메뉴 건너뛰기




Volumn 10, Issue 12, 2013, Pages 8185-8200

Testing the applicability of neural networks as a gap-filling method using CH4 flux data from high latitude wetlands

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL NEURAL NETWORK; EDDY COVARIANCE; GREENHOUSE GAS; LATITUDE; METHANE; SEASONAL VARIATION; TIME SERIES; WETLAND;

EID: 84890494740     PISSN: 17264170     EISSN: 17264189     Source Type: Journal    
DOI: 10.5194/bg-10-8185-2013     Document Type: Article
Times cited : (85)

References (89)
  • 2
    • 37649013895 scopus 로고    scopus 로고
    • Potential feedback of thawing permafrost to the global climate system through methane emission
    • doi:10.1088/1748-9326/2/4/045016
    • Anisimov, O. A.: Potential feedback of thawing permafrost to the global climate system through methane emission, Environ. Res. Lett., 2, 045016, doi:10.1088/1748-9326/2/4/045016, 2007.
    • (2007) Environ. Res. Lett , vol.2 , pp. 045016
    • Anisimov, O.A.1
  • 5
    • 0037995440 scopus 로고    scopus 로고
    • Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future
    • DOI 10.1046/j.1365-2486.2003.00629.x
    • Baldocchi, D. D.: Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems, past, present and future, Glob. Change Biol., 9, 479-492, 2003. (Pubitemid 36540251)
    • (2003) Global Change Biology , vol.9 , Issue.4 , pp. 479-492
    • Baldocchi, D.D.1
  • 6
    • 0007251544 scopus 로고
    • The principle of parsimony in empirical science
    • Beck, L. W.: The Principle of Parsimony in Empirical Science, J. Phil., 40, 617-633, 1943.
    • (1943) J. Phil , vol.40 , pp. 617-633
    • Beck, L.W.1
  • 7
    • 0028974470 scopus 로고
    • Predicting methane emission from bryophyte distribution in northern canadian peatlands
    • Bubier, J. L., Moore, T. R., and Juggins, S.: Predicting Methane Emission from Bryophyte Distribution in Northern Canadian Peatlands, Ecology, 76, 677-693, 1995.
    • (1995) Ecology , vol.76 , pp. 677-693
    • Bubier, J.L.1    Moore, T.R.2    Juggins, S.3
  • 8
    • 0029103872 scopus 로고
    • How physics and biology matter in forest gap models
    • Bugmann, H. and Martin, P.: How Physics and Biology matter in forest gap models, Clim. Change, 29, 251-257, 1995.
    • (1995) Clim. Change , vol.29 , pp. 251-257
    • Bugmann, H.1    Martin, P.2
  • 9
    • 8744307994 scopus 로고    scopus 로고
    • Multimodel inference: Understanding AIC and BIC in model selection
    • DOI 10.1177/0049124104268644
    • Burnham, K. P. and Anderson, D. R.: Multimodel Inference, Understanding AIC and BIC in Model Selection, Sociological methods and research, 33, 261-304, 2004. (Pubitemid 39519124)
    • (2004) Sociological Methods and Research , vol.33 , Issue.2 , pp. 261-304
    • Burnham, K.P.1    Anderson, D.R.2
  • 11
    • 41649089759 scopus 로고    scopus 로고
    • Identification of the best hidden layer size for three-layered neural net in predicting monsoon rainfall in india
    • doi:10.2166/hydro.2008.017
    • Chattopadhyay, S. and Chattopadhyay, G.: Identification of the best hidden layer size for three-layered neural net in predicting monsoon rainfall in India, J. Hydroinform., 10, 181-188, doi:10.2166/hydro.2008.017, 2008.
    • (2008) J. Hydroinform , vol.10 , pp. 181-188
    • Chattopadhyay, S.1    Chattopadhyay, G.2
  • 12
    • 0027879546 scopus 로고
    • Methane emission from Arctic tundra
    • Christensen, T. R.: Methane emission from Arctic tundra, Biogeochemistry, 21, 117-139, 1993. (Pubitemid 24395621)
    • (1993) Biogeochemistry , vol.21 , Issue.2 , pp. 117-139
    • Christensen, T.R.1
  • 13
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Cybenko, G.: Approximation by superpositions of a sigmoidal function, Math. Control Signal., 2, 303-314, 1989.
