메뉴 건너뛰기




Volumn 14, Issue 1, 2014, Pages 1295-1321

A one-versus-all class binarization strategy for bearing diagnostics of concurrent defects

Author keywords

Bearing; Class binarization; Decision tree; Fault diagnostics; Multiple defects; Support vector machine (SVM)

Indexed keywords

BEARINGS (STRUCTURAL); DATA MINING; DECISION TREES; DEFECTS;

EID: 84892572163     PISSN: 14248220     EISSN: None     Source Type: Journal    
DOI: 10.3390/s140101295     Document Type: Article
Times cited : (33)

References (71)
  • 1
    • 29244467991 scopus 로고    scopus 로고
    • Condition monitoring and fault diagnosis of electrical motors-a review
    • Nandi, S.; Toliyat, H.A.; Li, X. Condition monitoring and fault diagnosis of electrical motors-a review. IEEE Trans. Energy Convers. 2005, 20, 719-729.
    • (2005) IEEE Trans. Energy Convers. , vol.20 , pp. 719-729
    • Nandi, S.1    Toliyat, H.A.2    Li, X.3
  • 3
    • 85013892541 scopus 로고
    • Dynamics of rolling-element bearings-Part III, IV
    • Gupta, P. Dynamics of rolling-element bearings-Part III, IV. J. Lubr. Technol. 1979, 101, 312-326.
    • (1979) J. Lubr. Technol. , vol.101 , pp. 312-326
    • Gupta, P.1
  • 4
    • 0021841455 scopus 로고
    • The vibration produced by multiple point defects in a rolling element bearing
    • McFadden, P.; Smith, J. The vibration produced by multiple point defects in a rolling element bearing. J. Sound Vib. 1985, 98, 263-273.
    • (1985) J. Sound Vib. , vol.98 , pp. 263-273
    • McFadden, P.1    Smith, J.2
  • 5
    • 0021758020 scopus 로고
    • Model for the vibration produced by a single point defect in a rolling element bearing
    • McFadden, P.; Smith, J. Model for the vibration produced by a single point defect in a rolling element bearing. J. Sound Vib. 1984, 96, 69-82.
    • (1984) J. Sound Vib. , vol.96 , pp. 69-82
    • McFadden, P.1    Smith, J.2
  • 6
    • 0033336360 scopus 로고    scopus 로고
    • A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings
    • Tandon, N.; Choudhury, A. A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings. Tribol. Int. 1999, 32, 469-480.
    • (1999) Tribol. Int. , vol.32 , pp. 469-480
    • Tandon, N.1    Choudhury, A.2
  • 7
    • 34547596636 scopus 로고    scopus 로고
    • From vibration measurements to condition-based maintenance
    • Mitchell, J. From vibration measurements to condition-based maintenance. Sound Vib. 2007, 41, 62.
    • (2007) Sound Vib. , vol.41 , pp. 62
    • Mitchell, J.1
  • 8
    • 0021377369 scopus 로고
    • Vibration monitoring of rolling element bearings by the high-frequency resonance technique-A review
    • McFadden, P.; Smith, J. Vibration monitoring of rolling element bearings by the high-frequency resonance technique-A review. Tribol. Int. 1984, 17, 3-10.
    • (1984) Tribol. Int. , vol.17 , pp. 3-10
    • McFadden, P.1    Smith, J.2
  • 9
    • 0037302970 scopus 로고    scopus 로고
    • Basic vibration signal processing for bearing fault detection
    • McInerny, S.; Dai, Y. Basic vibration signal processing for bearing fault detection. IEEE Trans. Educ. 2003, 46, 149-156.
    • (2003) IEEE Trans. Educ. , vol.46 , pp. 149-156
    • McInerny, S.1    Dai, Y.2
  • 10
    • 78649600770 scopus 로고    scopus 로고
    • Rolling element bearing diagnostics-A tutorial
    • Randall, R.; Antoni, J. Rolling element bearing diagnostics-A tutorial. Mech. Syst. Signal Process. 2011, 25, 485-520.
    • (2011) Mech. Syst. Signal Process. , vol.25 , pp. 485-520
    • Randall, R.1    Antoni, J.2
  • 12
    • 0012020346 scopus 로고    scopus 로고
    • Wavelet analysis and envelope detection for rolling element bearing fault diagnosis their effectiveness and flexibilities
    • Tse, P.; Peng, Y.; Yam, R. Wavelet analysis and envelope detection for rolling element bearing fault diagnosis their effectiveness and flexibilities. J. Vib. Acoust. 2001, 123, 303-310.
