-
4
-
-
0032594951
-
Support vector machines for histogrambased image classification
-
3.5
-
O. Chapelle, P. Haffner, and V. Vapnik. Support vector machines for histogrambased image classification. IEEE Trans. on Neural Networks, vol. 10(3.5), 1055-1064, 1999.
-
(1999)
IEEE Trans. on Neural Networks
, vol.10
, pp. 1055-1064
-
-
Chapelle, O.1
Haffner, P.2
Vapnik, V.3
-
5
-
-
34249753618
-
Support vector networks
-
C. Cortes and V. Vapnik. Support vector networks. Machine Learning, vol. 20, 273-297, 1995.
-
(1995)
Machine Learning
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
14
-
-
0032595046
-
Model complexity control for regression using VC generalization bounds
-
V. Cherkassky, X. Shao, F. Mulier, and V. Vapnik. Model complexity control for regression using VC generalization bounds. IEEE Transactions on Neural Networks, vol. 10, 1075-1089, 1999.
-
(1999)
IEEE Transactions on Neural Networks
, vol.10
, pp. 1075-1089
-
-
Cherkassky, V.1
Shao, X.2
Mulier, F.3
Vapnik, V.4
-
17
-
-
0002714543
-
Making Large-scale SVM learning practical
-
B. Schölkopf, C. Burges, and A. Smola (eds.), MIT Press
-
T. Joachims. Making Large-scale SVM learning practical. Advances in Kernel Methods-Support Vector Learning, B. Schölkopf, C. Burges, and A. Smola (eds.), MIT Press, 1999.
-
(1999)
Advances in Kernel Methods-Support Vector Learning
-
-
Joachims, T.1
-
18
-
-
21844440579
-
Core vector machines: Fast SVM training on very large data sets
-
I. W. Tsang, J.T. Kwok, and P.-M. Cheung. Core vector machines: Fast SVM training on very large data sets. Journal of Machine Learning Research, vol. 6, 363-392, 2005.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 363-392
-
-
Tsang, I.W.1
Kwok, J.T.2
Cheung, P.-M.3
-
19
-
-
31844443910
-
Core vector regression for very large regression problems
-
I.W. Tsang, J.T. Kwok, and K.T. Lai. Core vector regression for very large regression problems. ICML, 913-920, 2005.
-
(2005)
ICML
, pp. 913-920
-
-
Tsang, I.W.1
Kwok, J.T.2
Lai, K.T.3
-
20
-
-
34547986029
-
Large-scale sparsified manifold regularization
-
Vancouver, Canada
-
I.W. Tsang and J.T. Kwok. Large-scale sparsified manifold regularization. NIPS, Vancouver, Canada, 2006.
-
(2006)
NIPS
-
-
Tsang, I.W.1
Kwok, J.T.2
-
21
-
-
78649312446
-
Simpler core vector machines with enclosing balls
-
I.W. Tsang, A. Kocsor, and J.T. Kwok. Simpler core vector machines with enclosing balls. ICML, 2007.
-
(2007)
ICML
-
-
Tsang, I.W.1
Kocsor, A.2
Kwok, J.T.3
-
22
-
-
0041995203
-
A generalized kernel approach to dissimilarity-based classification
-
E. Pekalska, P. Paclik, and R.P.W. Duin. A generalized kernel approach to dissimilarity-based classification. Journal of Machine Learning Research, vol. 2, 175-211, 2001.
-
(2001)
Journal of Machine Learning Research
, vol.2
, pp. 175-211
-
-
Pekalska, E.1
Paclik, P.2
Duin, R.P.W.3
-
23
-
-
12244300139
-
Column-generation boosting methods for mixture of kernels
-
J. Bi, T. Zhang, and K. Bennett. Column-generation boosting methods for mixture of kernels. KDD, 521-526, 2004.
-
(2004)
KDD
, pp. 521-526
-
-
Bi, J.1
Zhang, T.2
Bennett, K.3
-
26
-
-
8844263749
-
A statistical framework for genomic data fusion
-
3.16
-
G.R.G. Lanckriet, T.D. Bie, N. Cristianini, M.I. Jordan, and W.S. Noble. A statistical framework for genomic data fusion. Bioinformatics, vol. 20(3.16), 2626-2635, 2004.
-
(2004)
Bioinformatics
, vol.20
, pp. 2626-2635
-
-
Lanckriet, G.R.G.1
Bie, T.D.2
Cristianini, N.3
Jordan, M.I.4
Noble, W.S.5
-
27
-
-
8844278523
-
Learning the kernel matrix with semidefinite programming
-
G.R.G. Lanckriet, N. Cristianini, P. Bartlett, L.E. Ghaoui, and M.I. Jordan. Learning the kernel matrix with semidefinite programming. JMLR, vol. 5, 27-72, 2004.
