메뉴 건너뛰기




Volumn 17, Issue 12, 2013, Pages 1598-1607

Autophagy maturation associated with CD38-mediated regulation of lysosome function in mouse glomerular podocytes

Author keywords

ADP ribosylcyclase; Autophagic flux; CD38; Glomeruli; Lysosome trafficking

Indexed keywords

MAMMALIA;

EID: 84891162889     PISSN: 15821838     EISSN: None     Source Type: Journal    
DOI: 10.1111/jcmm.12173     Document Type: Article
Times cited : (30)

References (50)
  • 1
    • 79955626606 scopus 로고    scopus 로고
    • Autophagy protects the proximal tubule from degeneration and acute ischemic injury
    • Kimura T, Takabatake Y, Takahashi A, et al. Autophagy protects the proximal tubule from degeneration and acute ischemic injury. J Am Soc Nephrol. 2011; 22: 902-13.
    • (2011) J Am Soc Nephrol , vol.22 , pp. 902-913
    • Kimura, T.1    Takabatake, Y.2    Takahashi, A.3
  • 2
    • 77951169411 scopus 로고    scopus 로고
    • Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice
    • Hartleben B, Godel M, Meyer-Schwesinger C, et al. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J Clin Invest. 2010; 120: 1084-96.
    • (2010) J Clin Invest , vol.120 , pp. 1084-1096
    • Hartleben, B.1    Godel, M.2    Meyer-Schwesinger, C.3
  • 3
    • 2442482810 scopus 로고    scopus 로고
    • Autophagy as a cell death and tumor suppressor mechanism
    • Gozuacik D, Kimchi A. Autophagy as a cell death and tumor suppressor mechanism. Oncogene. 2004; 23: 2891-906.
    • (2004) Oncogene , vol.23 , pp. 2891-2906
    • Gozuacik, D.1    Kimchi, A.2
  • 4
    • 37649005234 scopus 로고    scopus 로고
    • Autophagy in the pathogenesis of disease
    • Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008; 132: 27-42.
    • (2008) Cell , vol.132 , pp. 27-42
    • Levine, B.1    Kroemer, G.2
  • 5
    • 77954988580 scopus 로고    scopus 로고
    • Autophagy is essential for mouse sense of balance
    • Marino G, Fernandez AF, Cabrera S, et al. Autophagy is essential for mouse sense of balance. J Clin Invest. 2010; 120: 2331-44.
    • (2010) J Clin Invest , vol.120 , pp. 2331-2344
    • Marino, G.1    Fernandez, A.F.2    Cabrera, S.3
  • 6
    • 1842583789 scopus 로고    scopus 로고
    • Development by self-digestion: molecular mechanisms and biological functions of autophagy
    • Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell. 2004; 6: 463-77.
    • (2004) Dev Cell , vol.6 , pp. 463-477
    • Levine, B.1    Klionsky, D.J.2
  • 8
    • 68049104247 scopus 로고    scopus 로고
    • Autophagy: molecular machinery, regulation, and implications for renal pathophysiology
    • Periyasamy-Thandavan S, Jiang M, Schoenlein P, et al. Autophagy: molecular machinery, regulation, and implications for renal pathophysiology. Am J Physiol Renal Physiol. 2009; 297: F244-56.
    • (2009) Am J Physiol Renal Physiol , vol.297
    • Periyasamy-Thandavan, S.1    Jiang, M.2    Schoenlein, P.3
  • 9
    • 4344595626 scopus 로고    scopus 로고
    • Regulation and role of autophagy in mammalian cells
    • Meijer AJ, Codogno P. Regulation and role of autophagy in mammalian cells. Int J Biochem Cell Biol. 2004; 36: 2445-62.
    • (2004) Int J Biochem Cell Biol , vol.36 , pp. 2445-2462
    • Meijer, A.J.1    Codogno, P.2
  • 10
    • 0036463736 scopus 로고    scopus 로고
    • Autophagy in the eukaryotic cell
    • Reggiori F, Klionsky DJ. Autophagy in the eukaryotic cell. Eukaryot Cell. 2002; 1:11-21.
