메뉴 건너뛰기




Volumn , Issue , 2007, Pages 107-114

A survey of artificial intelligence for prognostics

Author keywords

[No Author keywords available]

Indexed keywords

FAULT DETECTION AND DIAGNOSTICS; FAULT DIAGNOSTICS; INTEGRATED SYSTEMS; KEY ELEMENTS; SYSTEMS HEALTH MANAGEMENTS;

EID: 58349094129     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (213)

References (83)
  • 2
    • 33847747828 scopus 로고    scopus 로고
    • Designing For Health; A Methodology For Integrated Diagnostics/Prognostics
    • New York: IEEE
    • Beshears, R. and Butler, L. 2005. Designing For Health; A Methodology For Integrated Diagnostics/Prognostics. Proceedings of IEEE Autotestcon. New York: IEEE.
    • (2005) Proceedings of IEEE Autotestcon
    • Beshears, R.1    Butler, L.2
  • 6
    • 38149110821 scopus 로고    scopus 로고
    • Knowledge and Time: A Framework for Soft Computing Applications in Predictive Health Management (PHM)
    • Bonissone, P., 2006. Knowledge and Time: A Framework for Soft Computing Applications in Predictive Health Management (PHM). Proceedings of IPMU '06.
    • (2006) Proceedings of IPMU '06
    • Bonissone, P.1
  • 7
    • 0036992482 scopus 로고    scopus 로고
    • Bonissone, P. and Goebel, K. 2002. When will it break? A Hybrid Soft Computing Model to Predict Time-to-break Margins in Paper Machines. Proceedings of SPIE 47th Annual Meeting, International Symposium on Optical Science and Technology, 4787, pp. 53-64.
    • Bonissone, P. and Goebel, K. 2002. When will it break? A Hybrid Soft Computing Model to Predict Time-to-break Margins in Paper Machines. Proceedings of SPIE 47th Annual Meeting, International Symposium on Optical Science and Technology, Vol. #4787, pp. 53-64.
  • 13
    • 11244325936 scopus 로고    scopus 로고
    • Data-Driven Neural Network Methodology to Remaining Life Predictions for Aircraft Actuator Components
    • New York: IEEE
    • Byington, C. S., Watson, M. J., and Edwards, D. 2004b. Data-Driven Neural Network Methodology to Remaining Life Predictions for Aircraft Actuator Components. Proceedings of the IEEE Aerospace Conference. New York: IEEE.
    • (2004) Proceedings of the IEEE Aerospace Conference
    • Byington, C.S.1    Watson, M.J.2    Edwards, D.3
  • 16
    • 1542648584 scopus 로고    scopus 로고
    • A Neuro-Fuzzy Approach For Estimating Mean Residual Life In Condition-Based Maintenance Systems
    • Chinnam, R. B. and Baruah, P. 2003. A Neuro-Fuzzy Approach For Estimating Mean Residual Life In Condition-Based Maintenance Systems. International Journal of Materials and Product Technology, vol. 20.
    • (2003) International Journal of Materials and Product Technology , vol.20
    • Chinnam, R.B.1    Baruah, P.2
  • 17
    • 0036813630 scopus 로고    scopus 로고
    • Online Reliability Estimation Of Physical Systems Using Neural Networks And Wavelets
    • Chinnam, R. B. and Mohan, P. 2002. Online Reliability Estimation Of Physical Systems Using Neural Networks And Wavelets. International Journal of Smart Engineering System Design, vol. 4, no. 4.
    • (2002) International Journal of Smart Engineering System Design , vol.4 , Issue.4
    • Chinnam, R.B.1    Mohan, P.2
  • 19
    • 0000608898 scopus 로고    scopus 로고
    • A Fuzzy-Based Prognostic Adaptive System. RAIRO-APII-JESA
    • Frelicot, C. 1996. A Fuzzy-Based Prognostic Adaptive System. RAIRO-APII-JESA, Journal Europeen des Systemes Automatises, vol.30, no.2-3, p.281-99.
    • (1996) Journal Europeen des Systemes Automatises , vol.30 , Issue.2-3 , pp. 281-299
    • Frelicot, C.1
  • 20
    • 33750051081 scopus 로고    scopus 로고
