-
1
-
-
0034069495
-
Gene ontology: Tool for the unification of biology
-
G.O. Consortium et al., "Gene Ontology: Tool for the Unification of Biology," Nature Genetics, vol. 25, no. 1, pp. 25-29, 2000.
-
(2000)
Nature Genetics
, vol.25
, Issue.1
, pp. 25-29
-
-
Consortium, G.O.1
-
2
-
-
33947252154
-
Network-based prediction of protein function
-
article
-
R. Sharan, I. Ulitsky, and R. Shamir, "Network-Based Prediction of Protein Function," Molecular Systems Biology, vol. 3, no. 1, article 88, 2007.
-
(2007)
Molecular Systems Biology
, vol.3
, Issue.1
, pp. 88
-
-
Sharan, R.1
Ulitsky, I.2
Shamir, R.3
-
3
-
-
36849044810
-
-
Technical Report TR 06-028, Dept. of Computer Science and Eng., Univ. of Minnesota
-
G. Pandey, V. Kumar, and M. Steinbach, "Computational Approaches for Protein Function Prediction," Technical Report TR 06-028, Dept. of Computer Science and Eng., Univ. of Minnesota, 2006.
-
(2006)
Computational Approaches for Protein Function Prediction
-
-
Pandey, G.1
Kumar, V.2
Steinbach, M.3
-
4
-
-
84889854831
-
Integrating information for protein function prediction
-
T. Lengauer, ed. Wiley-VCH
-
W. Noble and A. Ben-Hur, "Integrating Information for Protein Function Prediction," Bioinformatics-From Genomes to Therapies, vol. 3, T. Lengauer, ed., Wiley-VCH, pp. 1297-1314, 2007.
-
(2007)
Bioinformatics-From Genomes to Therapies
, vol.3
, pp. 1297-1314
-
-
Noble, W.1
Ben-Hur, A.2
-
5
-
-
8844263749
-
A statistical framework for genomic data fusion
-
DOI 10.1093/bioinformatics/bth294
-
G. Lanckriet, T. De Bie, N. Cristianini, M. Jordan, and W. Noble, "A Statistical Framework for Genomic Data Fusion," Bioinformatics, vol. 20, no. 16, pp. 2626-2635, 2004. (Pubitemid 39530149)
-
(2004)
Bioinformatics
, vol.20
, Issue.16
, pp. 2626-2635
-
-
Lanckriet, G.R.G.1
De Bie, T.2
Cristianini, N.3
Jordan, M.I.4
Noble, S.5
-
7
-
-
1542714925
-
Mismatch string kernels for discriminative protein classification
-
DOI 10.1093/bioinformatics/btg431
-
C. Leslie, E. Eskin, A. Cohen, J. Weston, and W. Noble, "Mismatch String Kernels for Discriminative Protein Classification," Bioinformatics, vol. 20, no. 4, pp. 467-476, 2004. (Pubitemid 38344326)
-
(2004)
Bioinformatics
, vol.20
, Issue.4
, pp. 467-476
-
-
Leslie, C.S.1
Eskin, E.2
Cohen, A.3
Weston, J.4
Noble, W.S.5
-
8
-
-
0036100116
-
Learning gene functional classifications from multiple data types
-
DOI 10.1089/10665270252935539
-
P. Pavlidis, J. Weston, J. Cai, and W. Noble, "Learning Gene Functional Classifications from Multiple Data Types," J. Computational Biology, vol. 9, no. 2, pp. 401-411, 2002. (Pubitemid 34548272)
-
(2002)
Journal of Computational Biology
, vol.9
, Issue.2
, pp. 401-411
-
-
Pavlidis, P.1
Weston, J.2
Cai, J.3
Noble, W.S.4
-
9
-
-
77954309042
-
Fast integration of heterogeneous data sources for predicting gene function with limited annotation
-
S. Mostafavi and Q. Morris, "Fast Integration of Heterogeneous Data Sources for Predicting Gene Function with Limited Annotation," Bioinformatics, vol. 26, no. 14, pp. 1759-1765, 2010.