    • (2002) Eukaryot Cell , vol.1 , pp. 11-21
    • Reggiori, F.1    Klionsky, D.J.2
  • 11
    • 34848886914 scopus 로고    scopus 로고
    • Autophagosome formation: core machinery and adaptations
    • Xie Z, Klionsky DJ. Autophagosome formation: core machinery and adaptations. Nat Cell Biol. 2007; 9: 1102-9.
    • (2007) Nat Cell Biol , vol.9 , pp. 1102-1109
    • Xie, Z.1    Klionsky, D.J.2
  • 12
    • 67649870315 scopus 로고    scopus 로고
    • The Ca(2+) channel TRPML3 regulates membrane trafficking and autophagy
    • Kim HJ, Soyombo AA, Tjon-Kon-Sang S, et al. The Ca(2+) channel TRPML3 regulates membrane trafficking and autophagy. Traffic. 2009; 10: 1157-67.
    • (2009) Traffic , vol.10 , pp. 1157-1167
    • Kim, H.J.1    Soyombo, A.A.2    Tjon-Kon-Sang, S.3
  • 13
    • 34249817899 scopus 로고    scopus 로고
    • The autophagic response to nutrient deprivation in the hl-1 cardiac myocyte is modulated by Bcl-2 and sarco/endoplasmic reticulum calcium stores
    • Brady NR, Hamacher-Brady A, Yuan H, et al. The autophagic response to nutrient deprivation in the hl-1 cardiac myocyte is modulated by Bcl-2 and sarco/endoplasmic reticulum calcium stores. FEBS J. 2007; 274: 3184-97.
    • (2007) FEBS J , vol.274 , pp. 3184-3197
    • Brady, N.R.1    Hamacher-Brady, A.2    Yuan, H.3
  • 14
    • 62949116803 scopus 로고    scopus 로고
    • Lysosomal disorders: from storage to cellular damage
    • Ballabio A, Gieselmann V. Lysosomal disorders: from storage to cellular damage. Biochim Biophys Acta. 2009; 1793: 684-96.
    • (2009) Biochim Biophys Acta , vol.1793 , pp. 684-696
    • Ballabio, A.1    Gieselmann, V.2
  • 15
    • 80052638037 scopus 로고    scopus 로고
    • A dual role for Ca(2+) in autophagy regulation
    • Decuypere JP, Bultynck G, Parys JB. A dual role for Ca(2+) in autophagy regulation. Cell Calcium. 2011; 50: 242-50.
    • (2011) Cell Calcium , vol.50 , pp. 242-250
    • Decuypere, J.P.1    Bultynck, G.2    Parys, J.B.3
  • 16
    • 0036472494 scopus 로고    scopus 로고
    • pH-dependent regulation of lysosomal calcium in macrophages
    • Christensen KA, Myers JT, Swanson JA. pH-dependent regulation of lysosomal calcium in macrophages. J Cell Sci. 2002; 115: 599-607.
    • (2002) J Cell Sci , vol.115 , pp. 599-607
    • Christensen, K.A.1    Myers, J.T.2    Swanson, J.A.3
  • 17
    • 65449122791 scopus 로고    scopus 로고
    • Mobilization of lysosomal calcium regulates the externalization of phosphatidylserine during apoptosis
    • Mirnikjoo B, Balasubramanian K, Schroit AJ. Mobilization of lysosomal calcium regulates the externalization of phosphatidylserine during apoptosis. J Biol Chem. 2009; 284: 6918-23.
    • (2009) J Biol Chem , vol.284 , pp. 6918-6923
    • Mirnikjoo, B.1    Balasubramanian, K.2    Schroit, A.J.3
  • 18
    • 77949270765 scopus 로고    scopus 로고
    • S100A8/A9 induces autophagy and apoptosis via ROS-mediated cross-talk between mitochondria and lysosomes that involves BNIP3
    • Ghavami S, Eshragi M, Ande SR, et al. S100A8/A9 induces autophagy and apoptosis via ROS-mediated cross-talk between mitochondria and lysosomes that involves BNIP3. Cell Res. 2010; 20: 314-31.