    • (2001) J. Vib. Acoust. , vol.123 , pp. 303-310
    • Tse, P.1    Peng, Y.2    Yam, R.3
  • 13
    • 18144399334 scopus 로고    scopus 로고
    • A comparison study of improved Hilbert-Huang transform and wavelet transform: Application to fault diagnosis for rolling bearing
    • Peng, Z.; Tse, P.W.; Chu, F. A comparison study of improved Hilbert-Huang transform and wavelet transform: Application to fault diagnosis for rolling bearing. Mech. Syst. Signal Process. 2005, 19, 974-988.
    • (2005) Mech. Syst. Signal Process. , vol.19 , pp. 974-988
    • Peng, Z.1    Tse, P.W.2    Chu, F.3
  • 14
    • 84870401853 scopus 로고    scopus 로고
    • An enhanced Kurtogram method for fault diagnosis of rolling element bearings
    • Wang, D.; Tse, P.W.; Tsui, K.L. An enhanced Kurtogram method for fault diagnosis of rolling element bearings. Mech. Syst. Signal Process. 2012, 35, 176-199.
    • (2012) Mech. Syst. Signal Process. , vol.35 , pp. 176-199
    • Wang, D.1    Tse, P.W.2    Tsui, K.L.3
  • 15
    • 2942664322 scopus 로고    scopus 로고
    • Knowledge discovery in databases: 10 years after
    • Piatetsky-Shapiro, G. Knowledge discovery in databases: 10 years after. ACM SIGKDD Explor. Newsl. 2000, 1, 59-61.
    • (2000) ACM SIGKDD Explor. Newsl. , vol.1 , pp. 59-61
    • Piatetsky-Shapiro, G.1
  • 16
    • 0141771188 scopus 로고    scopus 로고
    • A survey of methods for scaling up inductive algorithms
    • Provost, F.; Kolluri, V. A survey of methods for scaling up inductive algorithms. Data Min. Knowl. Discov. 1999, 3, 131-169.
    • (1999) Data Min. Knowl. Discov. , vol.3 , pp. 131-169
    • Provost, F.1    Kolluri, V.2
  • 17
    • 0036649978 scopus 로고    scopus 로고
    • A survey of temporal knowledge discovery paradigms and methods
    • Roddick, J.; Spiliopoulou, M. A survey of temporal knowledge discovery paradigms and methods. IEEE Trans. Knowl. Data Eng. 2002, 14, 750-767.
    • (2002) IEEE Trans. Knowl. Data Eng. , vol.14 , pp. 750-767
    • Roddick, J.1    Spiliopoulou, M.2
  • 21
    • 33646534620 scopus 로고    scopus 로고
    • A review on machinery diagnostics and prognostics implementing condition-based maintenance
    • Jardine, A.; Lin, D.; Banjevic, D. A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech. Syst. Signal Process. 2006, 20, 1483-1510.
    • (2006) Mech. Syst. Signal Process. , vol.20 , pp. 1483-1510
    • Jardine, A.1    Lin, D.2    Banjevic, D.3
  • 22
    • 78349261500 scopus 로고    scopus 로고
    • Natural computing for mechanical systems research: A tutorial overview
    • Worden, K.; Staszewski, W.; Hensman, J. Natural computing for mechanical systems research: A tutorial overview. Mech. Syst. Signal Process. 2011, 25, 4-111.
    • (2011) Mech. Syst. Signal Process. , vol.25 , pp. 4-111
    • Worden, K.1    Staszewski, W.2    Hensman, J.3
  • 23
    • 64049098473 scopus 로고    scopus 로고
    • Application of an intelligent classification method to mechanical fault diagnosis
    • Lei, Y.; He, Z.; Zi, Y. Application of an intelligent classification method to mechanical fault diagnosis. Expert Syst. Appl. 2009, 36, 9941-9948.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 9941-9948
    • Lei, Y.1    He, Z.2    Zi, Y.3
  • 24
    • 84861558493 scopus 로고    scopus 로고
    • An Intelligent diagnosis method for rotating machinery using least squares mapping and a fuzzy neural network
    • Li, K.; Chen, P.; Wang, S. An Intelligent diagnosis method for rotating machinery using least squares mapping and a fuzzy neural network. Sensors 2012, 12, 5919-5939.
