-
6
-
-
84924146386
-
-
Lebiere, C. and Wray, R., editors, Between a Rock and a Hard Place: Cognitive Science Principles Meet AI-Hard Problems (AAAI Technical Report SS-02- 06), AAAI Press, Menlo Park, CA
-
Brighton, H. (2006). Robust inference with simple cognitive models. In Lebiere, C. and Wray, R., editors, Between a Rock and a Hard Place: Cognitive Science Principles Meet AI-Hard Problems (AAAI Technical Report SS-02- 06), pages 189–211. AAAI Press, Menlo Park, CA.
-
(2006)
Obust Inference with Simple Cognitive Models
, pp. 189-211
-
-
Brighton, H.1
-
7
-
-
56249145560
-
Bayesian brains and cognitive mechanisms: Harmony or dissonance?
-
Chater, N. and Oaksford, M., editors, Cambridge University Press
-
Brighton, H. and Gigerenzer, G. (2007). Bayesian brains and cognitive mechanisms: Harmony or dissonance? In Chater, N. and Oaksford, M., editors, The Probabilistic Mind: Prospects for Bayesian Cognitive Science, pages 1179– 1191. Cambridge University Press.
-
(2007)
The Probabilistic Mind: Prospects for Bayesian Cognitive Science
-
-
Brighton, H.1
Gigerenzer, G.2
-
10
-
-
0038733989
-
-
Organizational Behavior and Human Decision Processes
-
Chater, N., Oaksford, M., Nakisa, R., and Redington, M. (2003). Fast, frugal, and rational: How rational norms explain behavior. Organizational Behavior and Human Decision Processes, 90: 63 – 86.
-
(2003)
Fast, Frugal, and Rational: How Rational Norms Explain Behavior
, vol.90
-
-
Chater, N.1
Oaksford, M.2
Nakisa, R.3
Redington, M.4
-
12
-
-
0001917223
-
How good are simple heuristics
-
Gigerenzer, G., Todd, P. M., Oxford University Press
-
Czerlinski, J., Gigerenzer, G., and Goldstein, D. G. (1999). How good are simple heuristics? In Gigerenzer, G., Todd, P. M., and ABC Research Group, Simple Heuristicsh at Make Us Smart, pages 119–140. Oxford University Press.
-
(1999)
And ABC Research Group, Simple Heuristicsh at Make Us Smart
, pp. 119-140
-
-
Czerlinski, J.1
Gigerenzer, G.2
Goldstein, D.G.3
-
15
-
-
0004213167
-
-
Sage Publications, housand Oaks, CA
-
Fox, J. (1997). Applied Regression Analysis, Linear Models, and Related Methods. Sage Publications, housand Oaks, CA.
-
(1997)
Applied Regression Analysis, Linear Models, and Related Methods
-
-
Fox, J.1
-
16
-
-
21744462998
-
-
Data Mining and Knowledge Discovery
-
Friedman, J. H. (1997). On bias, variance, 0/1-loss, and the curse-of-dimensionality. Data Mining and Knowledge Discovery, 1: 55 -77.
-
(1997)
On Bias, Variance, 0/1-Loss, and the Curse-Of-Dimensionality
, vol.1
-
-
Friedman, J.H.1
-
17
-
-
0001942829
-
-
Neural Computation
-
Geman, S., Bienenstock, E., and Doursat, R. (1992). Neural networks and the bias/variance dilemma. Neural Computation, 4: 1-58.
-
(1992)
Neural Networks and the Bias/Variance Dilemma
, vol.4
, pp. 1-58
-
-
Geman, S.1
Bienenstock, E.2
Doursat, R.3
-
23
-
-
33749560322
-
-
Gr u nwald, P., Myung, I. J., and Pitt, M. A., editors, Advances in Minimum Description Length, MIT Press, Cambridge, MA
-
Gr u nwald, P. (2005). Minimum description length tutorial. In Gr u nwald, P., Myung, I. J., and Pitt, M. A., editors, Advances in Minimum Description Length, pages 23-79. MIT Press, Cambridge, MA.
-
(2005)
Minimum Description Length Tutorial
, pp. 23-79
-
-
Gr U Nwald, P.1
-
25
-
-
84924150238
-
-
Biological h eory
-
Hammerstein, P., Hagen, E. H., Herz, A. V. M., and Herzel, H. (2006).Robustness: A key to evolutionary design. Biological h eory, 1 (1): 90 - 93.
-
(2006)
Robustness: A Key to Evolutionary Design
, vol.1
, Issue.1
-
-
Hammerstein, P.1
Hagen, E.H.2
Herz, A.3
Herzel, H.4
-
27
-
-
0003684449
-
-
Springer, New York
-
Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, New York.
-
(2001)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
30
-
-
0003620778
-
-
Addison-Wesley, Reading, MA
-
Hopcroft, J. E. and Ullman, J. D. (1979). Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Reading, MA.
-
(1979)
Introduction to Automata Theory, Languages and Computation
-
-
Hopcroft, J.E.1
Ullman, J.D.2
-
31
-
-
0031122049
-
-
Machine Learning
-
Kearns, M., Mansour, Y., Ng, A. Y., and Ron, D. (1997). An experimental and theoretical comparison of model selection methods. Machine Learning, 27: 7- 50.
-
(1997)
An Experimental and Theoretical Comparison of Model Selection Methods
, vol.27
-
-
Kearns, M.1
Mansour, Y.2
Ng, A.Y.3
Ron, D.4
-
32
-
-
7644238181
-
-
Nature Reviews Genetics
-
Kitano, H. (2004). Biological robustness. Nature Reviews Genetics, 5: 826 - 837.