-
(2010)
Bioinformatics
, vol.26
, Issue.14
, pp. 1759-1765
-
-
Mostafavi, S.1
Morris, Q.2
-
10
-
-
27544435126
-
Fast protein classification with multiple networks
-
K. Tsuda, H. Shin, and B. Schö lkopf, "Fast Protein Classification with Multiple Networks," Bioinformatics, vol. 21, no. suppl. 2, pp. 59-65, 2005.
-
(2005)
Bioinformatics
, vol.21
, Issue.SUPPL. 2
, pp. 59-65
-
-
Tsuda, K.1
Shin, H.2
Schö Lkopf, B.3
-
13
-
-
56349128167
-
Protein functional class prediction with a combined graph
-
H. Shin, K. Tsuda, and B. Schölkopf, "Protein Functional Class Prediction with a Combined Graph," Expert Systems with Applications, vol. 36, no. 2, pp. 3284-3292, 2009.
-
(2009)
Expert Systems with Applications
, vol.36
, Issue.2
, pp. 3284-3292
-
-
Shin, H.1
Tsuda, K.2
Schölkopf, B.3
-
14
-
-
25144481906
-
Semi-supervised protein classification using cluster kernels
-
DOI 10.1093/bioinformatics/bti497
-
J. Weston, C. Leslie, E. Ie, D. Zhou, A. Elisseeff, and W. Noble, "Semi-Supervised Protein Classification Using Cluster Kernels," Bioinformatics, vol. 21, no. 15, pp. 3241-3247, 2005. (Pubitemid 41418437)
-
(2005)
Bioinformatics
, vol.21
, Issue.15
, pp. 3241-3247
-
-
Weston, J.1
Leslie, C.2
Le, E.3
Zhou, D.4
Elisseeff, A.5
Noble, W.S.6
-
15
-
-
80053032591
-
Learning protein functions from bi-relational graph of proteins and function annotations
-
J. Jiang, "Learning Protein Functions from Bi-Relational Graph of Proteins and Function Annotations," Proc. 11th Int'l Conf. Algorithms in Bioinformatics, pp. 128-138, 2011.
-
(2011)
Proc. 11th Int'l Conf. Algorithms in Bioinformatics
, pp. 128-138
-
-
Jiang, J.1
-
16
-
-
84861492190
-
Predicting protein function by multi-label correlated semi-supervised learning
-
July/Aug.
-
J. Jiang and L. McQuay, "Predicting Protein Function by Multi-Label Correlated Semi-Supervised Learning," IEEE/ACM Trans. Computational Biology and Bioinformatics, vol. 9, no. 4, pp. 1059-1069, July/Aug. 2012.
-
(2012)
IEEE/ACM Trans. Computational Biology and Bioinformatics
, vol.9
, Issue.4
, pp. 1059-1069
-
-
Jiang, J.1
McQuay, L.2
-
17
-
-
67650898284
-
Incorporating functional inter-relationships into protein function prediction algorithms
-
article
-
G. Pandey, C. Myers, and V. Kumar, "Incorporating Functional Inter-Relationships into Protein Function Prediction Algorithms," BMC Bioinformatics, vol. 10, no. 1, article 142, 2009.
-
(2009)
BMC Bioinformatics
, vol.10
, Issue.1
, pp. 142
-
-
Pandey, G.1
Myers, C.2
Kumar, V.3
-
18
-
-
84859205429
-
A framework for incorporating functional interrelationships into protein function prediction algorithms
-
May/June
-
X. Zhang and D. Dai, "A Framework for Incorporating Functional Interrelationships into Protein Function Prediction Algorithms," IEEE/ACM Trans. Computational Biology and Bioinformatics, vol. 9, no. 3, pp. 740-753, May/June 2012.
-
(2012)
IEEE/ACM Trans. Computational Biology and Bioinformatics
, vol.9
, Issue.3
, pp. 740-753
-
-
Zhang, X.1
Dai, D.2
-
19
-
-
78751693089
-
On multiple kernel learning with multiple labels
-
L. Tang, J. Chen, and J. Ye, "On Multiple Kernel Learning with Multiple Labels," Proc. 21st Int'l Joint Conf. Artifical Intelligence (IJCAI '09), pp. 1255-1260, 2009.