    • (2012) Sensors , vol.12 , pp. 5919-5939
    • Li, K.1    Chen, P.2    Wang, S.3
  • 25
  • 26
    • 4344686230 scopus 로고    scopus 로고
    • Hidden Markov model-based fault diagnostics method in speed-up and speed-down process for rotating machinery
    • Li, Z.; Wu, Z.; He, Y.; Fulei, C. Hidden Markov model-based fault diagnostics method in speed-up and speed-down process for rotating machinery. Mech. Syst. Signal Process. 2005, 19, 329-339.
    • (2005) Mech. Syst. Signal Process. , vol.19 , pp. 329-339
    • Li, Z.1    Wu, Z.2    He, Y.3    Fulei, C.4
  • 27
    • 34147125993 scopus 로고    scopus 로고
    • A segmental hidden semi-Markov model (HSMM)-based diagnostics and prognostics framework and methodology
    • Dong, M.; He, D. A segmental hidden semi-Markov model (HSMM)-based diagnostics and prognostics framework and methodology. Mech. Syst. Signal Process. 2007, 21, 2248-2266.
    • (2007) Mech. Syst. Signal Process. , vol.21 , pp. 2248-2266
    • Dong, M.1    He, D.2
  • 28
    • 34047275789 scopus 로고    scopus 로고
    • Intelligent fault diagnosis of rolling element bearing based on SVMs and fractal dimension
    • Yang, J.; Zhang, Y.; Zhu, Y. Intelligent fault diagnosis of rolling element bearing based on SVMs and fractal dimension. Mech. Syst. Signal Process. 2007, 21, 2012-2024.
    • (2007) Mech. Syst. Signal Process. , vol.21 , pp. 2012-2024
    • Yang, J.1    Zhang, Y.2    Zhu, Y.3
  • 29
    • 34047251505 scopus 로고    scopus 로고
    • Fault diagnosis of rotating machinery based on multiple ANFIS combination with GAs
    • Lei, Y.; He, Z.; Zi, Y.; Hu, Q. Fault diagnosis of rotating machinery based on multiple ANFIS combination with GAs. Mech. Syst. Signal Process. 2007, 21, 2280-2294.
    • (2007) Mech. Syst. Signal Process. , vol.21 , pp. 2280-2294
    • Lei, Y.1    He, Z.2    Zi, Y.3    Hu, Q.4
  • 31
    • 63849187550 scopus 로고    scopus 로고
    • A feature extraction method based on information theory for fault diagnosis of reciprocating machinery
    • Wang, H.; Chen, P. A feature extraction method based on information theory for fault diagnosis of reciprocating machinery. Sensors 2009, 9, 2415-2436.
    • (2009) Sensors , vol.9 , pp. 2415-2436
    • Wang, H.1    Chen, P.2
  • 32
    • 84868261295 scopus 로고    scopus 로고
    • Spectral regression based fault feature extraction for bearing accelerometer sensor signals
    • Xia, Z.; Xia, S.; Wan, L.; Cai, S. Spectral regression based fault feature extraction for bearing accelerometer sensor signals. Sensors 2012, 12, 13694-13719.
    • (2012) Sensors , vol.12 , pp. 13694-13719
    • Xia, Z.1    Xia, S.2    Wan, L.3    Cai, S.4
  • 33
    • 84860117464 scopus 로고    scopus 로고
    • Adaptive redundant lifting wavelet transform based on fitting for fault feature extraction of roller bearings
    • Yang, Z.; Cai, L.; Gao, L.; Wang, H. Adaptive redundant lifting wavelet transform based on fitting for fault feature extraction of roller bearings. Sensors 2012, 12, 4381-4398.
    • (2012) Sensors , vol.12 , pp. 4381-4398
    • Yang, Z.1    Cai, L.2    Gao, L.3    Wang, H.4
  • 34
    • 78650687670 scopus 로고    scopus 로고
    • Effect of number of features on classification of roller bearing faults using SVM and PSVM
    • Sugumaran, V.; Ramachandran, K. Effect of number of features on classification of roller bearing faults using SVM and PSVM. Expert Syst. Appl. 2011, 38, 4088-4096.
    • (2011) Expert Syst. Appl. , vol.38 , pp. 4088-4096
    • Sugumaran, V.1    Ramachandran, K.2
  • 35
    • 58349094129 scopus 로고    scopus 로고
    • A Survey of Artificial Intelligence for Prognostics
    • In, Arlington, VA, USA, 9-11 November
    • Schwabacher, M.; Goebel, K. A Survey of Artificial Intelligence for Prognostics. In Proceedings of AAAI 2007 Fall Symposium, Arlington, VA, USA, 9-11 November 2007; pp. 107-114.