    • (1989) Math. Control Signal , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 14
    • 80054678364 scopus 로고    scopus 로고
    • Methane emissions from sheep pasture, measured with an openpath eddy covariance system
    • Dengel, S., Levy, P. E., Grace, J., Jones, S. K., and Skiba, U.: Methane emissions from sheep pasture, measured with an openpath eddy covariance system, Glob. Change Biol., 17, 3524- 3533, 2011.
    • (2011) Glob. Change Biol , vol.17 , pp. 3524-3533
    • Dengel, S.1    Levy, P.E.2    Grace, J.3    Jones, S.K.4    Skiba, U.5
  • 17
    • 77954141939 scopus 로고    scopus 로고
    • A fault-tolerant eddy covariance system for measuring ch4 fluxes
    • Eugster, W. and Plüss, P.: A fault-tolerant eddy covariance system for measuring CH4 fluxes, Agr. Forest Meteorol., 150, 841-851, 2010.
    • (2010) Agr. Forest Meteorol , vol.150 , pp. 841-851
    • Eugster, W.1    Plüss, P.2
  • 19
    • 79955630723 scopus 로고    scopus 로고
    • Cross-evaluation of measurements of peatland methane emissions on microform and ecosystem scales using high-resolution landcover classification and source weight modelling
    • Forbrich, I., Gazovic, M., Kutzbach, L.,Wille, C.,Wolf, U., Becker, T., Schreiber, P., and Wilmking, M.: Cross-evaluation of measurements of peatland methane emissions on microform and ecosystem scales using high-resolution landcover classification and source weight modelling, Agr. Forest Meteorol., 151, 864- 874, 2011.
    • (2011) Agr. Forest Meteorol , vol.151 , pp. 864-874
    • Forbrich, I.1    Gazovic, M.2    Kutzbach, L.3    Wille, C.4    Wolf, U.5    Becker, T.6    Schreiber, P.7    Wilmking, M.8
  • 20
    • 0142239491 scopus 로고    scopus 로고
    • Recognizing changing seasonal patterns using artificial neural networks
    • PII S030440769700047X
    • Franses, P. H. and Draisma, G.: Recognizing changing seasonal patterns using artificial neural networks, J. Econometrics, 81, 273- 280, 1997. (Pubitemid 127398243)
    • (1997) Journal of Econometrics , vol.81 , Issue.1 , pp. 273-280
    • Franses, P.H.1    Draisma, G.2
  • 22
    • 0028585017 scopus 로고
    • Influence of water table on carbon dioxide, carbon monoxide, and methane fluxes from taiga bog microcosms
    • Funk, D. W., Pullman, E. R., Peterson, K. M., Crill, P. M., and Billings, W. D.: Influence of water table on carbon dioxide, carbon monoxide, and methane fluxes from Taiga Bog microcosms, Global Biogeochem. Cy., 8, 271-278, 1994.
    • (1994) Global Biogeochem. Cy , vol.8 , pp. 271-278
    • Funk, D.W.1    Pullman, E.R.2    Peterson, K.M.3    Crill, P.M.4    Billings, W.D.5
  • 23
    • 0032146239 scopus 로고    scopus 로고
    • Artificial neural networks the multilayer perceptron - A review of applications in the atmospheric sciences
    • DOI 10.1016/S1352-2310(97)00447-0, PII S1352231097004470
    • Gardner, M. W. and Dorling, S. R.: Artificial neural networks (the multilayer perceptron) - a review of applications in the atmospheric sciences, Atmos. Environ., 32, 2627-2636, 1998. (Pubitemid 28351824)
    • (1998) Atmospheric Environment , vol.32 , Issue.14-15 , pp. 2627-2636
    • Gardner, M.W.1    Dorling, S.R.2
  • 24
    • 0033081112 scopus 로고    scopus 로고
    • 2 concentrations in urban air in London
    • DOI 10.1016/S1352-2310(98)00230-1, PII S1352231098002301
    • Gardner, M. W. and Dorling, S. R.: Neural network modelling and prediction of hourly NOx and NO2 concentrations in urban air in London, Atmos. Environ., 33, 709-719, 1999. (Pubitemid 29070976)
    • (1999) Atmospheric Environment , vol.33 , Issue.5 , pp. 709-719
    • Gardner, M.W.1    Dorling, S.R.2
  • 25
    • 78649700270 scopus 로고    scopus 로고
    • Diurnal dynamics of ch4 from a boreal peatland during snowmelt
    • Gazovic, M., Kutzbach, L., Schreiber, P., Wille, C., and Wilmking, M.: Diurnal dynamics of CH4 from a boreal peatland during snowmelt, Tellus B, 62, 133-139, 2010.
