메뉴 건너뛰기




Volumn , Issue , 2013, Pages 41-52

Protein-chemical interaction prediction via kernelized sparse learning SVM

Author keywords

Drug target interaction; Kernelization; Sparse learning; SVM

Indexed keywords

FORECASTING; PROTEINS; SUPPORT VECTOR MACHINES;

EID: 84891401823     PISSN: 23356928     EISSN: 23356936     Source Type: Journal    
DOI: None     Document Type: Conference Paper
Times cited : (8)

References (28)
  • 1
    • 11144341956 scopus 로고    scopus 로고
    • Chemical space and biology
    • C. M. Dobson, Chemical space and biology, Nature 432, 824 (2004).
    • (2004) Nature , vol.432 , pp. 824
    • Dobson, C.M.1
  • 2
    • 33644874819 scopus 로고    scopus 로고
    • From genomics to chemical genomics: New developments in kegg
    • M. Kanehisa, S. Goto, M. Hattori and et al., From genomics to chemical genomics: New developments in kegg, Nucleic Acids Res. 34, D354 (2006).
    • (2006) Nucleic Acids Res. , vol.34 , pp. D354
    • Kanehisa, M.1    Goto, S.2    Hattori, M.3
  • 3
    • 0034331004 scopus 로고    scopus 로고
    • Chemical genetics: Ligand-based discovery of gene function
    • B. R. Stockwell, Chemical genetics: Ligand-based discovery of gene function, Nat. Rev. Genet. 1, 116 (2000).
    • (2000) Nat. Rev. Genet. , vol.1 , pp. 116
    • Stockwell, B.R.1
  • 4
    • 33644876253 scopus 로고    scopus 로고
    • Database resources of the national center for biotechnology information
    • D. L. Wheeler, T. Barrett, D. A. Benson and et al., Database resources of the national center for biotechnology information, Nucleic Acids Res. 34, D173 (2006).
    • (2006) Nucleic Acids Res. , vol.34 , pp. D173
    • Wheeler, D.L.1    Barrett, T.2    Benson, D.A.3
  • 6
    • 0031552362 scopus 로고    scopus 로고
    • Development and validation for a genetic algorithm for flexible docking
    • G. Jones, P. Willett, R. C. Glen and et al., Development and validation for a genetic algorithm for flexible docking, J. Mol. Biol. 267, 727 (1997).
    • (1997) J. Mol. Biol. , vol.267 , pp. 727
    • Jones, G.1    Willett, P.2    Glen, R.C.3
  • 7
    • 11644261806 scopus 로고    scopus 로고
    • Automated docking using a lamarckian genetic algorithm and empirical binding free energy function
    • G. M. Morris, D. S. Goodsell, R. S. Halliday and et al., Automated docking using a lamarckian genetic algorithm and empirical binding free energy function, J. Comput. Chem. 19, 1639 (1998).
    • (1998) J. Comput. Chem. , vol.19 , pp. 1639
    • Morris, G.M.1    Goodsell, D.S.2    Halliday, R.S.3
  • 9
    • 0038522853 scopus 로고    scopus 로고
    • Multidimensional chemical genetic analysis of diversity-oriented synthesis-derived deacetylase inhibitors using cell-based assays
    • S. J. Haggarty, K. M. Koeller, J. C. Wong and et al., Multidimensional chemical genetic analysis of diversity-oriented synthesis-derived deacetylase inhibitors using cell-based assays, Chem. Biol. 10, 383 (2003).
    • (2003) Chem. Biol. , vol.10 , pp. 383
    • Haggarty, S.J.1    Koeller, K.M.2    Wong, J.C.3
  • 10
    • 0037061492 scopus 로고    scopus 로고
    • Dissecting glucose signalling with diversity-oriented synthesis and small-molecule microarrays
    • F. G. Kuruvilla, A. F. Shamji, S. M. Sternson and et al., Dissecting glucose signalling with diversity-oriented synthesis and small-molecule microarrays, Nature 416, 653 (2002).
    • (2002) Nature , vol.416 , pp. 653
    • Kuruvilla, F.G.1    Shamji, A.F.2    Sternson, S.M.3
  • 11
    • 33846876695 scopus 로고    scopus 로고
    • Relating protein pharmacology by ligand chemistry
    • M. J. Keiser, B. L. Roth, B. N. Armbruster and et al., Relating protein pharmacology by ligand chemistry, Nat. Biotech. 25, 197 (2007).
    • (2007) Nat. Biotech. , vol.25 , pp. 197
    • Keiser, M.J.1    Roth, B.L.2    Armbruster, B.N.3
  • 12
    • 47249146126 scopus 로고    scopus 로고
    • Drug target identification using side-effect similarity
    • M. Campillos, M. Kuhn, A. C. Gavin and et al., Drug target identification using side-effect similarity, Science 321, 263 (2008).
    • (2008) Science , vol.321 , pp. 263
    • Campillos, M.1    Kuhn, M.2    Gavin, A.C.3
  • 13
    • 46249090791 scopus 로고    scopus 로고
    • Prediction of drug-target interaction networks from the integration of chemical and genomic spaces
    • Y. Yamanishi, M. Araki, A. Gutteridge and et al., Prediction of drug-target interaction networks from the integration of chemical and genomic spaces, Bioinformatics 24, i232 (2008).
    • (2008) Bioinformatics , vol.24 , pp. i232
    • Yamanishi, Y.1    Araki, M.2    Gutteridge, A.3
  • 14
    • 79951729882 scopus 로고    scopus 로고
