메뉴 건너뛰기




Volumn , Issue , 2012, Pages 1077-1085

Transductive multi-label ensemble classification for protein function prediction

Author keywords

directed bi relation graph; multi label ensemble classifier; protein function prediction

Indexed keywords

COMPOSITE KERNELS; COMPUTATIONAL BIOLOGY; DATA INTEGRATION; DATA SETS; DATA SOURCE; DIRECTED BI-RELATION GRAPH; ENSEMBLE CLASSIFICATION; ENSEMBLE CLASSIFIERS; FUNCTION PREDICTION; GENOMIC DATA; GRAPH-BASED; HETEROGENEOUS DATA SOURCES; INDIVIDUAL MODELS; LEARNING FRAMEWORKS; MULTI-LABEL; MULTIPLE DATA SOURCES; MULTIPLE FUNCTION; MULTIPLE KERNELS; PROTEIN FUNCTION PREDICTION;

EID: 84866015736     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2339530.2339700     Document Type: Conference Paper
Times cited : (55)

References (31)
  • 1
    • 33645323768 scopus 로고    scopus 로고
    • Hierarchical multi-label prediction of gene function
    • Z. Barutcuoglu, R. Schapire, and O. Troyanskaya. Hierarchical multi-label prediction of gene function. Bioinformatics, 22(7):830-836, 2006.
    • (2006) Bioinformatics , vol.22 , Issue.7 , pp. 830-836
    • Barutcuoglu, Z.1    Schapire, R.2    Troyanskaya, O.3
  • 2
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. Journal of Machine Learning Research, 7:2399-2434, 2006.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 5
    • 0034069495 scopus 로고    scopus 로고
    • Gene ontology: Tool for the unification of biology
    • G. O. Consortium et al. Gene ontology: tool for the unification of biology. Nature Genetics, 25(1):25-29, 2000.
    • (2000) Nature Genetics , vol.25 , Issue.1 , pp. 25-29
    • Consortium, G.O.1
  • 9
    • 80053032591 scopus 로고    scopus 로고
    • Learning protein functions from bi-relational graph of proteins and function annotations
    • J. Jiang. Learning protein functions from bi-relational graph of proteins and function annotations. Algorithms in Bioinformatics, pages 128-138, 2011.
    • (2011) Algorithms in Bioinformatics , pp. 128-138
    • Jiang, J.1
  • 11
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • L. Kuncheva and C. Whitaker. Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine Learning, 51(2):181-207, 2003.
    • (2003) Machine Learning , vol.51 , Issue.2 , pp. 181-207
    • Kuncheva, L.1    Whitaker, C.2
  • 13
    • 1542714925 scopus 로고    scopus 로고
    • Mismatch string kernels for discriminative protein classification
    • C. Leslie, E. Eskin, A. Cohen, J. Weston, and W. Noble. Mismatch string kernels for discriminative protein classification. Bioinformatics, 20(4):467, 2004.
    • (2004) Bioinformatics , vol.20 , Issue.4 , pp. 467
    • Leslie, C.1    Eskin, E.2    Cohen, A.3    Weston, J.4    Noble, W.5
  • 15
    • 77954309042 scopus 로고    scopus 로고
    • Fast integration of heterogeneous data sources for predicting gene function with limited annotation
    • S. Mostafavi and Q. Morris. Fast integration of heterogeneous data sources for predicting gene function with limited annotation. Bioinformatics, 26(14):1759-1765, 2010.
    • (2010) Bioinformatics , vol.26 , Issue.14 , pp. 1759-1765
    • Mostafavi, S.1    Morris, Q.2
  • 16
    • 47549107689 scopus 로고    scopus 로고
    • Genemania: A real-time multiple association network integration algorithm for predicting gene function
    • S. Mostafavi, D. Ray, D. Warde-Farley, C. Grouios, and Q. Morris. Genemania: a real-time multiple association network integration algorithm for predicting gene function. Genome Biology, 9(Suppl 1):S4, 2008.