    • (2010) Tellus B , vol.62 , pp. 133-139
    • Gazovic, M.1    Kutzbach, L.2    Schreiber, P.3    Wille, C.4    Wilmking, M.5
  • 27
    • 84871390883 scopus 로고    scopus 로고
    • Neuralnet, training of neural networks
    • Günther, F. and Fritsch, S.: neuralnet, Training of neural networks, R Journal, 2, 30-38, 2010.
    • (2010) R Journal , vol.2 , pp. 30-38
    • Günther, F.1    Fritsch, S.2
  • 28
    • 33751199924 scopus 로고    scopus 로고
    • Cross-correlations between weather variables in Australia
    • DOI 10.1016/j.buildenv.2006.01.010, PII S0360132306000254
    • Guan, L., Yang, J., and Bell, J. M.: Cross-correlations between weather variables in Australia, Build. Environ., 42, 1054-1070, 2007. (Pubitemid 44774656)
    • (2007) Building and Environment , vol.42 , Issue.3 , pp. 1054-1070
    • Guan, L.1    Yang, J.2    Bell, J.M.3
  • 29
    • 15944373500 scopus 로고    scopus 로고
    • Improving neural network models of physical systems through dimensional analysis
    • DOI 10.1016/S1568-4946(02)00061-3, PII S1568494602000613
    • Gunaratnam, D. J., Degroff, T., and Gero, J. S.: Improving neural network models of physical systems through dimensional analysis, Appl. Soft Comput., 2, 283-296, 2003. (Pubitemid 40442504)
    • (2003) Applied Soft Computing Journal , vol.2 , Issue.4 , pp. 283-296
    • Gunaratnam, D.J.1    Degroff, T.2    Gero, J.S.3
  • 30
    • 0027627965 scopus 로고
    • Working with neural networks
    • DOI 10.1109/6.222230
    • Hammerstrom, D.:Working with neural networks, Spectrum, IEEE, 30, 46-53, 1993. (Pubitemid 23711763)
    • (1993) IEEE Spectrum , vol.30 , Issue.7 , pp. 46-53
    • Hammerstrom Dan1
  • 31
    • 0025507176 scopus 로고
    • Neural network ensembles, pattern analysis and machine intelligence
    • Hansen, L. K. and Salamon, P.: Neural network ensembles, Pattern Analysis and Machine Intelligence, IEEE Transactions on, 12, 993-1001, 1990.
    • (1990) IEEE Transactions on , vol.12 , pp. 993-1001
    • Hansen, L.K.1    Salamon, P.2
  • 32
    • 0035202277 scopus 로고    scopus 로고
    • Annual methane emission from Finnish mires estimated from eddy covariance campaign measurements
    • DOI 10.1007/s007040170015
    • Hargreaves, K. J., Fowler, D., Pitcairn, C. E. R., and Aurela, M.: Annual methane emission from Finnish mires estimated from eddy covariance campaign measurements, Theor. Appl. Climatol., 70, 203-213, 2001. (Pubitemid 33098831)
    • (2001) Theoretical and Applied Climatology , vol.70 , Issue.1-4 , pp. 203-213
    • Hargreaves, K.J.1    Fowler, D.2    Pitcairn, C.E.R.3    Aurela, M.4
  • 33
    • 0023566098 scopus 로고
    • Kolmogorov's mapping neural network existence theorem
    • Hecht-Nielsen, R.: Kolmogorov's mapping neural network existence theorem, P. 1st Int. Conf. Neural Network., 3, 11-14, 1987.
