nbt.2655. PubMed: 23929340
-
Nekrasov V, Staskawicz B, Weigel D, Jones JDG, Kamoun S (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31: 691-693. doi:10.1038/nbt.2655. PubMed: 23929340.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 691-693
-
-
Nekrasov, V.1
Staskawicz, B.2
Weigel, D.3
Jones, J.D.G.4
Kamoun, S.5
-
51
-
-
85042815594
-
Targeted genome modification of crop plants using a CRISPR-Cas system
-
doi:10.1038/nbt.2650. PubMed: 23929338
-
Shan QW, Wang YP, Li J, Zhang Y, Chen KL et al. (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31: 686-688. doi:10.1038/nbt.2650. PubMed: 23929338.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 686-688
-
-
Shan, Q.W.1
Wang, Y.P.2
Li, J.3
Zhang, Y.4
Chen, K.L.5
-
52
-
-
0020541955
-
The double-strand-break repair model for recombination
-
doi:10.1016/0092-8674(83)90331-8. PubMed: 6380756
-
Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW (1983) The double-strand-break repair model for recombination. Cell 33: 25-35. doi:10.1016/0092-8674(83)90331-8. PubMed: 6380756.
-
(1983)
Cell
, vol.33
, pp. 25-35
-
-
Szostak, J.W.1
Orr-Weaver, T.L.2
Rothstein, R.J.3
Stahl, F.W.4
-
53
-
-
78650242581
-
Mus81 and Yen1 Promote Reciprocal Exchange during Mitotic Recombination to Maintain Genome Integrity in Budding Yeast
-
doi:10.1016/j.molcel.2010.11.016
-
Ho CK, Mazón G, Lam AF, Symington LS (2010) Mus81 and Yen1 Promote Reciprocal Exchange during Mitotic Recombination to Maintain Genome Integrity in Budding Yeast. Mol Cell 40: 988-1000. doi:10.1016/j.molcel.2010.11.016.
-
(2010)
Mol Cell
, vol.40
, pp. 988-1000
-
-
Ho, C.K.1
Mazón, G.2
Lam, A.F.3
Symington, L.S.4
-
54
-
-
0030981645
-
Gene targeting by linear duplex DNA frequently occurs by assimilation of a single strand that is subject to preferential mismatch correction
-
doi:10.1073/pnas.94.13.6851. PubMed: 9192655
-
Leung W-Y, Malkova A, Haber JE (1997) Gene targeting by linear duplex DNA frequently occurs by assimilation of a single strand that is subject to preferential mismatch correction. Proc Natl Acad Sci U S A 94: 6851-6856. doi:10.1073/pnas.94.13.6851. PubMed: 9192655.
-
(1997)
Proc Natl Acad Sci U S A
, vol.94
, pp. 6851-6856
-
-
Leung, W.-Y.1
Malkova, A.2
Haber, J.E.3
-
55
-
-
77954328102
-
Increased Mutagenesis and Unique Mutation Signature Associated with Mitotic Gene Conversion
-
doi:10.1126/science.1191125. PubMed: 20595613
-
Hicks WM, Kim M, Haber JE (2010) Increased Mutagenesis and Unique Mutation Signature Associated with Mitotic Gene Conversion. Science 329: 82-85. doi:10.1126/science.1191125. PubMed: 20595613.
-
(2010)
Science
, vol.329
, pp. 82-85
-
-
Hicks, W.M.1
Kim, M.2
Haber, J.E.3
|