    • Sensory-Updated Residual Life Distributions for Components with Exponential Degradation Patterns
    • Gebraeel, N. 2006. Sensory-Updated Residual Life Distributions for Components with Exponential Degradation Patterns. IEEE Transactions on Automation Science and Engineering.
    • (2006) IEEE Transactions on Automation Science and Engineering
    • Gebraeel, N.1
  • 22
    • 58349086678 scopus 로고    scopus 로고
    • Gensym 2007. Gensym Web site, http://www.gensym.com
    • (2007) Gensym Web site
  • 24
    • 35648933994 scopus 로고    scopus 로고
    • Goebel, K., and Eklund, N. 2007. Prognostic Fusion for Uncertainty Reduction. Proceedings of AIAA Infotech@Aerospace Conference. Reston, VA: American Institute for Aeronautics and Astronautics, Inc.
    • Goebel, K., and Eklund, N. 2007. Prognostic Fusion for Uncertainty Reduction. Proceedings of AIAA Infotech@Aerospace Conference. Reston, VA: American Institute for Aeronautics and Astronautics, Inc.
  • 30
    • 33751542188 scopus 로고    scopus 로고
    • Challenges, Issues, and Lessons Learned Chasing the "Big P": Real Predictive Prognostics Part 1
    • New York: IEEE
    • Hess, A., Calvello, G., and Frith, P. 2005. Challenges, Issues, and Lessons Learned Chasing the "Big P": Real Predictive Prognostics Part 1. Proceedings of the IEEE Aerospace Conference. New York: IEEE.
    • (2005) Proceedings of the IEEE Aerospace Conference
    • Hess, A.1    Calvello, G.2    Frith, P.3
  • 31
    • 58349114797 scopus 로고    scopus 로고
    • Iyer, N., Goebel, K., Bonissone, P., 2006. Framework for Post-Prognostic Decision Support. Proceedings of 2006 IEEE Aerospace Conference 11.0903.
    • Iyer, N., Goebel, K., Bonissone, P., 2006. Framework for Post-Prognostic Decision Support. Proceedings of 2006 IEEE Aerospace Conference 11.0903.
  • 32
    • 0003784574 scopus 로고
    • Software for Development of Expert Systems
    • James, M. and Atkinson, D. 1990. Software for Development of Expert Systems. NASA Technology Briefs, vol. 14, no. 6.
    • (1990) NASA Technology Briefs , vol.14 , Issue.6
    • James, M.1    Atkinson, D.2
  • 35
    • 33847759903 scopus 로고    scopus 로고
    • Self-Evolving, Advanced Test Stand Reasoning For Closed Loop Diagnostics
    • New York: IEEE
    • Kalgren, P. W., and Byington, C. S. 2005. Self-Evolving, Advanced Test Stand Reasoning For Closed Loop Diagnostics. Proceedings of IEEE Autotestcon. New York: IEEE.
    • (2005) Proceedings of IEEE Autotestcon
    • Kalgren, P.W.1    Byington, C.S.2
  • 37
    • 27744602928 scopus 로고    scopus 로고
    • Automated Contingency And Life Management For Integrated Power And Propulsion Systems
    • New York: ASME
    • Kallappa, P. and Hailu, H. 2005. Automated Contingency And Life Management For Integrated Power And Propulsion Systems. Proceedings of ASME Turbo Expo. New York: ASME.
    • (2005) Proceedings of ASME Turbo Expo
    • Kallappa, P.1    Hailu, H.2
  • 38
    • 18944392642 scopus 로고    scopus 로고
    • Methods for Fault Detection, Diagnostics, and Prognostics for Building Systems-A Review, Part I
    • Katipamula, S., and Brambley, M. R. 2005a. Methods for Fault Detection, Diagnostics, and Prognostics for Building Systems-A Review, Part I. International Journal of HVAC&R Research, Vol 11., No. 1.
    • (2005) International Journal of HVAC&R Research , vol.11 , Issue.1
    • Katipamula, S.1    Brambley, M.R.2
  • 39
    • 14544268558 scopus 로고    scopus 로고
    • Methods for Fault Detection, Diagnostics, and Prognostics for Building Systems-A Review, Part II