    • (1987) P. 1st Int. Conf. Neural Network , vol.3 , pp. 11-14
    • Hecht-Nielsen, R.1
  • 34
    • 38849084715 scopus 로고    scopus 로고
    • A compact and stable eddy covariance set-up for methane measurements using off-axis integrated cavity output spectroscopy
    • doi:10.5194/acp-8-431-2008
    • Hendriks, D. M. D., Dolman, A. J., van der Molen, M. K., and van Huissteden, J.: A compact and stable eddy covariance set-up for methane measurements using off-axis integrated cavity output spectroscopy, Atmos. Chem. Phys., 8, 431-443, doi:10.5194/acp-8-431-2008, 2008.
    • (2008) Atmos. Chem. Phys , vol.8 , pp. 431-443
    • Hendriks, D.M.D.1    Dolman, A.J.2    Van Der Molen, M.K.3    Van Huissteden, J.4
  • 35
    • 70349119250 scopus 로고
    • Regression and time series model selection in small samples
    • Hurvich, C. M. and Tsai, C. L.: Regression and Time Series Model Selection in Small Samples, Biometrika, 76, 297-307, 1989.
    • (1989) Biometrika , vol.76 , pp. 297-307
    • Hurvich, C.M.1    Tsai, C.L.2
  • 38
    • 0030104449 scopus 로고    scopus 로고
    • Artificial neural networks, a tutorial
    • Jain, A. K., Mao, J., and Mohiuddin, K. M.: Artificial Neural Networks, A Tutorial. Computer, 29, 31-44, 1996.
    • (1996) Computer , vol.29 , pp. 31-44
    • Jain, A.K.1    Mao, J.2    Mohiuddin, K.M.3
  • 39
    • 84867507334 scopus 로고    scopus 로고
    • Seasonal and annual variation of carbon dioxide surface fluxes in helsinki, finland, in 2006-2010
    • doi:10.5194/acp-12-8475- 2012
    • Järvi, L., Nordbo, A., Junninen, H., Riikonen, A., Moilanen, J., Nikinmaa, E., and Vesala, T.: Seasonal and annual variation of carbon dioxide surface fluxes in Helsinki, Finland, in 2006-2010, Atmos. Chem. Phys., 12, 8475-8489, doi:10.5194/acp-12-8475- 2012, 2012.
    • (2012) Atmos. Chem. Phys , vol.12 , pp. 8475-8489
    • Järvi, L.1    Nordbo, A.2    Junninen, H.3    Riikonen, A.4    Moilanen, J.5    Nikinmaa, E.6    Vesala, T.7
  • 40
    • 33845273318 scopus 로고    scopus 로고
    • Decadal vegetation changes in a northern peatland, greenhouse gas fluxes and net radiative forcing
    • DOI 10.1111/j.1365-2486.2006.01267.x
    • Johansson, T., Malmer, N., Crill, P. M., Friborg, T., Åkerman, J. H., Mastepanov, M., and Christensen, T. R.: Decadal vegetation changes in a northern peatland, greenhouse gas fluxes and net radiative forcing. Glob. Change Biol., 12, 2352-2369, 2006. (Pubitemid 44857709)
    • (2006) Global Change Biology , vol.12 , Issue.12 , pp. 2352-2369
    • Johansson, T.1    Malmer, N.2    Crill, P.M.3    Friborg, T.4    Akerman, J.H.5    Mastepanov, M.6    Christensen, T.R.7
  • 42
    • 0032824757 scopus 로고    scopus 로고
    • Methane production and oxidation potentials in relation to water table fluctuations in two boreal mires
    • DOI 10.1016/S0038-0717(99)00093-0, PII S0038071799000930
    • Kettunen, A., Kaitala, V., Lehtinen, A., Lohila, A., Alm, A., Silvola, J., and Martikainen, P. J.: Methane production and oxidation potentials in relation to water table fluctuations in two boreal mires, Soil Biol. Biochem., 31, 1741-1749, 1999. (Pubitemid 29432552)
    • (1999) Soil Biology and Biochemistry , vol.31 , Issue.12 , pp. 1741-1749
    • Kettunen, A.1    Kaitala, V.2    Lehtinen, A.3    Lohila, A.4    Alm, J.5    Silvola, J.6    Martikainen, P.J.7
  • 43
    • 31544465724 scopus 로고    scopus 로고
    • Comparison of three back-propagation training algorithms for two case studies
    • Kişi, O . and Oncuoǧlu, E. : Comparison of three back-propagation training algorithms for two case studies, Indian J. Eng. Mater. S., 12, 434-442, 2005. (Pubitemid 43156111)
    • (2005) Indian Journal of Engineering and Materials Sciences , vol.12 , Issue.5 , pp. 434-442
    • Kisi, O.1    Uncuoglu, E.2
  • 44
    • 77956279852 scopus 로고    scopus 로고
    • Pre-processing of input data of neural networks: The case of forecasting telecommunication network traffic
    • Klevecka, I., and Lelis, J.: Pre-Processing of Input Data of Neural Networks: The Case of Forecasting Telecommunication Network Traffic, Telektronikk, 3, 168-178, 2008.
