-
1
-
-
0003757634
-
-
PhD thesis, Department of EE, Stanford University, Stanford, Ca
-
Barron, A. R. (1985). Logically smooth density estimation. PhD thesis, Department of EE, Stanford University, Stanford, Ca.
-
(1985)
Logically smooth density estimation
-
-
Barron, A.R.1
-
2
-
-
0009145182
-
Information-theoretic characterization of Bayes performance and the choice of priors in parametric and nonparametric problems
-
Oxford University Press
-
Barron, A. R. (1998). Information-theoretic characterization of Bayes performance and the choice of priors in parametric and nonparametric problems. In Bayesian statistics, vol. 6 (pp. 27-52). Oxford University Press.
-
(1998)
Bayesian statistics
, vol.6
, pp. 27-52
-
-
Barron, A.R.1
-
3
-
-
0032183995
-
The MDL principle in coding and modeling
-
Barron, A. R., Rissanen, J., & Yu, B. (1998). The MDL principle in coding and modeling. IEEE Trans. Inform. Theory, 44(6), 2743-2760.
-
(1998)
IEEE Trans. Inform. Theory
, vol.44
, Issue.6
, pp. 2743-2760
-
-
Barron, A.R.1
Rissanen, J.2
Yu, B.3
-
4
-
-
0001347323
-
Complexity regularization with application to artificial neural networks
-
Kluwer Academic Publishers
-
Barron, A. R. (1990). Complexity regularization with application to artificial neural networks. In Nonparametric functional estimation and related topics (pp. 561-576). Kluwer Academic Publishers.
-
(1990)
Nonparametric functional estimation and related topics
, pp. 561-576
-
-
Barron, A.R.1
-
5
-
-
0026190366
-
Minimum complexity density estimation
-
Barron, A. R., & Cover, T. M. (1991). Minimum complexity density estimation. IEEE Trans. Inform. Theory, 37(4), 1034-1054.
-
(1991)
IEEE Trans. Inform. Theory
, vol.37
, Issue.4
, pp. 1034-1054
-
-
Barron, A.R.1
Cover, T.M.2
-
8
-
-
0023646365
-
Occam's razor
-
Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. (1987). Occam's razor. Information Processing Letters, 24, 377-380.
-
(1987)
Information Processing Letters
, vol.24
, pp. 377-380
-
-
Blumer, A.1
Ehrenfeucht, A.2
Haussler, D.3
Warmuth, M.4
-
9
-
-
0032335655
-
Asymptotic behaviour of Bayes estimates under possibly incorrect models
-
Bunke, O., & Milhaud, X. (1998). Asymptotic behaviour of Bayes estimates under possibly incorrect models. The Annals of Statistics, 26, 617-644.
-
(1998)
The Annals of Statistics
, vol.26
, pp. 617-644
-
-
Bunke, O.1
Milhaud, X.2
-
10
-
-
2542484580
-
Comparing Bayes and non-Bayes model averaging when model approximation error cannot be ignored
-
Clarke, B. (2004). Comparing Bayes and non-Bayes model averaging when model approximation error cannot be ignored. Journal of Machine Learning Research, 4(4), 683-712.
-
(2004)
Journal of Machine Learning Research
, vol.4
, Issue.4
, pp. 683-712
-
-
Clarke, B.1
-
11
-
-
20344394993
-
Minimum message length and generalised bayesian nets with asymmetric languages
-
P. D. Grünwald, I. J. Myung, & M. A. Pitt Eds, MIT Press
-
Comley, J. W., & Dowe, D. L. Minimum message length and generalised bayesian nets with asymmetric languages. In P. D. Grünwald, I. J. Myung, & M. A. Pitt (Eds.), Advances in minimum description length: theory and applications. MIT Press, 2005.
-
(2005)
Advances in minimum description length: Theory and applications
-
-
Comley, J.W.1
Dowe, D.L.2
-
13
-
-
0003171807
-
On the consistency of Bayes estimates
-
Diaconis, P., & Freedman, D. (1986). On the consistency of Bayes estimates. The Annals of Statistics, 14(1), 1-26.
-
(1986)
The Annals of Statistics
, vol.14
, Issue.1
, pp. 1-26
-
-
Diaconis, P.1
Freedman, D.2
-
18
-
-
0002123103
-
Dependency networks for inference, collaborative filtering, and data visualization
-
Heckerman, D., Chickering, D.M., Meek, C., Rounthwaite, R., & Kadie, C. (2000). Dependency networks for inference, collaborative filtering, and data visualization. Journal of Machine Learning Research, 1, 49-75.
-
(2000)
Journal of Machine Learning Research
, vol.1
, pp. 49-75
-
-
Heckerman, D.1
Chickering, D.M.2
Meek, C.3
Rounthwaite, R.4
Kadie, C.5
-
20
-
-
0003841602
-
Why the logistic function? a tutorial discussion on probabilities and neural networks
-
9503, MIT
-
Jordan, M. I. (1995). Why the logistic function? a tutorial discussion on probabilities and neural networks. Computational Cognitive Science Tech. Rep. 9503, MIT.