    • Katipamula, S., and Brambley, M. R. 2005b. Methods for Fault Detection, Diagnostics, and Prognostics for Building Systems-A Review, Part II. International Journal of HVAC&R Research, Vol 11., No. 2.
    • (2005) International Journal of HVAC&R Research , vol.11 , Issue.2
    • Katipamula, S.1    Brambley, M.R.2
  • 44
    • 0030261802 scopus 로고    scopus 로고
    • Measurement Of Machine Performance Degradation Using A Neural Network Model
    • Lee, J. 1996. Measurement Of Machine Performance Degradation Using A Neural Network Model. Computers in Industry.
    • (1996) Computers in Industry
    • Lee, J.1
  • 48
    • 0032131135 scopus 로고    scopus 로고
    • Remote Agent: To Boldly go Where No AI System Has Gone Before
    • Muscettola, N., Nayak, P. P., Pell, B., and Williams, B. C. 1998. Remote Agent: To Boldly go Where No AI System Has Gone Before. Artificial Intelligence 103(1-2), pp. 5-47.
    • (1998) Artificial Intelligence , vol.103 , Issue.1-2 , pp. 5-47
    • Muscettola, N.1    Nayak, P.P.2    Pell, B.3    Williams, B.C.4
  • 51
    • 58349089954 scopus 로고    scopus 로고
    • NASA Ames Research Center, 2007. Prognostics Center of Excellence Data Repository web site. http://ic.arc.nasa.gov/tech/groups/index.php?'gid= 53&ta=4.
    • NASA Ames Research Center, 2007. Prognostics Center of Excellence Data Repository web site. http://ic.arc.nasa.gov/tech/groups/index.php?'gid= 53&ta=4.
  • 56
    • 34548767620 scopus 로고    scopus 로고
    • Przytula, K. W., Choi, A. 2007. Reasoning Framework for Diagnosis and Prognosis. Proceedings of 2007 IEEE Aerospace Conference, 10.1109. New York: IEEE.
    • Przytula, K. W., Choi, A. 2007. Reasoning Framework for Diagnosis and Prognosis. Proceedings of 2007 IEEE Aerospace Conference, 10.1109. New York: IEEE.
  • 60
    • 34548776495 scopus 로고    scopus 로고
    • Prognostics And Health Management Software For Gas Turbine Engine Bearings
    • New York: ASME
    • Roemer, M. J. and Byington, C. S. 2007. Prognostics And Health Management Software For Gas Turbine Engine Bearings. Proceedings of the ASME Turbo Expo. New York: ASME.
    • (2007) Proceedings of the ASME Turbo Expo
    • Roemer, M.J.1    Byington, C.S.2
  • 62
    • 33750818116 scopus 로고    scopus 로고
    • An Overview of Selected Prognostic Technologies with Application to Engine Health Management. GT2006-90677
    • New York: ASME
    • Roemer, M., Byington, C., Kacprzynski, G., and Vachtsevanos, G. 2006. An Overview of Selected Prognostic Technologies with Application to Engine Health Management. GT2006-90677, Proceedings of ASME Turbo Expo. New York: ASME.
    • (2006) Proceedings of ASME Turbo Expo
    • Roemer, M.1    Byington, C.2    Kacprzynski, G.3    Vachtsevanos, G.4
  • 63
    • 58349104286 scopus 로고    scopus 로고
    • An Integrated Approach to Battery Health Monitoring using Bayesian Regression, Classification and State Estimation
    • New York: IEEE
    • Saha, B., Goebel, K., Poll, S., and Christopherson, J. 2007. An Integrated Approach to Battery Health Monitoring using Bayesian Regression, Classification and State Estimation. Proceedings of IEEE Autotestcon. New York: IEEE.
    • (2007) Proceedings of IEEE Autotestcon
    • Saha, B.1    Goebel, K.2    Poll, S.3    Christopherson, J.4
  • 65
    • 33847721449 scopus 로고    scopus 로고
    • Saxena, A., Wu, B., Vachtsevanos, G. Integrated diagnosis and prognosis architecture for fleet vehicles using dynamic case-based reasoning Proceedings of Autotestcon, 2005. 26-29 Sept. 2005, 10.1109
    • Saxena, A., Wu, B., Vachtsevanos, G. Integrated diagnosis and prognosis architecture for fleet vehicles using dynamic case-based reasoning Proceedings of Autotestcon, 2005. 26-29 Sept. 2005, 10.1109