    • (2008) Telektronikk , vol.3 , pp. 168-178
    • Klevecka, I.1    Lelis, J.2
  • 45
    • 0037128648 scopus 로고    scopus 로고
    • Application of artificial neural networks in tide-forecasting
    • DOI 10.1016/S0029-8018(01)00068-3, PII S0029801801000683
    • Lee, T. L. and Jeng, D. S.: Application of artificial neural networks in tide-forecasting, Ocean Eng., 29, 1003-1022, 2002. (Pubitemid 34276284)
    • (2002) Ocean Engineering , vol.29 , Issue.9 , pp. 1003-1022
    • Lee, T.L.1    Jeng, D.S.2
  • 46
    • 0344604541 scopus 로고    scopus 로고
    • Artificial neural networks as a tool in ecological modelling, an introduction
    • DOI 10.1016/S0304-3800(99)00092-7, PII S0304380099000927
    • Lek, S. and Guégan, J. F.: Artificial neural networks as a tool in ecological modelling, an introduction, Ecol. Model., 120, 65-73, 1999. (Pubitemid 29405129)
    • (1999) Ecological Modelling , vol.120 , Issue.2-3 , pp. 65-73
    • Lek, S.1    Guegan, J.F.2
  • 47
    • 77955238349 scopus 로고    scopus 로고
    • Diurnal and seasonal variation in methane emissions in a northern canadian peatland measured by eddy covariance
    • Long, K. D. and Flanagan, L. B.: Diurnal and seasonal variation in methane emissions in a northern Canadian peatland measured by eddy covariance, Glob. Change Biolo., 16, 2420-2435, 2010.
    • (2010) Glob. Change Biolo , vol.16 , pp. 2420-2435
    • Long, K.D.1    Flanagan, L.B.2
  • 52
    • 77956236814 scopus 로고    scopus 로고
    • Characterization of ecosystem responses to climatic controls using artificial neural networks
    • Moffat, A. M., Beckstein, C., Churkina, G., Mund, M., and Heimann, M.: Characterization of ecosystem responses to climatic controls using artificial neural networks. Glob. Change Biol., 16, 2737-2749, 2010.
    • (2010) Glob. Change Biol , vol.16 , pp. 2737-2749
    • Moffat, A.M.1    Beckstein, C.2    Churkina, G.3    Mund, M.4    Heimann, M.5
  • 53
    • 0000902316 scopus 로고    scopus 로고
    • Time series forecasting using neural networks: Should the data be deseasonalized first?
    • Nelson, M., Hill, T., Remus, W., and O'Connor, M.: Time series forecasting using neural networks: should the data be deseasonalized first?, J. Forecasting, 18, 359-367, 1999.