-
(2004)
JMLR
, vol.5
, pp. 27-72
-
-
Lanckriet, G.R.G.1
Cristianini, N.2
Bartlett, P.3
Ghaoui, L.E.4
Jordan, M.I.5
-
28
-
-
21844468979
-
Learning the kernel with hyperkernels
-
C.S. Ong, A.J. Smola, and R.C. Williamson. Learning the kernel with hyperkernels. JMLR, vol. 6, 1043-1071, 2005.
-
(2005)
JMLR
, vol.6
, pp. 1043-1071
-
-
Ong, C.S.1
Smola, A.J.2
Williamson, R.C.3
-
29
-
-
37549013404
-
MultiK-MHKS:Anovel multiple kernel learning algorithm
-
3.2
-
Z.Wang, S. Chen, and T. Sun. MultiK-MHKS:Anovel multiple kernel learning algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30(3.2), 348-353, 2008.
-
(2008)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.30
, pp. 348-353
-
-
Wang, Z.1
Chen, S.2
Sun, T.3
-
30
-
-
0038453192
-
Rademacher and Gaussian complexities: Risk bounds and structural results
-
P.L. Bartlett and S. Mendelson. Rademacher and Gaussian complexities: Risk bounds and structural results. Journal of Machine Learning Research, vol. 3, 463-482, 2002.
-
(2002)
Journal of Machine Learning Research
, vol.3
, pp. 463-482
-
-
Bartlett, P.L.1
Mendelson, S.2
-
31
-
-
0032028728
-
The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network
-
3.2
-
P.L. Bartlett. The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network. IEEE Transactions on Information Theory, vol. 44(3.2), 525-536, 1998.
-
(1998)
IEEE Transactions on Information Theory
, vol.44
, pp. 525-536
-
-
Bartlett, P.L.1
-
32
-
-
0035397715
-
Rademacher penalties and structural risk minimization
-
3.5
-
V. Koltchinskii. Rademacher penalties and structural risk minimization. IEEE Transactions Information Theory, vol. 47(3.5), 1902-1914, 2001.
-
(2001)
IEEE Transactions Information Theory
, vol.47
, pp. 1902-1914
-
-
Koltchinskii, V.1
-
34
-
-
0001166808
-
Rademacher processes and bounding the risk of function learning
-
E. Gine, D. Mason, and J. Wellner (ed.)
-
V. Koltchinskii and D. Panchenko. Rademacher processes and bounding the risk of function learning. In E. Gine, D. Mason, and J. Wellner (ed.), High Dimensional Probability II, 443-459, 2000b.
-
(2000)
High Dimensional Probability II
, pp. 443-459
-
-
Koltchinskii, V.1
Panchenko, D.2
-
36
-
-
14344249146
-
Learning large margin classifiers locally and globally
-
K. Huang, H. Yang, I. King, and M.R. Lyu. Learning large margin classifiers locally and globally. ICML, 2004.
-
(2004)
ICML
-
-
Huang, K.1
Yang, H.2
King, I.3
Lyu, M.R.4
-
37
-
-
34547446205
-
Structured large margin machines: Sensitive to data distributions
-
D.S. Yeung, D.Wang, W.W.Y. Ng, E.C.C. Tsang, and X. Zhao. Structured large margin machines: Sensitive to data distributions. Machine Learning, vol. 68, 171-200, 2007.
-
(2007)
Machine Learning
, vol.68
, pp. 171-200
-
-
Yeung, D.S.1
Wang, D.2
Ng, W.W.Y.3
Tsang, E.C.C.4
Zhao, X.5
-
38
-
-
31844446899
-
-
Department of Computer Science, University of Chicago, Tech. Rep, TR-2004-06
-
M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric framework for learning from examples. Department of Computer Science, University of Chicago, Tech. Rep, TR-2004-06, 2004.
-
(2004)
Manifold regularization: A geometric framework for learning from examples
-
-
Belkin, M.1
Niyogi, P.2
Sindhwani, V.3
-
40
-
-
34547675831
-
Generalization error bounds in semi-supervised classification under the cluster assumption
-
P. Rigollet. Generalization error bounds in semi-supervised classification under the cluster assumption. Journal of Machine Learning Research, vol. 8, 1369-1392, 2007.
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 1369-1392
-
-
Rigollet, P.1
-
41
-
-
0042967740
-
A robust minimax approach to classification
-
G.R.G. Lanckriet, L.E. Ghaoui, C. Bhattacharyya, and M.I. Jordan. A robust minimax approach to classification. Journal of Machine Learning Research, vol. 3, 555-582, 2002.
-
(2002)
Journal of Machine Learning Research
, vol.3
, pp. 555-582
-
-
Lanckriet, G.R.G.1
Ghaoui, L.E.2
Bhattacharyya, C.3
Jordan, M.I.4
|