메뉴 건너뛰기




Volumn 66, Issue 2-3, 2007, Pages 119-149

Suboptimal behavior of Bayes and MDL in classification under misspecification

Author keywords

Bayesian statistics; Classification; Consistency; Inconsistency; Minimum description length; Misspecification

Indexed keywords

BAYESIAN STATISTICS; GENERALIZATION ERRORS; MINIMUM DESCRIPTION LENGTH; MISSPECIFICATION;

EID: 33847618822     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-007-0716-7     Document Type: Article
Times cited : (55)

References (37)
  • 1
    • 0003757634 scopus 로고
    • PhD thesis, Department of EE, Stanford University, Stanford, Ca
    • Barron, A. R. (1985). Logically smooth density estimation. PhD thesis, Department of EE, Stanford University, Stanford, Ca.
    • (1985) Logically smooth density estimation
    • Barron, A.R.1
  • 2
    • 0009145182 scopus 로고    scopus 로고
    • Information-theoretic characterization of Bayes performance and the choice of priors in parametric and nonparametric problems
    • Oxford University Press
    • Barron, A. R. (1998). Information-theoretic characterization of Bayes performance and the choice of priors in parametric and nonparametric problems. In Bayesian statistics, vol. 6 (pp. 27-52). Oxford University Press.
    • (1998) Bayesian statistics , vol.6 , pp. 27-52
    • Barron, A.R.1
  • 3
    • 0032183995 scopus 로고    scopus 로고
    • The MDL principle in coding and modeling
    • Barron, A. R., Rissanen, J., & Yu, B. (1998). The MDL principle in coding and modeling. IEEE Trans. Inform. Theory, 44(6), 2743-2760.
    • (1998) IEEE Trans. Inform. Theory , vol.44 , Issue.6 , pp. 2743-2760
    • Barron, A.R.1    Rissanen, J.2    Yu, B.3
  • 4
    • 0001347323 scopus 로고
    • Complexity regularization with application to artificial neural networks
    • Kluwer Academic Publishers
    • Barron, A. R. (1990). Complexity regularization with application to artificial neural networks. In Nonparametric functional estimation and related topics (pp. 561-576). Kluwer Academic Publishers.
    • (1990) Nonparametric functional estimation and related topics , pp. 561-576
    • Barron, A.R.1
  • 5
    • 0026190366 scopus 로고
    • Minimum complexity density estimation
    • Barron, A. R., & Cover, T. M. (1991). Minimum complexity density estimation. IEEE Trans. Inform. Theory, 37(4), 1034-1054.
    • (1991) IEEE Trans. Inform. Theory , vol.37 , Issue.4 , pp. 1034-1054
    • Barron, A.R.1    Cover, T.M.2
  • 9
    • 0032335655 scopus 로고    scopus 로고
    • Asymptotic behaviour of Bayes estimates under possibly incorrect models
    • Bunke, O., & Milhaud, X. (1998). Asymptotic behaviour of Bayes estimates under possibly incorrect models. The Annals of Statistics, 26, 617-644.
    • (1998) The Annals of Statistics , vol.26 , pp. 617-644
    • Bunke, O.1    Milhaud, X.2
  • 10
    • 2542484580 scopus 로고    scopus 로고
    • Comparing Bayes and non-Bayes model averaging when model approximation error cannot be ignored
    • Clarke, B. (2004). Comparing Bayes and non-Bayes model averaging when model approximation error cannot be ignored. Journal of Machine Learning Research, 4(4), 683-712.
    • (2004) Journal of Machine Learning Research , vol.4 , Issue.4 , pp. 683-712
    • Clarke, B.1
  • 11
    • 20344394993 scopus 로고    scopus 로고
    • Minimum message length and generalised bayesian nets with asymmetric languages
    • P. D. Grünwald, I. J. Myung, & M. A. Pitt Eds, MIT Press
    • Comley, J. W., & Dowe, D. L. Minimum message length and generalised bayesian nets with asymmetric languages. In P. D. Grünwald, I. J. Myung, & M. A. Pitt (Eds.), Advances in minimum description length: theory and applications. MIT Press, 2005.
    • (2005) Advances in minimum description length: Theory and applications
    • Comley, J.W.1    Dowe, D.L.2
  • 13
    • 0003171807 scopus 로고
    • On the consistency of Bayes estimates
    • Diaconis, P., & Freedman, D. (1986). On the consistency of Bayes estimates. The Annals of Statistics, 14(1), 1-26.
    • (1986) The Annals of Statistics , vol.14 , Issue.1 , pp. 1-26
    • Diaconis, P.1    Freedman, D.2
  • 20
    • 0003841602 scopus 로고
    • Why the logistic function? a tutorial discussion on probabilities and neural networks
    • 9503, MIT
    • Jordan, M. I. (1995). Why the logistic function? a tutorial discussion on probabilities and neural networks. Computational Cognitive Science Tech. Rep. 9503, MIT.
    • (1995) Computational Cognitive Science Tech. Rep
    • Jordan, M.I.1
  • 21
    • 0031122049 scopus 로고    scopus 로고