    • (1999) J. Forecasting , vol.18 , pp. 359-367
    • Nelson, M.1    Hill, T.2    Remus, W.3    O'Connor, M.4
  • 54
    • 2342458952 scopus 로고    scopus 로고
    • Multiple neural networks for a long term time series forecast
    • DOI 10.1007/s00521-003-0390-z
    • Nguyen, H. and. Chan, C.: Multiple neural networks for a long term time series forecast, Neural Comput. Appl., 13, 90-98, 2004. (Pubitemid 38604234)
    • (2004) Neural Computing and Applications , vol.13 , Issue.1 , pp. 90-98
    • Nguyen, H.H.1    Chan, C.W.2
  • 55
    • 33748787421 scopus 로고    scopus 로고
    • Comparisons of gap-filling methods for carbon flux dataset: A combination of a genetic algorithm and an artificial neural network
    • DOI 10.1016/j.ecolmodel.2006.06.006, PII S0304380006002766
    • Ooba, M. and Hirano, T.: Comparisons of gap-filling methods for carbon flux dataset, A combination of a genetic algorithm and an artificial neural network, Ecol. Model., 198, 473-486, 2006. (Pubitemid 44416083)
    • (2006) Ecological Modelling , vol.198 , Issue.3-4 , pp. 473-486
    • Ooba, M.1    Hirano, T.2    Mogami, J.-I.3    Hirata, R.4    Fujinuma, Y.5
  • 56
    • 84890490402 scopus 로고    scopus 로고
    • Data gap filling
    • edited by: Aubinet, M., Vesala, T., and Papale, D., Springer Atmospheric Sciences
    • Papale, D.: Data Gap Filling, edited by: Aubinet, M., Vesala, T., and Papale, D., Eddy Covariance, A Practical Guide to Measurement and Data Analysis, Springer Atmospheric Sciences, 159- 172, 2012.
    • (2012) Eddy Covariance, A Practical Guide to Measurement and Data Analysis , pp. 159-172
    • Papale, D.1
  • 57
    • 0037884965 scopus 로고    scopus 로고
    • A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatialization
    • DOI 10.1046/j.1365-2486.2003.00609.x
    • Papale, D. and Valentini, R.: A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatialization, Glob. Change Biol., 9, 525-535, 2003. (Pubitemid 36536968)
    • (2003) Global Change Biology , vol.9 , Issue.4 , pp. 525-535
    • Papale, D.1    Valentini, R.2
  • 60
    • 84879034498 scopus 로고    scopus 로고
    • Field intercomparison of four methane gas analyzers suitable for eddy covariance flux measurements
    • doi:10.5194/bg-10-3749-2013
    • Peltola, O., Mammarella, I., Haapanala, S., Burba, G., and Vesala, T.: Field intercomparison of four methane gas analyzers suitable for eddy covariance flux measurements, Biogeosciences, 10, 3749-3765, doi:10.5194/bg-10-3749-2013, 2013.
    • (2013) Biogeosciences , vol.10 , pp. 3749-3765
    • Peltola, O.1    Mammarella, I.2    Haapanala, S.3    Burba, G.4    Vesala, T.5
  • 61
    • 84863304598 scopus 로고    scopus 로고
    • R Core Team, R Foundation for Statistical Computing, Vienna, Austria, (last access: 05.09.2013)
    • R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org/ (last access: 05.09.2013), 2013.
    • (2013) R: A Language and Environment for Statistical Computing
  • 65
    • 0026494667 scopus 로고
    • Northern fens, methane flux and climatic change
    • Roulet, N., Moore, T. I. M., Bubier, J., and Lafleur, P.: Northern fens, methane flux and climatic change, Tellus B, 44, 100-105, 1992.
    • (1992) Tellus B , vol.44 , pp. 100-105
    • Roulet, N.1    Moore, T.I.M.2    Bubier, J.3    Lafleur, P.4
  • 66
    • 2642555647 scopus 로고    scopus 로고
    • 2O emissions from a temperate grassland ecosystem
    • DOI 10.1016/j.ecolmodel.2003.10.010, PII S0304380003004721
    • Ryan, M., Müller, C., Di, H. J., and Cameron, K. C.: The use of artificial neural networks (ANNs) to simulate N2O emissions from a temperate grassland ecosystem, Ecol. Model., 175, 189-194, 2004. (Pubitemid 38708811)
    • (2004) Ecological Modelling , vol.175 , Issue.2 , pp. 189-194
    • Ryan, M.1    Muller, C.2    Di, H.J.3    Cameron, K.C.4
  • 67
    • 69549084778 scopus 로고    scopus 로고
    • Environmental controls on ch4 emission from polygonal tundra on the microsite scale in the lena river delta, siberia
    • doi:10.1029/2007JG000505
    • Sachs, T., Giebels, M., Boike, J., and Kutzbach, L.: Environmental controls on CH4 emission from polygonal tundra on the microsite scale in the Lena river Delta, Siberia, J. Geophys. Res., 113, G00A03, doi:10.1029/ 2007JG000505, 2008.