    • (2010) Cell Res , vol.20 , pp. 314-331
    • Ghavami, S.1    Eshragi, M.2    Ande, S.R.3
  • 19
    • 33751263660 scopus 로고    scopus 로고
    • 2+ from acidic stores
    • 2+ from acidic stores. Biochem Soc Trans. 2006; 34: 922-6.
    • (2006) Biochem Soc Trans , vol.34 , pp. 922-926
    • Galione, A.1
  • 20
    • 26644460215 scopus 로고    scopus 로고
    • Nicotinic acid adenine dinucleotide phosphate (NAADP)-mediated calcium signaling
    • Lee HC. Nicotinic acid adenine dinucleotide phosphate (NAADP)-mediated calcium signaling. J Biol Chem. 2005; 280: 33693-6.
    • (2005) J Biol Chem , vol.280 , pp. 33693-33696
    • Lee, H.C.1
  • 21
    • 69249136996 scopus 로고    scopus 로고
    • Endoplasmic reticulum stress induces autophagy in renal proximal tubular cells
    • Kawakami T, Inagi R, Takano H, et al. Endoplasmic reticulum stress induces autophagy in renal proximal tubular cells. Nephrol Dial Transplant. 2009; 24: 2665-72.
    • (2009) Nephrol Dial Transplant , vol.24 , pp. 2665-2672
    • Kawakami, T.1    Inagi, R.2    Takano, H.3
  • 22
    • 84864378898 scopus 로고    scopus 로고
    • Implication of CD38 gene in podocyte epithelial-to-mesenchymal transition and glomerular sclerosis
    • Boini KM, Xia M, Xiong J, et al. Implication of CD38 gene in podocyte epithelial-to-mesenchymal transition and glomerular sclerosis. J Cell Mol Med. 2012; 16: 1674-85.
    • (2012) J Cell Mol Med , vol.16 , pp. 1674-1685
    • Boini, K.M.1    Xia, M.2    Xiong, J.3
  • 23
    • 0021895138 scopus 로고
    • 2+ indicators with greatly improved fluorescence properties
    • 2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985; 260: 3440-50.
    • (1985) J Biol Chem , vol.260 , pp. 3440-3450
    • Grynkiewicz, G.1    Poenie, M.2    Tsien, R.Y.3
  • 24
    • 1542298853 scopus 로고    scopus 로고
    • Enhanced production and action of cyclic ADP-ribose during oxidative stress in small bovine coronary arterial smooth muscle
    • Zhang AY, Yi F, Teggatz EG, et al. Enhanced production and action of cyclic ADP-ribose during oxidative stress in small bovine coronary arterial smooth muscle. Microvasc Res. 2004; 67: 159-67.
    • (2004) Microvasc Res , vol.67 , pp. 159-167
    • Zhang, A.Y.1    Yi, F.2    Teggatz, E.G.3
  • 25
    • 0032512636 scopus 로고    scopus 로고
    • Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast
    • Noda T, Ohsumi Y. Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem. 1998; 273: 3963-6.
    • (1998) J Biol Chem , vol.273 , pp. 3963-3966
    • Noda, T.1    Ohsumi, Y.2
  • 26
    • 10844292763 scopus 로고    scopus 로고
    • Immunosuppressive drugs for kidney transplantation
    • Halloran PF. Immunosuppressive drugs for kidney transplantation. N Engl J Med. 2004; 351: 2715-29.
    • (2004) N Engl J Med , vol.351 , pp. 2715-2729
    • Halloran, P.F.1
  • 27
    • 0031593675 scopus 로고    scopus 로고
    • Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells
    • Yamamoto A, Tagawa Y, Yoshimori T, et al. Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. Cell Struct Funct. 1998; 23: 33-42.
    • (1998) Cell Struct Funct , vol.23 , pp. 33-42
    • Yamamoto, A.1    Tagawa, Y.2    Yoshimori, T.3
  • 28
    • 0005677775 scopus 로고
    • 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes
    • Seglen PO, Gordon PB. 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci USA. 1982; 79: 1889-92.
    • (1982) Proc Natl Acad Sci USA , vol.79 , pp. 1889-1892
    • Seglen, P.O.1    Gordon, P.B.2
  • 29
    • 34548259958 scopus 로고    scopus 로고
    • p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy
    • Pankiv S, Clausen TH, Lamark T, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem. 2007; 282: 24131-45.