    • (2008) Genome Biology , vol.9 , Issue.SUPPL. 1
    • Mostafavi, S.1    Ray, D.2    Warde-Farley, D.3    Grouios, C.4    Morris, Q.5
  • 19
    • 67650898284 scopus 로고    scopus 로고
    • Incorporating functional inter-relationships into protein function prediction algorithms
    • G. Pandey, C. Myers, and V. Kumar. Incorporating functional inter-relationships into protein function prediction algorithms. BMC Bioinformatics, 10(1):142, 2009.
    • (2009) BMC Bioinformatics , vol.10 , Issue.1 , pp. 142
    • Pandey, G.1    Myers, C.2    Kumar, V.3
  • 20
    • 0036100116 scopus 로고    scopus 로고
    • Learning gene functional classifications from multiple data types
    • P. Pavlidis, J. Weston, J. Cai, and W. Noble. Learning gene functional classifications from multiple data types. Journal of Computational Biology, 9(2):401-411, 2002.
    • (2002) Journal of Computational Biology , vol.9 , Issue.2 , pp. 401-411
    • Pavlidis, P.1    Weston, J.2    Cai, J.3    Noble, W.4
  • 21
    • 70349309671 scopus 로고    scopus 로고
    • Ensemble based data fusion for gene function prediction
    • M. Re and G. Valentini. Ensemble based data fusion for gene function prediction. Multiple Classifier Systems, pages 448-457, 2009.
    • (2009) Multiple Classifier Systems , pp. 448-457
    • Re, M.1    Valentini, G.2
  • 24
    • 56349128167 scopus 로고    scopus 로고
    • Protein functional class prediction with a combined graph
    • H. Shin, K. Tsuda, and B. Schölkopf. Protein functional class prediction with a combined graph. Expert Systems with Applications, 36(2):3284-3292, 2009.
    • (2009) Expert Systems with Applications , vol.36 , Issue.2 , pp. 3284-3292
    • Shin, H.1    Tsuda, K.2    Schölkopf, B.3
  • 25
    • 41149096059 scopus 로고    scopus 로고
    • Random walk with restart: Fast solutions and applications
    • H. Tong, C. Faloutsos, and J. Pan. Random walk with restart: fast solutions and applications. Knowledge and Information Systems, 14(3):327-346, 2008.
    • (2008) Knowledge and Information Systems , vol.14 , Issue.3 , pp. 327-346
    • Tong, H.1    Faloutsos, C.2    Pan, J.3
  • 27
    • 27544435126 scopus 로고    scopus 로고
    • Fast protein classification with multiple networks
    • K. Tsuda, H. Shin, and B. Schölkopf. Fast protein classification with multiple networks. Bioinformatics, 21(suppl 2):ii59, 2005.
    • (2005) Bioinformatics , vol.21 , Issue.SUPPL. 2
    • Tsuda, K.1    Shin, H.2    Schölkopf, B.3
  • 29
    • 25144481906 scopus 로고    scopus 로고
    • Semi-supervised protein classification using cluster kernels
    • J. Weston, C. Leslie, E. Ie, D. Zhou, A. Elisseeff, and W. Noble. Semi-supervised protein classification using cluster kernels. Bioinformatics, 21(15):3241-3247, 2005.
    • (2005) Bioinformatics , vol.21 , Issue.15 , pp. 3241-3247
    • Weston, J.1    Leslie, C.2    Ie, E.3    Zhou, D.4    Elisseeff, A.5    Noble, W.6
  • 30
    • 84866013930 scopus 로고    scopus 로고
    • A framework for incorporating functional inter-relationships into protein function prediction algorithms
    • X. Zhang and D. Dai. A framework for incorporating functional inter-relationships into protein function prediction algorithms. Computational Biology and Bioinformatics, IEEE/ACM Transactions on, (99):1-1, 2011.
    • (2011) Computational Biology and Bioinformatics, IEEE/ACM Transactions On , Issue.99 , pp. 1-1
    • Zhang, X.1    Dai, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.