    • (2008) J. Geophys. Res , vol.113
    • Sachs, T.1    Giebels, M.2    Boike, J.3    Kutzbach, L.4
  • 68
    • 33646179808 scopus 로고    scopus 로고
    • Method for the selection of inputs and structure of feedforward neural networks
    • Saxén, H. and Pettersson, F.: Method for the selection of inputs and structure of feedforward neural networks, Compu. Chem. Eng., 30, 1038-1045, 2006.
    • (2006) Compu. Chem. Eng , vol.30 , pp. 1038-1045
    • Saxén, H.1    Pettersson, F.2
  • 70
    • 38649139634 scopus 로고    scopus 로고
    • Gap filling and quality assessment of co2 andwater vapour fluxes above an urban area with radial basis function neural networks
    • Schmidt, A., Wrzesinsky, T., and Klemm, O.: Gap Filling and Quality Assessment of CO2 andWater Vapour Fluxes above an Urban Area with Radial Basis Function Neural Networks, Bound-Lay Meteorol., 126, 389-413, 2008.
    • (2008) Bound-Lay Meteorol , vol.126 , pp. 389-413
    • Schmidt, A.1    Wrzesinsky, T.2    Klemm, O.3
  • 71
    • 0004393134 scopus 로고
    • Connectionist approach to time series prediction: An empirical test
    • Sharda, R. and Patil, R. B.: Connectionist approach to time series prediction: an empirical test, J. Intell. Manuf., 3, 317-323, 1992.
    • (1992) J. Intell. Manuf , vol.3 , pp. 317-323
    • Sharda, R.1    Patil, R.B.2
  • 72
    • 67650269871 scopus 로고    scopus 로고
    • How many hidden layers and nodes?
    • Stathakis, D.: How many hidden layers and nodes?, Int. J. Remote Sens., 30, 2133-2147, 2009.
    • (2009) Int. J. Remote Sens , vol.30 , pp. 2133-2147
    • Stathakis, D.1
  • 73
    • 84859882317 scopus 로고    scopus 로고
    • Soil moisture control over autumn season methane flux, arctic coastal plain of alaska
    • doi:10.5194/bg-9-1423-2012
    • Sturtevant, C. S., Oechel, W. C., Zona, D., Kim, Y., and Emerson, C. E.: Soil moisture control over autumn season methane flux, Arctic Coastal Plain of Alaska, Biogeosciences, 9, 1423-1440, doi:10.5194/bg-9-1423-2012, 2012.
    • (2012) Biogeosciences , vol.9 , pp. 1423-1440
    • Sturtevant, C.S.1    Oechel, W.C.2    Zona, D.3    Kim, Y.4    Emerson, C.E.5
  • 74
    • 0001068949 scopus 로고    scopus 로고
    • Methane flux in a boreal fen: Season-long measurement by eddy correlation
    • doi:10.1029/96JD02751
    • Suyker, A. E., Verma, S. B., Clement, R. J., and Billesbach D. P.: Methane flux in a boreal fen: Season-long measurement by eddy correlation, J. Geophys. Res., 101, 28637-28647, doi:10.1029/96JD02751, 1996.
    • (1996) J. Geophys. Res , vol.101 , pp. 28637-28647
    • Suyker, A.E.1    Verma, S.B.2    Clement, R.J.3    Billesbach, D.P.4
  • 76
    • 84860689583 scopus 로고    scopus 로고
    • Land-atmosphere exchange of methane from soil thawing to soil freezing in a high-arctic wet tundra ecosystem
    • Tagesson, T., Mölder, M., Mastepanov, M., Sigsgaard, C., and Tamstorf, M. P.: Land-atmosphere exchange of methane from soil thawing to soil freezing in a high-Arctic wet tundra ecosystem. Glob. Change Biol., 18, 1928-1940, 2012.