    • Combining drug and gene similarity measures for drug-target elucidation
    • L. Perlman, A. Gottlieb, N. Atias, E. Ruppin and R. Sharan, Combining drug and gene similarity measures for drug-target elucidation, J. Comput. Biol. 18(2), 133 (2011).
    • (2011) J. Comput. Biol. , vol.18 , Issue.2 , pp. 133
    • Perlman, L.1    Gottlieb, A.2    Atias, N.3    Ruppin, E.4    Sharan, R.5
  • 15
    • 34548128437 scopus 로고    scopus 로고
    • Statistical prediction of protein-chemical interactions based on chemical structure and mass spectrometry data
    • N. Nagamine and Y. Sakakibara, Statistical prediction of protein-chemical interactions based on chemical structure and mass spectrometry data, Bioinformatics 23, 2004 (2007).
    • (2007) Bioinformatics , vol.23 , pp. 2004
    • Nagamine, N.1    Sakakibara, Y.2
  • 16
    • 52749085437 scopus 로고    scopus 로고
    • Protein-ligand interaction prediction: An improved chemogenomics approach
    • L. Jacob and J. P. Vert, Protein-ligand interaction prediction: An improved chemogenomics approach, Bioinformatics 24, 2149 (2008).
    • (2008) Bioinformatics , vol.24 , pp. 2149
    • Jacob, L.1    Vert, J.P.2
  • 17
    • 69849094133 scopus 로고    scopus 로고
    • Supervised prediction of drug-target interactions using bipartite local models
    • K. Bleakley and Y. Yamanishi, Supervised prediction of drug-target interactions using bipartite local models, Bioinformatics 25, 2397 (2009).
    • (2009) Bioinformatics , vol.25 , pp. 2397
    • Bleakley, K.1    Yamanishi, Y.2
  • 18
    • 77954230951 scopus 로고    scopus 로고
    • Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework
    • Y. Yamanishi, M. Kotera, M. Kanehisa and et al., Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework, Bioinformatics 26, i246 (2010).
    • (2010) Bioinformatics , vol.26 , pp. i246
    • Yamanishi, Y.1    Kotera, M.2    Kanehisa, M.3
  • 19
    • 0019887799 scopus 로고
    • Identification of common molecular subsequences
    • T. F. Smith and M. Waterman, Identification of common molecular subsequences, J. Mol. Biol 147, 195 (1981).
    • (1981) J. Mol. Biol , vol.147 , pp. 195
    • Smith, T.F.1    Waterman, M.2
  • 20
    • 23244434257 scopus 로고    scopus 로고
    • Learning the kernel function via regularization
    • C. Micchelli and M. Pontil, Learning the kernel function via regularization, J. Mach. Learn. Res. 6, 1099 (2006).
    • (2006) J. Mach. Learn. Res. , vol.6 , pp. 1099
    • Micchelli, C.1    Pontil, M.2
  • 21
    • 8844278523 scopus 로고    scopus 로고
    • Learning the kernel matrix with semi-definite programming
    • G. Lanckriet, M. Cristianini, P. Bartlett and et al., Learning the kernel matrix with semi-definite programming, J. Mach. Learn. Res. 5, 27 (2004).
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 27
    • Lanckriet, G.1    Cristianini, M.2    Bartlett, P.3
  • 22
    • 0345863907 scopus 로고    scopus 로고
    • Brenda, the enzyme database: Updates and major new developments
    • I. Schomburg, A. Chang, C. Ebeling and et al., Brenda, the enzyme database: Updates and major new developments, Nucleic Acids Res. 32, D431 (2004).
    • (2004) Nucleic Acids Res. , vol.32 , pp. D431
    • Schomburg, I.1    Chang, A.2    Ebeling, C.3
  • 23
    • 38549182474 scopus 로고    scopus 로고
    • Supertarget and matador: Resources for exploring drug-target relationships
    • S. Gunther, M. Kuhn, M. Dunkel and et al., Supertarget and matador: Resources for exploring drug-target relationships, Nucleic Acids Res. 36, D919 (2008).
    • (2008) Nucleic Acids Res. , vol.36 , pp. D919
    • Gunther, S.1    Kuhn, M.2    Dunkel, M.3
  • 24
    • 38549151817 scopus 로고    scopus 로고
    • Drugbank: A knowledgebase for drugs, drug actions and drug targets
    • D. S. Wishart, C. Knox, A. C. Guo and et al., Drugbank: A knowledgebase for drugs, drug actions and drug targets, Nucleic Acids Res. 36, D901 (2007).
    • (2007) Nucleic Acids Res. , vol.36 , pp. D901
    • Wishart, D.S.1    Knox, C.2    Guo, A.C.3
  • 25
    • 85040242730 scopus 로고    scopus 로고
    • Fast kernels for string and tree matching
    • S. V. N. Vishwanathan and A. J. Smola, Fast kernels for string and tree matching, NIPS 15, 569 (2002).
    • (2002) NIPS , vol.15 , pp. 569
    • Vishwanathan, S.V.N.1    Smola, A.J.2
  • 26
  • 27
    • 80053459782 scopus 로고    scopus 로고
    • Efficient sparse modeling with automatic feature grouping
    • W. Zhong and J. Kwok, Efficient sparse modeling with automatic feature grouping, ICML 28, 9 (2011).
    • (2011) ICML , vol.28 , pp. 9
    • Zhong, W.1    Kwok, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.