-
(2004)
Biological Robustness
, vol.5
-
-
Kitano, H.1
-
33
-
-
33747201469
-
-
Gigerenzer, G. and Selten, R., editors, Bounded Rationality: h e Adaptive Toolbox, MIT Press, Cambridge, MA
-
Klein, G. (2001). The fi ction of optimization. In Gigerenzer, G. and Selten, R., editors, Bounded Rationality: h e Adaptive Toolbox, pages 103-121. MIT Press, Cambridge, MA.
-
(2001)
The Fi Ction of Optimization
, pp. 103-121
-
-
Klein, G.1
-
34
-
-
0004066308
-
-
Houghton Miffl in Co., Boston, MA
-
Knight, F. H. (1921). Risk, Uncertainty, and Profit. Houghton Miffl in Co., Boston, MA.
-
(1921)
Risk, Uncertainty, and Profit
-
-
Knight, F.H.1
-
35
-
-
0003555145
-
-
4th edition. International Non-Aristotelian Library Publishing Co., Lakeville, CT
-
Korzybski, A. (1958). Science and Sanity, 4th edition. International Non-Aristotelian Library Publishing Co., Lakeville, CT.
-
(1958)
Science and Sanity
-
-
Korzybski, A.1
-
37
-
-
0036969947
-
-
Australian Journal of Psychology
-
Lee, M. D., Loughlin, N., and Lundberg, I. B. (2002). Applying one reason decision-making: h e prioritization of literature searches. Australian Journal of Psychology, 54: 137-143.
-
(2002)
Applying One Reason Decision-Making: H E Prioritization of Literature Searches
, vol.54
, pp. 137-143
-
-
Lee, M.D.1
Loughlin, N.2
Lundberg, I.B.3
-
41
-
-
44249087736
-
-
Oxford University Press
-
— (2007). Bayesian Rationality. Oxford University Press.
-
(2007)
Bayesian Rationality
-
-
-
44
-
-
1242268938
-
-
Journal of Machine Learning Research
-
Perlich, C., Provost, F., and Simonoff, J. S. (2003). Tree induction vs. logistic regression: A learning curve analysis. Journal of Machine Learning Research, 4: 211–255.
-
(2003)
Tree Induction Vs. Logistic Regression: A Learning Curve Analysis
, vol.4
, pp. 211-255
-
-
Perlich, C.1
Provost, F.2
Simonoff, J.S.3
-
45
-
-
85047674682
-
-
Psychological Review
-
Pitt, M. A., Myung, I. J., and Zhang, S. (2002). Toward a method of selecting among computational models of cognition. Psychological Review, 109(3): 472 – 491.
-
(2002)
Toward a Method of Selecting among Computational Models of Cognition
, vol.109
, Issue.3
-
-
Pitt, M.A.1
Myung, I.J.2
Zhang, S.3
-
48
-
-
67149129014
-
-
MIT Press, Cambridge, MA
-
Quiñonero-Candela, J., Sugiyama, M., Schwaighofer, A., and Lawrence, N. D., editors (2009). Dataset Shift in Machine Learning. MIT Press, Cambridge, MA.
-
(2009)
Dataset Shift in Machine Learning
-
-
Quiñonero-Candela, J.1
Sugiyama, M.2
Schwaighofer, A.3
Lawrence, N.D.4
-
50
-
-
78249247078
-
-
Psychological Review
-
Sanborn, A. N., Griffi ths, T. L., and Navarro, D. J. (2010). Rational approximations to rational models: Alternative algorithms for category learning. Psychological Review, 117 (4): 1144 – 1167.
-
(2010)
Rational Approximations to Rational Models: Alternative Algorithms for Category Learning
, vol.117
, Issue.4
-
-
Sanborn, A.N.1
Griffi Ths, T.L.2
Navarro, D.J.3
-
55
-
-
33746260413
-
-
Trends in Cognitive Sciences
-
Tenenbaum, J. B., Griffi ths, T. L., and Kemp, C. (2006). Th eory-based Bayesian models of inductive learning and reasoning. Trends in Cognitive Sciences, 10 (7): 309 – 318.
-
(2006)
Th Eory-Based Bayesian Models of Inductive Learning and Reasoning
, vol.10
, Issue.7
-
-
Tenenbaum, J.B.1
Griffi Ths, T.L.2
Kemp, C.3
-
57
-
-
0033877395
-
-
IEEE Transactions on Information Theory
-
Vit á nyi, P. M. B. and Li, M. (2000). Minimum description length induction, Bayesianism, and Kolmogorov complexity. IEEE Transactions on Information Theory, 46 (2): 446 – 464.
-
(2000)
Minimum Description Length Induction, Bayesianism, and Kolmogorov Complexity
, vol.46
, Issue.2
-
-
Vit Á Nyi, P.1
Li, M.2
-
59
-
-
37549018049
-
-
Knowledge and Information Systems
-
Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G. J., Ng, A., Liu, B., Yu, P. S., Zhou, Z.-H., Steinbach, M., Hand, D. J., and Steinberg, D. (2007). Top 10 algorithms in data mining. Knowledge and Information Systems, 14: 1 – 37.
-
(2007)
Top 10 Algorithms in Data Mining
, vol.14
-
-
Wu, X.1
Kumar, V.2
Quinlan, J.R.3
Ghosh, J.4
Yang, Q.5
Motoda, H.6
McLachlan, G.J.7
Ng, A.8
Liu, B.9
Yu, P.S.10
Zhou, Z.-H.11
Steinbach, M.12
Hand, D.J.13
Steinberg, D.14
|