-
(2009)
Proc. 21st Int'l Joint Conf. Artifical Intelligence (IJCAI '09)
, pp. 1255-1260
-
-
Tang, L.1
Chen, J.2
Ye, J.3
-
20
-
-
85161973596
-
Multi-label multiple kernel learning by stochastic approximation: Application to visual object recognition
-
S. Bucak, R. Jin, and A. Jain, "Multi-Label Multiple Kernel Learning by Stochastic Approximation: Application to Visual Object Recognition," Proc. Advances in Neural Information Processing Systems (NIPS '10), pp. 1145-1154, 2010.
-
(2010)
Proc. Advances in Neural Information Processing Systems (NIPS '10)
, pp. 1145-1154
-
-
Bucak, S.1
Jin, R.2
Jain, A.3
-
21
-
-
84866015736
-
Transductive multi-label ensemble classification for protein function prediction
-
G. Yu, C. Domeniconi, H. Rangwala, G. Zhang, and Z. Yu, "Transductive Multi-Label Ensemble Classification for Protein Function Prediction," Proc. 18th ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining (SIGKDD '12), pp. 1077-1085, 2012.
-
(2012)
Proc. 18th ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining (SIGKDD '12)
, pp. 1077-1085
-
-
Yu, G.1
Domeniconi, C.2
Rangwala, H.3
Zhang, G.4
Yu, Z.5
-
22
-
-
80052893001
-
Image annotation using bi-relational graph of images and semantic labels
-
H. Wang, H. Huang, and C. Ding, "Image Annotation Using Bi-Relational Graph of Images and Semantic Labels," Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR '11), pp. 793-800, 2011.
-
(2011)
Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR '11)
, pp. 793-800
-
-
Wang, H.1
Huang, H.2
Ding, C.3
-
23
-
-
9144257282
-
The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes
-
DOI 10.1093/nar/gkh894
-
A. Ruepp et al., "The FunCat, a Functional Annotation Scheme for Systematic Classification of Proteins from Whole Genomes," Nucleic Acids Research, vol. 32, no. 18, pp. 5539-5545, 2004. (Pubitemid 39545671)
-
(2004)
Nucleic Acids Research
, vol.32
, Issue.18
, pp. 5539-5545
-
-
Ruepp, A.1
Zollner, A.2
Maier, D.3
Albermann, K.4
Hani, J.5
Mokrejs, M.6
Tetko, I.7
Guldener, U.8
Mannhaupt, G.9
Munsterkotter, M.10
Mewes, H.W.11
-
24
-
-
77956163078
-
Mining multi-label data
-
Springer
-
G. Tsoumakas, I. Katakis, and I. Vlahavas, "Mining Multi-Label Data," Data Mining and Knowledge Discovery Handbook, pp. 667-685, Springer, 2010.
-
(2010)
Data Mining and Knowledge Discovery Handbook
, pp. 667-685
-
-
Tsoumakas, G.1
Katakis, I.2
Vlahavas, I.3
-
26
-
-
70450163017
-
Efficient multi-label classification with hypergraph regularization
-
G. Chen, J. Zhang, F. Wang, C. Zhang, and Y. Gao, "Efficient Multi-Label Classification with Hypergraph Regularization," Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR '09), pp. 1658-1665, 2009.
-
(2009)
Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR '09)
, pp. 1658-1665
-
-
Chen, G.1
Zhang, J.2
Wang, F.3
Zhang, C.4
Gao, Y.5
-
27
-
-
33645323768
-
Hierarchical multi-label prediction of gene function
-
Z. Barutcuoglu, R. Schapire, and O. Troyanskaya, "Hierarchical Multi-Label Prediction of Gene Function," Bioinformatics, vol. 22, no. 7, pp. 830-836, 2006.