    • (2007) Proceedings of AAAI 2007 Fall Symposium , pp. 107-114
    • Schwabacher, M.1    Goebel, K.2
  • 36
    • 58049190180 scopus 로고    scopus 로고
    • Rotating machinery prognostics: State of the art, challenges and opportunities
    • Heng, A.; Zhang, S.; Tan, A.; Mathew, J. Rotating machinery prognostics: State of the art, challenges and opportunities. Mech. Syst. Signal Process. 2009, 23, 724-739.
    • (2009) Mech. Syst. Signal Process. , vol.23 , pp. 724-739
    • Heng, A.1    Zhang, S.2    Tan, A.3    Mathew, J.4
  • 37
    • 0034661302 scopus 로고    scopus 로고
    • Challenges in the industrial applications of fault diagnostic systems
    • Dash, S.; Venkatasubramanian, V. Challenges in the industrial applications of fault diagnostic systems. Comput. Chem. Eng. 2000, 24, 785-791.
    • (2000) Comput. Chem. Eng. , vol.24 , pp. 785-791
    • Dash, S.1    Venkatasubramanian, V.2
  • 40
    • 84862182278 scopus 로고    scopus 로고
    • Clustering diagnosis of rolling element bearing fault based on integrated Autoregressive/Autoregressive Conditional Heteroscedasticity model
    • Wang, G.; Liu, C.; Cui, Y. Clustering diagnosis of rolling element bearing fault based on integrated Autoregressive/Autoregressive Conditional Heteroscedasticity model. J. Sound Vib. 2012, 331, 4379-4387.
    • (2012) J. Sound Vib. , vol.331 , pp. 4379-4387
    • Wang, G.1    Liu, C.2    Cui, Y.3
  • 42
    • 84873028042 scopus 로고    scopus 로고
    • Fault diagnosis of rotating machinery based on the statistical parameters of wavelet packet paving and a generic support vector regressive classifier
    • Shen, C.; Wang, D.; Kong, F.; Tse, P.W. Fault diagnosis of rotating machinery based on the statistical parameters of wavelet packet paving and a generic support vector regressive classifier. Measurement 2013, 46, 1551-1564.
    • (2013) Measurement , vol.46 , pp. 1551-1564
    • Shen, C.1    Wang, D.2    Kong, F.3    Tse, P.W.4
  • 44
    • 85052861831 scopus 로고    scopus 로고
    • SVM: Support Vector Machines
    • In, Wu, X., Kumar, V., Eds.; Chapman & Hall/CRC: London, UK
    • Xue, H., Yang, Q., Chen, S., SVM: Support Vector Machines. In The Top Ten Algorithms in Data Mining; Wu, X., Kumar, V., Eds.; Chapman & Hall/CRC: London, UK, 2009; pp. 37-59.
    • (2009) The Top Ten Algorithms in Data Mining , pp. 37-59
    • Xue, H.1    Yang, Q.2    Chen, S.3
  • 46
    • 34249661124 scopus 로고    scopus 로고
    • Support vector machine in machine condition monitoring and fault diagnosis
    • Widodo, A.; Yang, B.S. Support vector machine in machine condition monitoring and fault diagnosis. Mech. Syst. Signal Process. 2007, 21, 2560-2574.
    • (2007) Mech. Syst. Signal Process. , vol.21 , pp. 2560-2574
    • Widodo, A.1    Yang, B.S.2
  • 47
    • 34548035641 scopus 로고    scopus 로고
    • Rolling element bearings multi-fault classification based on the wavelet de-noising and support vector machine
    • Abbasion, S.; Rafsanjani, A.; Farshidianfar, A.; Irani, N. Rolling element bearings multi-fault classification based on the wavelet de-noising and support vector machine. Mech. Syst. Signal Process. 2007, 21, 2933-2945.
    • (2007) Mech. Syst. Signal Process. , vol.21 , pp. 2933-2945
    • Abbasion, S.1    Rafsanjani, A.2    Farshidianfar, A.3    Irani, N.4
  • 48
    • 38649135047 scopus 로고    scopus 로고
    • Fault diagnostics of roller bearing using kernel based neighborhood score multi-class support vector machine
    • Sugumaran, V.; Sabareesh, G.; Ramachandran, K. Fault diagnostics of roller bearing using kernel based neighborhood score multi-class support vector machine. Expert Syst. Appl. 2008, 34, 3090-3098.
