메뉴 건너뛰기




Volumn , Issue , 2009, Pages 37-59

SVM: Support Vector Machines

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85052861831     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1201/9781420089653-10     Document Type: Chapter
Times cited : (41)

References (42)
  • 4
    • 0032594951 scopus 로고    scopus 로고
    • Support vector machines for histogrambased image classification
    • 3.5
    • O. Chapelle, P. Haffner, and V. Vapnik. Support vector machines for histogrambased image classification. IEEE Trans. on Neural Networks, vol. 10(3.5), 1055-1064, 1999.
    • (1999) IEEE Trans. on Neural Networks , vol.10 , pp. 1055-1064
    • Chapelle, O.1    Haffner, P.2    Vapnik, V.3
  • 5
    • 34249753618 scopus 로고
    • Support vector networks
    • C. Cortes and V. Vapnik. Support vector networks. Machine Learning, vol. 20, 273-297, 1995.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 17
    • 0002714543 scopus 로고    scopus 로고
    • Making Large-scale SVM learning practical
    • B. Schölkopf, C. Burges, and A. Smola (eds.), MIT Press
    • T. Joachims. Making Large-scale SVM learning practical. Advances in Kernel Methods-Support Vector Learning, B. Schölkopf, C. Burges, and A. Smola (eds.), MIT Press, 1999.
    • (1999) Advances in Kernel Methods-Support Vector Learning
    • Joachims, T.1
  • 19
    • 31844443910 scopus 로고    scopus 로고
    • Core vector regression for very large regression problems
    • I.W. Tsang, J.T. Kwok, and K.T. Lai. Core vector regression for very large regression problems. ICML, 913-920, 2005.
    • (2005) ICML , pp. 913-920
    • Tsang, I.W.1    Kwok, J.T.2    Lai, K.T.3
  • 20
    • 34547986029 scopus 로고    scopus 로고
    • Large-scale sparsified manifold regularization
    • Vancouver, Canada
    • I.W. Tsang and J.T. Kwok. Large-scale sparsified manifold regularization. NIPS, Vancouver, Canada, 2006.
    • (2006) NIPS
    • Tsang, I.W.1    Kwok, J.T.2
  • 21
    • 78649312446 scopus 로고    scopus 로고
    • Simpler core vector machines with enclosing balls
    • I.W. Tsang, A. Kocsor, and J.T. Kwok. Simpler core vector machines with enclosing balls. ICML, 2007.
    • (2007) ICML
    • Tsang, I.W.1    Kocsor, A.2    Kwok, J.T.3
  • 22
  • 23
    • 12244300139 scopus 로고    scopus 로고
    • Column-generation boosting methods for mixture of kernels
    • J. Bi, T. Zhang, and K. Bennett. Column-generation boosting methods for mixture of kernels. KDD, 521-526, 2004.
    • (2004) KDD , pp. 521-526
    • Bi, J.1    Zhang, T.2    Bennett, K.3
  • 28
    • 21844468979 scopus 로고    scopus 로고
    • Learning the kernel with hyperkernels
    • C.S. Ong, A.J. Smola, and R.C. Williamson. Learning the kernel with hyperkernels. JMLR, vol. 6, 1043-1071, 2005.
    • (2005) JMLR , vol.6 , pp. 1043-1071
    • Ong, C.S.1    Smola, A.J.2    Williamson, R.C.3
  • 30
    • 0038453192 scopus 로고    scopus 로고
    • Rademacher and Gaussian complexities: Risk bounds and structural results
    • P.L. Bartlett and S. Mendelson. Rademacher and Gaussian complexities: Risk bounds and structural results. Journal of Machine Learning Research, vol. 3, 463-482, 2002.
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 463-482
    • Bartlett, P.L.1    Mendelson, S.2
  • 31
    • 0032028728 scopus 로고    scopus 로고
    • The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network
    • 3.2
    • P.L. Bartlett. The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network. IEEE Transactions on Information Theory, vol. 44(3.2), 525-536, 1998.
    • (1998) IEEE Transactions on Information Theory , vol.44 , pp. 525-536
    • Bartlett, P.L.1
  • 32
    • 0035397715 scopus 로고    scopus 로고
    • Rademacher penalties and structural risk minimization
    • 3.5
    • V. Koltchinskii. Rademacher penalties and structural risk minimization. IEEE Transactions Information Theory, vol. 47(3.5), 1902-1914, 2001.
    • (2001) IEEE Transactions Information Theory , vol.47 , pp. 1902-1914
    • Koltchinskii, V.1
  • 34
    • 0001166808 scopus 로고    scopus 로고
    • Rademacher processes and bounding the risk of function learning
    • E. Gine, D. Mason, and J. Wellner (ed.)
    • V. Koltchinskii and D. Panchenko. Rademacher processes and bounding the risk of function learning. In E. Gine, D. Mason, and J. Wellner (ed.), High Dimensional Probability II, 443-459, 2000b.
    • (2000) High Dimensional Probability II , pp. 443-459
    • Koltchinskii, V.1    Panchenko, D.2
  • 36
    • 14344249146 scopus 로고    scopus 로고
    • Learning large margin classifiers locally and globally
    • K. Huang, H. Yang, I. King, and M.R. Lyu. Learning large margin classifiers locally and globally. ICML, 2004.
    • (2004) ICML
    • Huang, K.1    Yang, H.2    King, I.3    Lyu, M.R.4
  • 37
    • 34547446205 scopus 로고    scopus 로고
    • Structured large margin machines: Sensitive to data distributions
    • D.S. Yeung, D.Wang, W.W.Y. Ng, E.C.C. Tsang, and X. Zhao. Structured large margin machines: Sensitive to data distributions. Machine Learning, vol. 68, 171-200, 2007.
    • (2007) Machine Learning , vol.68 , pp. 171-200
    • Yeung, D.S.1    Wang, D.2    Ng, W.W.Y.3    Tsang, E.C.C.4    Zhao, X.5
  • 40
    • 34547675831 scopus 로고    scopus 로고
    • Generalization error bounds in semi-supervised classification under the cluster assumption
    • P. Rigollet. Generalization error bounds in semi-supervised classification under the cluster assumption. Journal of Machine Learning Research, vol. 8, 1369-1392, 2007.
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 1369-1392
    • Rigollet, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.