-
(1995)
Computational Cognitive Science Tech. Rep
-
-
Jordan, M.I.1
-
21
-
-
0031122049
-
An experimental and theoretical comparison of model selection methods
-
Kearns, M., Mansour, Y., Ng, A.Y., & Ron, D. (1997). An experimental and theoretical comparison of model selection methods. Machine Learning, 27, 7-50.
-
(1997)
Machine Learning
, vol.27
, pp. 7-50
-
-
Kearns, M.1
Mansour, Y.2
Ng, A.Y.3
Ron, D.4
-
23
-
-
0004105234
-
-
PhD thesis, Yale University, Department of Statistics
-
Li, J. K. (1997). Estimation of mixture models. PhD thesis, Yale University, Department of Statistics.
-
(1997)
Estimation of mixture models
-
-
Li, J.K.1
-
25
-
-
0029323797
-
On the stochastic complexity of learning realizable and unrealizable rules
-
Meir, R., & Merhav, N. (1995). On the stochastic complexity of learning realizable and unrealizable rules. Machine Learning, 19, 241-261.
-
(1995)
Machine Learning
, vol.19
, pp. 241-261
-
-
Meir, R.1
Merhav, N.2
-
26
-
-
0003243224
-
Probabilities for SV machines
-
A. Smola, P. Bartlett, B. Schöelkopf, & D. Schuurmans Eds, MIT Press
-
Platt, J. C. (1999). Probabilities for SV machines. In A. Smola, P. Bartlett, B. Schöelkopf, & D. Schuurmans (Eds.), Advances in large margin classifiers (pp. 61-74). MIT Press.
-
(1999)
Advances in large margin classifiers
, pp. 61-74
-
-
Platt, J.C.1
-
27
-
-
0024627518
-
Inferring decision trees using the minimum description length principle
-
Quinlan, J., & Rivest, R. (1989). Inferring decision trees using the minimum description length principle. Information and Computation, 80, 227-248.
-
(1989)
Information and Computation
, vol.80
, pp. 227-248
-
-
Quinlan, J.1
Rivest, R.2
-
28
-
-
0001098776
-
A universal prior for integers and estimation by minimum description length
-
Rissanen, J. (1983). A universal prior for integers and estimation by minimum description length. The Annals of Statistics, 11, 416-431.
-
(1983)
The Annals of Statistics
, vol.11
, pp. 416-431
-
-
Rissanen, J.1
-
30
-
-
0001224048
-
Sparse Bayesian learning and the relevance vector machine
-
Tipping, M. E. (2001). Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 1, 211-244.
-
(2001)
Journal of Machine Learning Research
, vol.1
, pp. 211-244
-
-
Tipping, M.E.1
-
31
-
-
84957662553
-
Finding cutpoints in noisy binary sequences - a revised empirical evaluation
-
Proc. 12th Australian joint conf. on artif. intelligence, of, Sidney, Australia
-
Viswanathan, M., Wallace, C. S., Dowe, D. L., & Korb, K. B. (1999). Finding cutpoints in noisy binary sequences - a revised empirical evaluation. In Proc. 12th Australian joint conf. on artif. intelligence, vol. 1747 of Lecture notes in artificial intelligence (LNAI) (pp. 405-416), Sidney, Australia.
-
(1999)
Lecture notes in artificial intelligence
, vol.1747
, pp. 405-416
-
-
Viswanathan, M.1
Wallace, C.S.2
Dowe, D.L.3
Korb, K.B.4
-
33
-
-
0000107517
-
An information measure for classification
-
Wallace, C. S., & Boulton, D. M. (1968). An information measure for classification. Computing Journal, 11, 185-195.
-
(1968)
Computing Journal
, vol.11
, pp. 185-195
-
-
Wallace, C.S.1
Boulton, D.M.2
-
34
-
-
0032684826
-
Minimum message length and Kolmogorov complexity
-
Special issue on Kolmogorov complexity
-
Wallace, C. S., & Dowe, D. L. (1999a). Minimum message length and Kolmogorov complexity. Computer Journal, 42(4), 270-283. Special issue on Kolmogorov complexity.
-
(1999)
Computer Journal
, vol.42
, Issue.4
, pp. 270-283
-
-
Wallace, C.S.1
Dowe, D.L.2
-
35
-
-
0032655373
-
Refinements of MDL and MML coding
-
Special issue on Kolmogorov complexity
-
Wallace, C. S., & Dowe, D. L. (1999b). Refinements of MDL and MML coding. Computer Journal, 42(4), 330-337. Special issue on Kolmogorov complexity.
-
(1999)
Computer Journal
, vol.42
, Issue.4
, pp. 330-337
-
-
Wallace, C.S.1
Dowe, D.L.2
-
37
-
-
0032121805
-
A decision-theoretic extension of stochastic complexity and its applications to learning
-
Yamanishi, K. (1998). A decision-theoretic extension of stochastic complexity and its applications to learning. IEEE Trans. Inform. Theory, 44(4), 1424-1439.
-
(1998)
IEEE Trans. Inform. Theory
, vol.44
, Issue.4
, pp. 1424-1439
-
-
Yamanishi, K.1
|