    • (2008) Expert Syst. Appl. , vol.34 , pp. 3090-3098
    • Sugumaran, V.1    Sabareesh, G.2    Ramachandran, K.3
  • 49
    • 77953098563 scopus 로고    scopus 로고
    • Anomaly detection through a bayesian support vector machine
    • Sotiris, V.; Tse, P.; Pecht, M. Anomaly detection through a bayesian support vector machine. IEEE Trans. Reliab. 2010, 59, 277-286.
    • (2010) IEEE Trans. Reliab. , vol.59 , pp. 277-286
    • Sotiris, V.1    Tse, P.2    Pecht, M.3
  • 50
    • 0347526092 scopus 로고    scopus 로고
    • Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection
    • Samanta, B.; Al-Balushi, K.; Al-Araimi, S. Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection. Eng. Appl. Artif. Intell. 2003, 16, 657-665.
    • (2003) Eng. Appl. Artif. Intell. , vol.16 , pp. 657-665
    • Samanta, B.1    Al-Balushi, K.2    Al-Araimi, S.3
  • 51
    • 84855865261 scopus 로고    scopus 로고
    • Bearing fault prognosis based on health state probability estimation
    • Kim, H.E.; Tan, A.C.; Mathew, J.; Choi, B.K. Bearing fault prognosis based on health state probability estimation. Expert Syst. Appl. 2012, 39, 5200-5213.
    • (2012) Expert Syst. Appl. , vol.39 , pp. 5200-5213
    • Kim, H.E.1    Tan, A.C.2    Mathew, J.3    Choi, B.K.4
  • 52
    • 0003120218 scopus 로고    scopus 로고
    • Fast Training of Support Vector Machines Using Sequential Minimal Optimization
    • In, Schoelkopf, B., Burges, C., Smola, A., Eds.; MIT Press: Cambridge, MA, USA
    • Platt, J. Fast Training of Support Vector Machines Using Sequential Minimal Optimization. In Advances in Kernel Methods-Support. Vector Learning; Schoelkopf, B., Burges, C., Smola, A., Eds.; MIT Press: Cambridge, MA, USA, 1998.
    • (1998) Advances in Kernel Methods-Support. Vector Learning
    • Platt, J.1
  • 53
    • 84884374407 scopus 로고    scopus 로고
    • A relevance vector machine-based approach with application to oil sand pump prognostics
    • Hu, J.; Tse, P.W. A relevance vector machine-based approach with application to oil sand pump prognostics. Sensors 2013, 13, 12663-12686.
    • (2013) Sensors , vol.13 , pp. 12663-12686
    • Hu, J.1    Tse, P.W.2
  • 54
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan, J. Induction of decision trees. Mach. Learn. 1986, 1, 81-106.
    • (1986) Mach. Learn. , vol.1 , pp. 81-106
    • Quinlan, J.1
  • 55
    • 84856043672 scopus 로고
    • A mathematical theory of communication
    • Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 397-423, 623-656.
    • (1948) Bell Syst. Tech. J. , vol.27
    • Shannon, C.E.1
  • 56
    • 84866743129 scopus 로고    scopus 로고
    • C4.5
    • In, Wu, X., Kumar, V., Eds.; Chapman & Hall/CRC: London, UK
    • Ramakrishnan, N. C4.5. In The Top Ten Algorithms in Data Mining; Wu, X., Kumar, V., Eds.; Chapman & Hall/CRC: London, UK, 2009; pp. 1-19.
    • (2009) The Top Ten Algorithms in Data Mining , pp. 1-19
    • Ramakrishnan, N.1
  • 59
    • 34047251878 scopus 로고    scopus 로고
    • Automatic rule learning using decision tree for fuzzy classifier in fault diagnosis of roller bearing
    • Sugumaran, V.; Ramachandran, K. Automatic rule learning using decision tree for fuzzy classifier in fault diagnosis of roller bearing. Mech. Syst. Signal Process. 2007, 21, 2237-2247.
    • (2007) Mech. Syst. Signal Process. , vol.21 , pp. 2237-2247
    • Sugumaran, V.1    Ramachandran, K.2
  • 60
    • 33750591809 scopus 로고    scopus 로고
    • Feature selection using Decision Tree and classification through Proximal Support Vector Machine for fault diagnostics of roller bearing
    • Sugumaran, V.; Muralidharan, V.; Ramachandran, K. Feature selection using Decision Tree and classification through Proximal Support Vector Machine for fault diagnostics of roller bearing. Mech. Syst. Signal Process. 2007, 21, 930-942.
