메뉴 건너뛰기




Volumn 21, Issue 5, 2007, Pages 2237-2247

Automatic rule learning using decision tree for fuzzy classifier in fault diagnosis of roller bearing

Author keywords

Decision tree; Fault detection; Feature selection; Fuzzy; Roller bearing; Rule learning

Indexed keywords

AUTOMATION; DECISION TREES; FAULT DETECTION; FEATURE EXTRACTION; ROLLER BEARINGS; STATISTICAL METHODS;

EID: 34047251878     PISSN: 08883270     EISSN: 10961216     Source Type: Journal    
DOI: 10.1016/j.ymssp.2006.09.007     Document Type: Article
Times cited : (160)

References (19)
  • 1
    • 34047275706 scopus 로고    scopus 로고
    • S.S. Wang, Artificial intelligence and expert systems for diagnostics, Proceedings of the Institute of International Conference Machining and Diagnostics and Exhibition, Las Vegas, Neveda, 1989. pp. 516-512.
  • 2
    • 0039798046 scopus 로고
    • Winder R.L., and Littmann W.E. (Eds), National Bureau of Standard Publication
    • In: Winder R.L., and Littmann W.E. (Eds). Bearing Damage Analysis (1976), National Bureau of Standard Publication
    • (1976) Bearing Damage Analysis
  • 3
    • 0024766691 scopus 로고
    • Online detection of localised defects in bearing by pattern recognition analysis
    • James Li C., and Wu S.M. Online detection of localised defects in bearing by pattern recognition analysis. ASME Journal of Engineering Industry 111 (1989) 331-336
    • (1989) ASME Journal of Engineering Industry , vol.111 , pp. 331-336
    • James Li, C.1    Wu, S.M.2
  • 4
    • 34047269205 scopus 로고    scopus 로고
    • A.K. Nandi, Advanced digital vibration signal processing for condition monitoring, Proceedings of COMADEM2000, Houston, TX, USA, 2000. pp. 129-143.
  • 5
    • 0037345899 scopus 로고    scopus 로고
    • Artificial neural network based fault diagnostics of rolling element bearings using time domain features
    • Samanta B., and Al-Baulshi K.R. Artificial neural network based fault diagnostics of rolling element bearings using time domain features. Mechanical Systems and Signal Processing 17 2 (2003) 317-328
    • (2003) Mechanical Systems and Signal Processing , vol.17 , Issue.2 , pp. 317-328
    • Samanta, B.1    Al-Baulshi, K.R.2
  • 6
    • 0347526092 scopus 로고    scopus 로고
    • Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection
    • Samanta B., Al-Baulshi K.R., and Al-Araimi S.A. Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection. Engineering Applications of Artificial Intelligence 16 2003 (2003) 657-665
    • (2003) Engineering Applications of Artificial Intelligence , vol.16 , Issue.2003 , pp. 657-665
    • Samanta, B.1    Al-Baulshi, K.R.2    Al-Araimi, S.A.3
  • 7
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burgess C.J.C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2 (1998) 955-974
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 955-974
    • Burgess, C.J.C.1
  • 8
    • 34047273503 scopus 로고    scopus 로고
    • L.B. Jack, A.K. Nandi, Comparison of neural networks and support vector machines in condition monitoring application, Proceedings of COMADEM 2000, Houston, TX, USA, 2000a. pp. 721-730.
  • 9
    • 34047257295 scopus 로고    scopus 로고
    • X.Z. Shi, Z.Q. Xu, Xu, A study on the automatic recognition of vibration signal for ball bearing faults-the FFTAR feature extraction and classification methods, Proceedings of theIEEE International Workshop on Applied Time series Analysis, World Scientific, Singapore. 1988. pp. 318-321.
  • 11
    • 0021377369 scopus 로고
    • Vibration monitoring of rolling element bearings by high frequency resonance technique-a review
    • McFadden P.D., and Smith J.D. Vibration monitoring of rolling element bearings by high frequency resonance technique-a review. Tribology International 17 (1984) 3-10
    • (1984) Tribology International , vol.17 , pp. 3-10
    • McFadden, P.D.1    Smith, J.D.2
  • 12
    • 34047248168 scopus 로고    scopus 로고
    • Y.H. Peng, P.A. Flach, P. Brazdil, C. Soares, Decision tree-based data characterization for meta-learning, ECML/PKDD-2002 Workshop IDDM -2002, Helsinki, Finland.
  • 13
    • 0029678894 scopus 로고    scopus 로고
    • Improved use of continuous attributes in C4.5
    • Quinlan J.R. Improved use of continuous attributes in C4.5. Journal of Artificial Research 4 (1996) 77-90
    • (1996) Journal of Artificial Research , vol.4 , pp. 77-90
    • Quinlan, J.R.1
  • 16
    • 34047271238 scopus 로고    scopus 로고
    • Y.C. Huang, H.T. Yang, C.L. Huang, IEEE Transactions on Power Delivery 12. Developing a new transformer fault diagnosis system through evolutionary fuzzy logic. 1997.
  • 18
    • 0029484103 scopus 로고
    • A survey and critique of techniques for extracting rules from trained artificial neural networks
    • Andrews R., Diederich J., and Tickle A. A survey and critique of techniques for extracting rules from trained artificial neural networks. Knowledge-Based Systems 8 6 (1995) 373-389
    • (1995) Knowledge-Based Systems , vol.8 , Issue.6 , pp. 373-389
    • Andrews, R.1    Diederich, J.2    Tickle, A.3
  • 19
    • 34047247494 scopus 로고    scopus 로고
    • Haydemar Núñez, Cecilio Angulo, Andreu Català, Rule extraction from support vector machines, ESANN'2002 proceedings-European Symposium on Artificial Neural Networks, pp. 107-112.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.