-
(2006)
Bioinformatics
, vol.22
, Issue.7
, pp. 830-836
-
-
Barutcuoglu, Z.1
Schapire, R.2
Troyanskaya, O.3
-
28
-
-
79952831194
-
True path rule hierarchical ensembles for genome-wide gene function prediction
-
May/June
-
G. Valentini, "True Path Rule Hierarchical Ensembles for Genome-Wide Gene Function Prediction," IEEE/ACM Trans. Computational Biology and Bioinformatics, vol. 8, no. 3, pp. 832-847, May/June 2011.
-
(2011)
IEEE/ACM Trans. Computational Biology and Bioinformatics
, vol.8
, Issue.3
, pp. 832-847
-
-
Valentini, G.1
-
29
-
-
0005180705
-
An information-theoretic definition of similarity
-
D. Lin, "An Information-Theoretic Definition of Similarity," Proc. 15th Int'l Conf. Machine Learning, pp. 296-304, 1998.
-
(1998)
Proc. 15th Int'l Conf. Machine Learning
, pp. 296-304
-
-
Lin, D.1
-
30
-
-
84899006908
-
Learning with local and global consistency
-
D. Zhou, O. Bousquet, T. Lal, J. Weston, and B. Schölkopf, "Learning with Local and Global Consistency," Proc. Advances in Neural Information Processing Systems (NIPS '04), pp. 321-328, 2004.
-
(2004)
Proc. Advances in Neural Information Processing Systems (NIPS '04)
, pp. 321-328
-
-
Zhou, D.1
Bousquet, O.2
Lal, T.3
Weston, J.4
Schölkopf, B.5
-
31
-
-
33750729556
-
Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
-
M. Belkin, P. Niyogi, and V. Sindhwani, "Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples," J. Machine Learning Research, vol. 7, pp. 2399-2434, 2006. (Pubitemid 44708005)
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 2399-2434
-
-
Belkin, M.1
Niyogi, P.2
Sindhwani, V.3
-
32
-
-
0002629270
-
Maximum likelihood from incomplete data via the em algorithm
-
A. Dempster, N. Laird, and D. Rubin, "Maximum Likelihood from Incomplete Data via the Em Algorithm," J. Royal Statistical Soc. Series B (Methodological), vol. 39, pp. 1-38, 1977.
-
(1977)
J. Royal Statistical Soc. Series B (Methodological)
, vol.39
, pp. 1-38
-
-
Dempster, A.1
Laird, N.2
Rubin, D.3
-
33
-
-
47549107689
-
GeneMANIA: A real-time multiple association network integration algorithm for predicting gene function
-
article
-
S. Mostafavi, D. Ray, D. Warde-Farley, C. Grouios, and Q. Morris, "GeneMANIA: A Real-Time Multiple Association Network Integration Algorithm for Predicting Gene Function," Genome Biology, vol. 9, no. suppl. 1, article S4, 2008.
-
(2008)
Genome Biology
, vol.9
, Issue.SUPPL. 1
-
-
Mostafavi, S.1
Ray, D.2
Warde-Farley, D.3
Grouios, C.4
Morris, Q.5
-
34
-
-
84865223440
-
Synergy of multi-label hierarchical ensembles, data fusion, and cost-sensitive methods for gene functional inference
-
N. Cesa-Bianchi, M. Re, and G. Valentini, "Synergy of Multi-Label Hierarchical Ensembles, Data Fusion, and Cost-Sensitive Methods for Gene Functional Inference," Machine Learning, vol. 88, nos. 1/2, pp. 1-33, 2012.
-
(2012)
Machine Learning
, vol.88
, Issue.1-2
, pp. 1-33
-
-
Cesa-Bianchi, N.1
Re, M.2
Valentini, G.3
-
35
-
-
80052213499
-
Multiple kernel learning algorithms
-
M. Gönen and E. Alpaydin, "Multiple Kernel Learning Algorithms," J. Machine Learning Research, vol. 12, pp. 2211-2268, 2011.