    • (2007) Mech. Syst. Signal Process. , vol.21 , pp. 930-942
    • Sugumaran, V.1    Muralidharan, V.2    Ramachandran, K.3
  • 61
    • 56349137294 scopus 로고    scopus 로고
    • Fault diagnosis of induction motor based on decision trees and adaptive neuro-fuzzy inference
    • Tran, V.; Yang, B.; Oh, M.; Tan, A. Fault diagnosis of induction motor based on decision trees and adaptive neuro-fuzzy inference. Expert Syst. Appl. 2009, 36, 1840-1849.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 1840-1849
    • Tran, V.1    Yang, B.2    Oh, M.3    Tan, A.4
  • 62
    • 77249155059 scopus 로고    scopus 로고
    • Vibration based fault diagnosis of monoblock centrifugal pump using decision tree
    • Sakthivel, N.; Sugumaran, V.; Babudevasenapati, S. Vibration based fault diagnosis of monoblock centrifugal pump using decision tree. Expert Syst. Appl. 2010, 37, 4040-4049.
    • (2010) Expert Syst. Appl. , vol.37 , pp. 4040-4049
    • Sakthivel, N.1    Sugumaran, V.2    Babudevasenapati, S.3
  • 63
    • 33845472656 scopus 로고    scopus 로고
    • Decision tree and PCA-based fault diagnosis of rotating machinery
    • Sun, W.; Chen, J.; Li, J. Decision tree and PCA-based fault diagnosis of rotating machinery. Mech. Syst. Signal Process. 2007, 21, 1300-1317.
    • (2007) Mech. Syst. Signal Process. , vol.21 , pp. 1300-1317
    • Sun, W.1    Chen, J.2    Li, J.3
  • 64
    • 19044382587 scopus 로고    scopus 로고
    • Round robin classification
    • Fürnkranz, J. Round robin classification. J. Mach. Learn. Res. 2002, 2, 721-747.
    • (2002) J. Mach. Learn. Res. , vol.2 , pp. 721-747
    • Fürnkranz, J.1
  • 65
    • 72449154589 scopus 로고    scopus 로고
    • A review on the combination of binary classifiers in multiclass problems
    • Lorena, A.C.; de Carvalho, A.C.; Gama, J.M. A review on the combination of binary classifiers in multiclass problems. Artif. Intell. Rev. 2008, 30, 19-37.
    • (2008) Artif. Intell. Rev. , vol.30 , pp. 19-37
    • Lorena, A.C.1    de Carvalho, A.C.2    Gama, J.M.3
  • 66
    • 56749117943 scopus 로고    scopus 로고
    • In defense of one-vs-all classification
    • Rifkin, R.; Klautau, A. In defense of one-vs-all classification. J. Mach. Learn. Res. 2004, 5, 101-141.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 101-141
    • Rifkin, R.1    Klautau, A.2
  • 68
    • 79953051509 scopus 로고    scopus 로고
    • An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-all schemes
    • Galar, M.; Fernández, A.; Barrenechea, E.; Bustince, H.; Herrera, F. An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-all schemes. Pattern Recognit. 2011, 44, 1761-1776.
    • (2011) Pattern Recognit. , vol.44 , pp. 1761-1776
    • Galar, M.1    Fernández, A.2    Barrenechea, E.3    Bustince, H.4    Herrera, F.5
  • 69
    • 43149118824 scopus 로고    scopus 로고
    • Sensor-driven prognostic models for equipment replacement and spare parts inventory
    • Elwany, A.; Gebraeel, N. Sensor-driven prognostic models for equipment replacement and spare parts inventory. IIE Trans. 2008, 40, 629-639.
    • (2008) IIE Trans. , vol.40 , pp. 629-639
    • Elwany, A.1    Gebraeel, N.2
  • 70
    • 84878697615 scopus 로고    scopus 로고
    • Condition monitoring and remaining useful life prediction using degradation signals: Revisited
    • Chen, N.; Tsui, K.L. Condition monitoring and remaining useful life prediction using degradation signals: Revisited. IIE Trans. 2013, 45, 939-952.
    • (2013) IIE Trans. , vol.45 , pp. 939-952
    • Chen, N.1    Tsui, K.L.2
  • 71
    • 0029368704 scopus 로고
    • Condition assessment and life prediction of rolling element bearings
    • Barkov, A.; Barkova, N. Condition assessment and life prediction of rolling element bearings. Sound Vib. 1995, 29, 10-17.
    • (1995) Sound Vib. , vol.29 , pp. 10-17
    • Barkov, A.1    Barkova, N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.