  • 66
    • 58349092878 scopus 로고    scopus 로고
    • Schwabacher, M. 2005. A Survey of Data-Driven Prognostics. Proceedings of the AIAA Infotech@Aerospace Conference. Reston, VA: American Institute for Aeronautics and Astronautics, Inc.
    • Schwabacher, M. 2005. A Survey of Data-Driven Prognostics. Proceedings of the AIAA Infotech@Aerospace Conference. Reston, VA: American Institute for Aeronautics and Astronautics, Inc.
  • 68
    • 21344493313 scopus 로고
    • Neural network for the MS/OR analyst: An application bibliography
    • Sharda, R. 1994. Neural network for the MS/OR analyst: An application bibliography. Interfaces, vol. 24, no. 2, pp. 116-130,
    • (1994) Interfaces , vol.24 , Issue.2 , pp. 116-130
    • Sharda, R.1
  • 70
    • 27944457523 scopus 로고    scopus 로고
    • Neural Net Based Prognostics for an Industrial Semiconductor Fabrication System
    • Man and Cybernetics. New York: IEEE
    • Stone, V. M. and Jamshidi, M. 2005. Neural Net Based Prognostics for an Industrial Semiconductor Fabrication System. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics. New York: IEEE.
    • (2005) Proceedings of the IEEE International Conference on Systems
    • Stone, V.M.1    Jamshidi, M.2
  • 73
    • 0032202770 scopus 로고    scopus 로고
    • Prediction Intervals For Neural Networks Via Nonlinear Regression
    • Veaux, D. S. J., Schweinsberg, J., and Ungar, J. 1998. Prediction Intervals For Neural Networks Via Nonlinear Regression. Technometrics, vol. 40, no. 4, pp. 273-82.
    • (1998) Technometrics , vol.40 , Issue.4 , pp. 273-282
    • Veaux, D.S.J.1    Schweinsberg, J.2    Ungar, J.3
  • 75
    • 40549145924 scopus 로고    scopus 로고
    • Data Fusion for Enhanced Aircraft Engine Prognostics and Health Management
    • CR-2005-214055
    • Volponi, A. 2005. Data Fusion for Enhanced Aircraft Engine Prognostics and Health Management. NASA Contractor Report CR-2005-214055.
    • (2005) NASA Contractor Report
    • Volponi, A.1
  • 76
    • 58349122828 scopus 로고    scopus 로고
    • Improving the Maintenance Process and Enabling Prognostics for Control Actuators using CAHM Software
    • New York: IEEE
    • Watson, M. and Byington, C. S. 2005. Improving the Maintenance Process and Enabling Prognostics for Control Actuators using CAHM Software. Proceedings of the IEEE Aerospace Conference. New York: IEEE.
    • (2005) Proceedings of the IEEE Aerospace Conference
    • Watson, M.1    Byington, C.S.2
  • 80
    • 0000903748 scopus 로고
    • Generalization Of Back Propagation With Application To Recurrent Gas Market Model
    • Werbos, P. J. 1988. Generalization Of Back Propagation With Application To Recurrent Gas Market Model. Neural Networks, vol. 1, pp. 339-356.
    • (1988) Neural Networks , vol.1 , pp. 339-356
    • Werbos, P.J.1
  • 82
    • 84870977324 scopus 로고    scopus 로고
    • An Instance-Based Method for Remaining Useful Life Estimation for Aircraft Engines
    • Xue, F., Goebel, K., Bonissone, P., and Yan, W. 2007. An Instance-Based Method for Remaining Useful Life Estimation for Aircraft Engines. Proceedings of MFPT.
    • (2007) Proceedings of MFPT
    • Xue, F.1    Goebel, K.2    Bonissone, P.3    Yan, W.4
  • 83
    • 58349112053 scopus 로고    scopus 로고
    • Zhang, G. 2005. Optimum Sensor Localization/Selection in A Diagnostic/Prognostic Architecture. Ph.D. diss., Georgia Institute of Technology, Atlanta, GA.
    • Zhang, G. 2005. Optimum Sensor Localization/Selection in A Diagnostic/Prognostic Architecture. Ph.D. diss., Georgia Institute of Technology, Atlanta, GA.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.