    • (2012) Glob. Change Biol , vol.18 , pp. 1928-1940
    • Tagesson, T.1    Mölder, M.2    Mastepanov, M.3    Sigsgaard, C.4    Tamstorf, M.P.5
  • 80
    • 56649111224 scopus 로고    scopus 로고
    • Summer soil ch4 emission and uptake in taiga forest near yakutsk, eastern siberia
    • van Huissteden, J., Maximov, T. C., Kononov, A. V., and Dolman, A. J.: Summer soil CH4 emission and uptake in taiga forest near Yakutsk, Eastern Siberia, Agr. Forest Meteorol., 148, 2006- 2012, 2008.
    • (2008) Agr. Forest Meteorol , vol.148 , pp. 2006-2012
    • Van Huissteden, J.1    Maximov, T.C.2    Kononov, A.V.3    Dolman, A.J.4
  • 81
    • 0033578359 scopus 로고    scopus 로고
    • Water and carbon fluxes above European coniferous forests modelled with artificial neural networks
    • DOI 10.1016/S0304-3800(99)00101-5, PII S0304380099001015
    • van Wijk, M. T. and Bouten, W.: Water and carbon fluxes above European coniferous forests modelled with artificial neural networks, Ecol. Model., 120, 181-197, 1999. (Pubitemid 29405138)
    • (1999) Ecological Modelling , vol.120 , Issue.2-3 , pp. 181-197
    • Van Wijk, M.T.1    Bouten, W.2
  • 83
    • 0026462775 scopus 로고
    • Interannual variations in tundra methane emission: A 4 year time series at fixed sites
    • Whalen, S. C. and Reeburgh, W. S.: Interannual variations in tundra methane emission: A 4 year time series at fixed sites, Global Biogeochem. Cy., 6, 139-159, 1992.
    • (1992) Global Biogeochem. Cy , vol.6 , pp. 139-159
    • Whalen, S.C.1    Reeburgh, W.S.2
  • 84
    • 43349104590 scopus 로고    scopus 로고
    • Methane emission from Siberian arctic polygonal tundra: Eddy covariance measurements and modeling
    • DOI 10.1111/j.1365-2486.2008.01586.x
    • Wille, C., Kutzbach, L., Sachs, T., Wagner, D., and Pfeiffer, E-M.: Methane emission from Siberian arctic polygonal tundra, eddy covariance measurements and modelling, Glob. Change Biol., 14, 1395-1408, 2008. (Pubitemid 351659559)
    • (2008) Global Change Biology , vol.14 , Issue.6 , pp. 1395-1408
    • Wille, C.1    Kutzbach, L.2    Sachs, T.3    Wagner, D.4    Pfeiffer, E.-M.5
  • 87
    • 4344591889 scopus 로고    scopus 로고
    • Neural network forecasting for seasonal and trend time series
    • Zhang, G. P. and Qi, M.: Neural network forecasting for seasonal and trend time series, Eur. J. Oper. Res., 160, 501-514, 2005.
    • (2005) Eur. J. Oper. Res , vol.160 , pp. 501-514
    • Zhang, G.P.1    Qi, M.2
  • 88
    • 70349559873 scopus 로고    scopus 로고
    • Methane fluxes during the initiation of a large-scale water table manipulation experiment in the alaskan arctic tundra
    • doi:10.1029/2009GB003487
    • Zona, D., Oechel, W. C., Kochendorfer, J., Paw, U. K. T., and Salyuket, A. U.: Methane fluxes during the initiation of a large-scale water table manipulation experiment in the Alaskan Arctic tundra, Global Biogeochem. Cy., 23, GB2013, doi:10.1029/2009GB003487, 2009.
    • (2009) Global Biogeochem. Cy , vol.23
    • Zona, D.1    Oechel, W.C.2    Kochendorfer, J.3    Paw, U.K.T.4    Salyuket, A.U.5
  • 89


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.