-
(2011)
J. Machine Learning Research
, vol.12
, pp. 2211-2268
-
-
Gönen, M.1
Alpaydin, E.2
-
36
-
-
60649094696
-
Graph-based semi-supervised learning with multiple labels
-
Z. Zha, T. Mei, J. Wang, Z. Wang, and X. Hua, "Graph-Based Semi-Supervised Learning with Multiple Labels," J. Visual Comm. and Image Representation, vol. 20, no. 2, pp. 97-103, 2009.
-
(2009)
J. Visual Comm. and Image Representation
, vol.20
, Issue.2
, pp. 97-103
-
-
Zha, Z.1
Mei, T.2
Wang, J.3
Wang, Z.4
Hua, X.5
-
37
-
-
41149096059
-
Random walk with restart: Fast solutions and applications
-
H. Tong, C. Faloutsos, and J. Pan, "Random Walk with Restart: Fast Solutions and Applications," Knowledge and Information Systems, vol. 14, no. 3, pp. 327-346, 2008.
-
(2008)
Knowledge and Information Systems
, vol.14
, Issue.3
, pp. 327-346
-
-
Tong, H.1
Faloutsos, C.2
Pan, J.3
-
38
-
-
0033669189
-
A network of protein-protein interactions in yeast
-
B. Schwikowski et al., "A Network of Protein-Protein Interactions in Yeast," Nature Biotechnology, vol. 18, no. 12, pp. 1257-1261, 2000.
-
(2000)
Nature Biotechnology
, vol.18
, Issue.12
, pp. 1257-1261
-
-
Schwikowski, B.1
-
39
-
-
77952243547
-
Molecular function prediction using neighborhood features
-
Apr.-June
-
P. Bogdanov and A. Singh, "Molecular Function Prediction Using Neighborhood Features," IEEE/ACM Trans. Computational Biology and Bioinformatics, vol. 7, no. 2, pp. 208-217, Apr.-June 2010.
-
(2010)
IEEE/ACM Trans. Computational Biology and Bioinformatics
, vol.7
, Issue.2
, pp. 208-217
-
-
Bogdanov, P.1
Singh, A.2
-
40
-
-
0037403516
-
Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
-
L. Kuncheva and C. Whitaker, "Measures of Diversity in Classifier Ensembles and Their Relationship with the Ensemble Accuracy," Machine Learning, vol. 51, no. 2, pp. 181-207, 2003.
-
(2003)
Machine Learning
, vol.51
, Issue.2
, pp. 181-207
-
-
Kuncheva, L.1
Whitaker, C.2
-
42
-
-
80052884721
-
Multi-label learning with incomplete class assignments
-
S. Bucak, R. Jin, and A. Jain, "Multi-Label Learning with Incomplete Class Assignments," Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR '11), pp. 2801-2808, 2011.
-
(2011)
Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR '11)
, pp. 2801-2808
-
-
Bucak, S.1
Jin, R.2
Jain, A.3
-
43
-
-
0034830461
-
Decision templates for multiple classifier fusion: An experimental comparison
-
DOI 10.1016/S0031-3203(99)00223-X
-
L.I. Kuncheva, J.C. Bezdek, and R. Duin, "Decision Templates for Multiple Classifier Fusion: An Experimental Comparison," Pattern Recognition, vol. 34, no. 2, pp. 299-314, 2001. (Pubitemid 32871876)
-
(2001)
Pattern Recognition
, vol.34
, Issue.2
, pp. 299-314
-
-
Kuncheva, L.I.1
Bezdek, J.C.2
Duin, R.P.W.3
-
44
-
-
85016655798
-
Semi-supervised classification based on subspace sparse representation
-
G. Yu, G. Zhang, Z. Zhang, Z. Yu, and L. Deng, "Semi-Supervised Classification Based on Subspace Sparse Representation," Knowledge and Information Systems, http://link.springer.com/article/10.1007%2Fs10115-013-0702- 2, 2013.
-
(2013)
Knowledge and Information Systems
-
-
Yu, G.1
Zhang, G.2
Zhang, Z.3
Yu, Z.4
Deng, L.5
|