    • (2007) J Biol Chem , vol.282 , pp. 24131-24145
    • Pankiv, S.1    Clausen, T.H.2    Lamark, T.3
  • 30
    • 36849089101 scopus 로고    scopus 로고
    • Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice
    • Komatsu M, Waguri S, Koike M, et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell. 2007; 131: 1149-63.
    • (2007) Cell , vol.131 , pp. 1149-1163
    • Komatsu, M.1    Waguri, S.2    Koike, M.3
  • 31
    • 77956855813 scopus 로고    scopus 로고
    • Pathogenic lysosomal depletion in Parkinson's disease
    • Dehay B, Bove J, Rodriguez-Muela N, et al. Pathogenic lysosomal depletion in Parkinson's disease. J Neurosci. 2010; 30: 12535-44.
    • (2010) J Neurosci , vol.30 , pp. 12535-12544
    • Dehay, B.1    Bove, J.2    Rodriguez-Muela, N.3
  • 32
    • 84859632390 scopus 로고    scopus 로고
    • Mammalian target of rapamycin signaling in the podocyte
    • Inoki K, Huber TB. Mammalian target of rapamycin signaling in the podocyte. Curr Opin Nephrol Hypertens. 2012; 21: 251-7.
    • (2012) Curr Opin Nephrol Hypertens , vol.21 , pp. 251-257
    • Inoki, K.1    Huber, T.B.2
  • 33
    • 84863230126 scopus 로고    scopus 로고
    • Inhibition of MTOR disrupts autophagic flux in podocytes
    • Cina DP, Onay T, Paltoo A, et al. Inhibition of MTOR disrupts autophagic flux in podocytes. J Am Soc Nephrol. 2012; 23: 412-20.
    • (2012) J Am Soc Nephrol , vol.23 , pp. 412-420
    • Cina, D.P.1    Onay, T.2    Paltoo, A.3
  • 34
    • 0038718698 scopus 로고    scopus 로고
    • MAP-LC3, a promising autophagosomal marker, is processed during the differentiation and recovery of podocytes from PAN nephrosis
    • Asanuma K, Tanida I, Shirato I, et al. MAP-LC3, a promising autophagosomal marker, is processed during the differentiation and recovery of podocytes from PAN nephrosis. FASEB J. 2003; 17: 1165-7.
    • (2003) FASEB J , vol.17 , pp. 1165-1167
    • Asanuma, K.1    Tanida, I.2    Shirato, I.3
  • 36
    • 77951445429 scopus 로고    scopus 로고
    • Lysosome-dependent Ca(2+) release response to Fas activation in coronary arterial myocytes through NAADP: evidence from CD38 gene knockouts
    • Zhang F, Xia M, Li PL. Lysosome-dependent Ca(2+) release response to Fas activation in coronary arterial myocytes through NAADP: evidence from CD38 gene knockouts. Am J Physiol Cell Physiol. 2010; 298: C1209-16.
    • (2010) Am J Physiol Cell Physiol , vol.298
    • Zhang, F.1    Xia, M.2    Li, P.L.3
  • 37
    • 78649670802 scopus 로고    scopus 로고
    • 2+ mobilization from lysosomes in pancreatic acinar cells
    • 2+ mobilization from lysosomes in pancreatic acinar cells. J Biol Chem. 2010; 285: 38251-9.
    • (2010) J Biol Chem , vol.285 , pp. 38251-38259
    • Cosker, F.1    Cheviron, N.2    Yamasaki, M.3
  • 39
    • 50349083286 scopus 로고    scopus 로고
    • Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology
    • Malavasi F, Deaglio S, Funaro A, et al. Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol Rev. 2008; 88: 841-86.
    • (2008) Physiol Rev , vol.88 , pp. 841-886
    • Malavasi, F.1    Deaglio, S.2    Funaro, A.3
  • 40
    • 33846189759 scopus 로고    scopus 로고
    • Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2
    • Hoyer-Hansen M, Bastholm L, Szyniarowski P, et al. Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol Cell. 2007; 25: 193-205.