    • An experimental and theoretical comparison of model selection methods
    • Kearns, M., Mansour, Y., Ng, A.Y., & Ron, D. (1997). An experimental and theoretical comparison of model selection methods. Machine Learning, 27, 7-50.
    • (1997) Machine Learning , vol.27 , pp. 7-50
    • Kearns, M.1    Mansour, Y.2    Ng, A.Y.3    Ron, D.4
  • 23
    • 0004105234 scopus 로고    scopus 로고
    • PhD thesis, Yale University, Department of Statistics
    • Li, J. K. (1997). Estimation of mixture models. PhD thesis, Yale University, Department of Statistics.
    • (1997) Estimation of mixture models
    • Li, J.K.1
  • 25
    • 0029323797 scopus 로고
    • On the stochastic complexity of learning realizable and unrealizable rules
    • Meir, R., & Merhav, N. (1995). On the stochastic complexity of learning realizable and unrealizable rules. Machine Learning, 19, 241-261.
    • (1995) Machine Learning , vol.19 , pp. 241-261
    • Meir, R.1    Merhav, N.2
  • 26
    • 0003243224 scopus 로고    scopus 로고
    • Probabilities for SV machines
    • A. Smola, P. Bartlett, B. Schöelkopf, & D. Schuurmans Eds, MIT Press
    • Platt, J. C. (1999). Probabilities for SV machines. In A. Smola, P. Bartlett, B. Schöelkopf, & D. Schuurmans (Eds.), Advances in large margin classifiers (pp. 61-74). MIT Press.
    • (1999) Advances in large margin classifiers , pp. 61-74
    • Platt, J.C.1
  • 27
    • 0024627518 scopus 로고
    • Inferring decision trees using the minimum description length principle
    • Quinlan, J., & Rivest, R. (1989). Inferring decision trees using the minimum description length principle. Information and Computation, 80, 227-248.
    • (1989) Information and Computation , vol.80 , pp. 227-248
    • Quinlan, J.1    Rivest, R.2
  • 28
    • 0001098776 scopus 로고
    • A universal prior for integers and estimation by minimum description length
    • Rissanen, J. (1983). A universal prior for integers and estimation by minimum description length. The Annals of Statistics, 11, 416-431.
    • (1983) The Annals of Statistics , vol.11 , pp. 416-431
    • Rissanen, J.1
  • 30
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Tipping, M. E. (2001). Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 1, 211-244.
    • (2001) Journal of Machine Learning Research , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 31
    • 84957662553 scopus 로고    scopus 로고
    • Finding cutpoints in noisy binary sequences - a revised empirical evaluation
    • Proc. 12th Australian joint conf. on artif. intelligence, of, Sidney, Australia
    • Viswanathan, M., Wallace, C. S., Dowe, D. L., & Korb, K. B. (1999). Finding cutpoints in noisy binary sequences - a revised empirical evaluation. In Proc. 12th Australian joint conf. on artif. intelligence, vol. 1747 of Lecture notes in artificial intelligence (LNAI) (pp. 405-416), Sidney, Australia.
    • (1999) Lecture notes in artificial intelligence , vol.1747 , pp. 405-416
    • Viswanathan, M.1    Wallace, C.S.2    Dowe, D.L.3    Korb, K.B.4
  • 33
    • 0000107517 scopus 로고
    • An information measure for classification
    • Wallace, C. S., & Boulton, D. M. (1968). An information measure for classification. Computing Journal, 11, 185-195.
    • (1968) Computing Journal , vol.11 , pp. 185-195
    • Wallace, C.S.1    Boulton, D.M.2
  • 34
    • 0032684826 scopus 로고    scopus 로고
    • Minimum message length and Kolmogorov complexity
    • Special issue on Kolmogorov complexity
    • Wallace, C. S., & Dowe, D. L. (1999a). Minimum message length and Kolmogorov complexity. Computer Journal, 42(4), 270-283. Special issue on Kolmogorov complexity.
    • (1999) Computer Journal , vol.42 , Issue.4 , pp. 270-283
    • Wallace, C.S.1    Dowe, D.L.2
  • 35
    • 0032655373 scopus 로고    scopus 로고
    • Refinements of MDL and MML coding
    • Special issue on Kolmogorov complexity
    • Wallace, C. S., & Dowe, D. L. (1999b). Refinements of MDL and MML coding. Computer Journal, 42(4), 330-337. Special issue on Kolmogorov complexity.
    • (1999) Computer Journal , vol.42 , Issue.4 , pp. 330-337
    • Wallace, C.S.1    Dowe, D.L.2
  • 37
    • 0032121805 scopus 로고    scopus 로고
    • A decision-theoretic extension of stochastic complexity and its applications to learning
    • Yamanishi, K. (1998). A decision-theoretic extension of stochastic complexity and its applications to learning. IEEE Trans. Inform. Theory, 44(4), 1424-1439.
    • (1998) IEEE Trans. Inform. Theory , vol.44 , Issue.4 , pp. 1424-1439
    • Yamanishi, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.