    • (2007) Mol Cell , vol.25 , pp. 193-205
    • Hoyer-Hansen, M.1    Bastholm, L.2    Szyniarowski, P.3
  • 41
    • 42249106042 scopus 로고    scopus 로고
    • Novel targets for Huntington's disease in an mTOR-independent autophagy pathway
    • Williams A, Sarkar S, Cuddon P, et al. Novel targets for Huntington's disease in an mTOR-independent autophagy pathway. Nat Chem Biol. 2008; 4: 295-305.
    • (2008) Nat Chem Biol , vol.4 , pp. 295-305
    • Williams, A.1    Sarkar, S.2    Cuddon, P.3
  • 42
    • 0041589248 scopus 로고    scopus 로고
    • Alpha-Synuclein is degraded by both autophagy and the proteasome
    • Webb JL, Ravikumar B, Atkins J, et al. Alpha-Synuclein is degraded by both autophagy and the proteasome. J Biol Chem. 2003; 278: 25009-13.
    • (2003) J Biol Chem , vol.278 , pp. 25009-25013
    • Webb, J.L.1    Ravikumar, B.2    Atkins, J.3
  • 43
    • 0036566266 scopus 로고    scopus 로고
    • Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy
    • Ravikumar B, Duden R, Rubinsztein DC. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet. 2002; 11: 1107-17.
    • (2002) Hum Mol Genet , vol.11 , pp. 1107-1117
    • Ravikumar, B.1    Duden, R.2    Rubinsztein, D.C.3
  • 44
    • 0036566675 scopus 로고    scopus 로고
    • Heat shock protein 27 prevents cellular polyglutamine toxicity and suppresses the increase of reactive oxygen species caused by huntingtin
    • Wyttenbach A, Sauvageot O, Carmichael J, et al. Heat shock protein 27 prevents cellular polyglutamine toxicity and suppresses the increase of reactive oxygen species caused by huntingtin. Hum Mol Genet. 2002; 11: 1137-51.
    • (2002) Hum Mol Genet , vol.11 , pp. 1137-1151
    • Wyttenbach, A.1    Sauvageot, O.2    Carmichael, J.3
  • 45
    • 25444483066 scopus 로고    scopus 로고
    • Lithium induces autophagy by inhibiting inositol monophosphatase
    • Sarkar S, Floto RA, Berger Z, et al. Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol. 2005; 170: 1101-11.
    • (2005) J Cell Biol , vol.170 , pp. 1101-1111
    • Sarkar, S.1    Floto, R.A.2    Berger, Z.3
  • 46
    • 79959919411 scopus 로고    scopus 로고
    • Deficiency of hepatocystin induces autophagy through an mTOR-dependent pathway
    • Yang J, Zhao Y, Ma K, et al. Deficiency of hepatocystin induces autophagy through an mTOR-dependent pathway. Autophagy. 2011; 7: 748-59.
    • (2011) Autophagy , vol.7 , pp. 748-759
    • Yang, J.1    Zhao, Y.2    Ma, K.3
  • 47
    • 79956070911 scopus 로고    scopus 로고
    • Pairing phosphoinositides with calcium ions in endolysosomal dynamics: phosphoinositides control the direction and specificity of membrane trafficking by regulating the activity of calcium channels in the endolysosomes
    • Shen D, Wang X, Xu H. Pairing phosphoinositides with calcium ions in endolysosomal dynamics: phosphoinositides control the direction and specificity of membrane trafficking by regulating the activity of calcium channels in the endolysosomes. BioEssays. 2011; 33: 448-57.
    • (2011) BioEssays , vol.33 , pp. 448-457
    • Shen, D.1    Wang, X.2    Xu, H.3
  • 48
    • 0037184523 scopus 로고    scopus 로고
    • NAADP mobilizes Ca(2+) from reserve granules, lysosome-related organelles, in sea urchin eggs
    • Churchill GC, Okada Y, Thomas JM, et al. NAADP mobilizes Ca(2+) from reserve granules, lysosome-related organelles, in sea urchin eggs. Cell. 2002; 111: 703-8.
    • (2002) Cell , vol.111 , pp. 703-708
    • Churchill, G.C.1    Okada, Y.2    Thomas, J.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.